

Feedback control of the spatio-temporal properties of high-intensity laser pulses to optimize x-ray and 100 MeV electron generation Daniel Symes Central Laser Facility STFC Rutherford Appleton Laboratory

Science & Technology Facilities <u>Council</u>

Collaborators

<u>D. R. Symes¹</u>, M. J. V. Streeter², S. Dann², D. Scott², A. G. R. Thomas², C. D. Murphy³, C. Baird³, S. Eardley⁴, R. A. Smith⁴, S. Rozario⁵, J.-N. Gruse⁵, S. P. D. Mangles⁵, Z. Najmudin⁵, S. Tata⁶, R. Venkata⁷, D. Hazra⁸, P. Pourmoussavi⁹, J. Osterhoff⁹, J. Hah¹⁰, N. Bourgeois¹, C. Thornton¹, C. D. Gregory¹, C. J. Hooker¹, O. Chekhlov¹, S. J. Hawkes¹, B. Parry¹, V. Marshall¹, Y. Tang¹, E. Springate¹, P. P. Rajeev¹

¹Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
 ²Cockcroft Institute, STFC Daresbury Laboratory, Warrington WA4 4AD, UK
 ³Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
 ⁴Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
 ⁵The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, SW7 2AZ, UK
 ⁶Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, India
 ⁷TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad, India
 ⁸Laser Plasma Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
 ⁹Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
 ¹⁰Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan, 48109, USA

Outline

- Compact 100 MeV LWFA with 10 TW Gemini TA2
- Operation of LWFA at 5 Hz
- Feedback optimisation of laser-matter interactions
- Optimisation of x-ray yields and electron beams from cluster targets

Gemini TA2 experimental area

- Laser ~ 450mJ in 40 fs, *f*/17, ~10¹⁸ Wcm⁻²
- Maximum rep-rate 5 Hz

Recent LWFA experiments in Gemini TA2

Distinct differences between cluster and helium interaction:

Higher $Z \rightarrow$ Higher charge

Locally solid ρ but average gas ρ \rightarrow Inner and outer ionisation \rightarrow Collisional and collisionless heating

Complicated interaction \rightarrow Very sensitive to pulse shape

 \rightarrow High electron temperature (keV)

See talk by Savio Rosario

Methane cluster target >100 MeV electrons in 2 x 2 x 2 m³ space

Target chamber arrangement for TA2 *f*/17 gas target interaction

Gas jet housed inside internal chamber for operation at high repetition rate

Science & Technology Facilities Council

Biggest problem for increased repetition rate is e-beam radiation shielding

Challenges operating at high rep-rate

100 MeV LWFA running at 5 Hz

Electron spectrometer

Interferometer

Redshift Blueshift Exit mode spectrometer

High rep-rate allows a fine resolution scan of parameter space

High repetition rate means we can apply active feedback techniques

Coherent Control of Quantum Dynamics: The Dream Is Alive

Warren S. Warren, Herschel Rabitz, Mohammed Dahleh

Current experimental and theoretical progress toward the goal of controlling quantum dynamics is summarized. Two key developments have now revitalized the field. First, appropriate ultrafast laser pulse shaping capabilities have only recently become practical. Second, the introduction of engineering control concepts has put the required theoretical framework on a rigorous foundation. Extrapolations to determine what is realistically possible are presented.

SCIENCE • VOL. 259 • 12 MARCH 1993

- "Fitness function" based on desired outcome defined
- Feedback loop shapes the pulse to improve output each generation
- Commonly used on kHz (few mJ energy) lasers
- Unexpected outcomes can happen

Temporal control of pulse shape through SLM or Dazzler

Spatial control of focal spot with a deformable mirror

Example: optimising HHG yield

Yoshitomi et al, App. Phys. B 78, 275 (2004)

Optimisation of electron beams with spatial feedback with CUOS λ^3 laser

Non-ideal focus gave higher charge

Z. H. He et al, Nat. Comm 2015

and **better divergence**.

TA2 has much higher laser energy than previous optimisation experiments

- LWFA and x-ray diagnostics
- Spatial and temporal control

Optimisation of soft x-ray emission from argon clusters

Soft x-ray emission measured at 90° with PIN diodes

Generation 1

- Start with best pulse compression
- Apply random Dazzler settings

Generation 4

• Laser defocus problem

Generation 7

- Reaches optimum
- Poor performers have been rejected

Optimisation of LWFA performance

Grenouille signal of top performers

 Fitness function defined to maximise the signal in an energy "bucket" 90 – 110 MeV

Increased beam charge in specified region was achieved

- Overall increase in beam charge
- Greatest increase in the targeted region (x3)
- More stable beams should be easily adaptable

Science & Technology

Facilities Council

Improving betatron by adapting the spatial profile with deformable mirror

- Optimisation did not work at all
- But can use the large parameter scan to determine the best pattern

Poor focal spot stability may explain inability to optimise

Grenouille signal

Focal spot

• Temporal pulse shape is more stable

Optimisation of argon x-rays through more efficient electron heating

• Added third and fourth order to shape the rising edge

Pulse shapes measured with SPIDER

• Critically important for optimising electron extraction and heating

Triple pulse structure formed in LWFA optimisation

- Pulse 1 initiates cluster expansion, Pulse 2 extracts and heats electrons, Pulse 3 drives accelerator
- Higher extraction fraction \rightarrow higher charge
- How does this pulse shape affect the build up of the plasma wave?
- How does electron heating affect the injection?

Petawatt lasers at 10 - 100 Hz

- Diode pumped technology making higher repetition rates achievable
- Facilities envisaged dedicated to secondary source application \rightarrow ELI, EuPRAXIA, Gemini upgrade
- Feedback techniques provide a powerful tool to optimise beam performance

Summary

- Feedback routines can be used to optimise any parameter
- Control of both spatial and temporal profile of the focus
- There are many more algorithm options

 → Different input parameters
 → More sophisticated fitness function
- Importance to 10 Hz PW e.g. ELI Beamlines

