

<u>3rd European Advanced Accelerator Concepts Workshop</u> La Biodola, Isola d'Elba, Italy, 27.09.2017

GENERATION OF CONTROLLABLE PLASMA WAKEFIELD NOISE IN PARTICLE-IN-CELL SIMULATIONS

<u>Roman Spitsyn</u>^{a,b}, Konstantin Lotov^{a,b}, Hartmut Ruhl^c, Nils Moschuering^c

a – Budker Institute of Nuclear Physics

<u>b – Novosibirsk State University</u>

<u>c – Ludwig-Maximilians-Universität</u>

Formulation of the problem

Beam dynamics in plasmas

Correct simulations

Macroparticles

 $(\mathbf{Q} >> \mathbf{e})$

Overestimated level of wakefield noise

Rapidly increasing instabilities

D	n •1
Roman	Snifevn
Nullan	DPILS YII

EAAC-2017, WG6, La Biodola, Isola d'Elba

27.09.2017 p. 1/27

Formulation of the problem

(frame moves to the right with the speed of light)

нгу

IVERSITÄ.

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 2/27

Formulation of the problem

(frame moves to the right with the speed of light)

IVERSITÄ.

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 3/27

Roman SpitsynEAAC-2017, WG6, La Biodola, Isola d'Elba27.09.2017p. 9/27

Fourier spectrum

The amplitude of the wave ~ amplitude of Fourier harmonic

Roman Spitsyn

EAAC-2017, WG6, La Biodola, Isola d'Elba

27.09.2017 p. 11/27

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 12/27
----------------------	--	------------	----------

Averaging: N rods

Total charge is neutralized.

In simulation the sign of the charge of each rod must be chosen <u>randomly!</u>

Otherwise: not all the phases are <u>equiprobable</u>!

1. The averaging of squared field over the uniform distribution in a cylindrical domain (radius R, length $k_p\pi$).

- 2. Multiplying by N (number of rods).
- 3. Limit of $R \to \infty$.

Roman SpitsynEAAC-2017, WG6, La Biodola, Isola d'Elba27.09.2017p. 13/27

$$E_{rms}^{2}(behind) = N\langle E_{z}^{2} \rangle = \frac{256k_{p}Q^{2}n}{9}$$

2n – the average density of rods in a domain.

Roman Spitsyn

EAAC-2017, WG6, La Biodola, Isola d'Elba

27.09.2017 p. 14/27

	Infinite space – random position everywhe	<u>re</u>	
Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 16/27

нгу

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Limitations of the simulation domain

p. 17/27

Roman Spitsyn

нгу

LUDWIG-MAXIMILIANS-UNIVERSITÄT

EAAC-2017, WG6, La Biodola, Isola d'Elba

Limitations of the simulation domain

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'
---------------	--------------------------------------

нгу

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

27.09.2017 p. 18/27

Firslty: to sum fields of the "same" rods, secondly: to average

 $E_{z}(\vec{r}_{\perp},\xi) = \frac{2k_{p}^{2}Q}{\pi}K_{0}(k_{p}r)G(\xi-\xi_{0}) \implies = >$ $\left(\sum K_0\left(k_p r\right)\right)^2$

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 19/27

Firslty: to sum fields of the "same" rods, secondly: to average

$$E_z(\vec{r}_\perp,\xi) = \frac{2k_p^2 Q}{\pi} K_0(k_p r) G(\xi - \xi_0) \qquad \Longrightarrow \qquad \left\langle \left(\sum K_0\left(k_p r\right) \right)^2 \right\rangle$$

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 20/27

Firslty: to sum fields of the "same" rods, secondly: to average

$$E_{z}(\vec{r}_{\perp},\xi) = \frac{2k_{p}^{2}Q}{\pi}K_{0}(k_{p}r)G(\xi-\xi_{0}) \qquad \Longrightarrow \qquad \left\langle \left(\sum K_{0}\left(k_{p}r\right)\right)^{2}\right\rangle$$

нгу

MAXIMILIANS UNIVERSITÄT MÜNCHEN

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 21/27

Firslty: to sum fields of the "same" rods, secondly: to average

$$E_{z}(\vec{r}_{\perp},\xi) = \frac{2k_{p}^{2}Q}{\pi}K_{0}(k_{p}r)G(\xi-\xi_{0}) \qquad \Longrightarrow \qquad \left\langle \left(\sum K_{0}\left(k_{p}r\right)\right)^{2}\right\rangle$$

нгу

MAXIMILIANS UNIVERSITÄT MÜNCHEN

D	EAAC 2017 WCC L - D'- Jole Leale JELL	27.00.2017	22/27
Roman Spitsyn	EAAC-2017, WGO, La Biodola, Isola d'Elba	27.09.2017	p. 22/27

Firslty: to sum fields of the "same" rods, secondly: to average

Roman Snitsyn	EAAC-2017 WG6 La Biodola Isola d'Elha	27 09 2017	n 23/27
Kullan Spitsyn	EAAC-2017, WG0, La Diodola, Isola u Elba	27.09.2017	p. 23/21

Firslty: to sum fields of the "same" rods, secondly: to average

$$E_z(\vec{r}_\perp,\xi) = \frac{2k_p^2 Q}{\pi} K_0(k_p r) G(\xi - \xi_0) \qquad \Longrightarrow \qquad \left\langle \left(\sum K_0(k_p r) \right)^2 \right\rangle$$

Running... Rods.nb * - Wolfram |

Modified Bessel function of the 2nd kind is rapidly decreasing

Radial averaging over uniform distribution is substituted by the <u>coefficient</u>

27.09.2017

p. 24/27

Rods' «heads» are generated at $[-\pi; 0]$, frame moves to the right with the speed of light

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	p. 25/27

Summary

We have developed a new method of generation the controllable wakefield noise in plasmas.

For more detailed information:

http://arxiv.org/abs/1706.00594

Roman	C	nite	vn
NUIIIaii	D	pild	y 11

EAAC-2017, WG6, La Biodola, Isola d'Elba

27.09.2017 p. 26/27

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Thank you for your attention!

Roman Spitsyn Konstantin Lotov Hartmut Ruhl Nils Moschuering

Roman Spitsyn

EAAC-2017, WG6, La Biodola, Isola d'Elba

27.09.2017 p. 27/27

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Thank you for your attention!

Roman Spitsyn Konstantin Lotov Hartmut Ruhl Nils Moschuering

Roman SpitsynEAAC-2017, WG6, La Biodola, Isola d'Elba27.09.2017p. 27/27

Self-modulation instability

Hose instability

Roman Spitsyn	EAAC-2017, WG6, La Biodola, Isola d'Elba	27.09.2017	ex. 1/2
----------------------	--	------------	---------

Example 2

2) Filamentation

FIG. 4. Snapshots of the beam particles for a simulation with a large radius beam ($\omega_p a/c = 20$). Self-consistent pinching is less pronounced than in the simulation results shown in Fig. 1. A strong filamentation instability is seen in the later snapshots.

Phys. Fluids, Vol. 30, No. 1, January 1987

R. Keinigs and M. E. Jones

plasma density, accelerating field, beam spot size

small fields

Roman Spitsyn

EAAC-2017, WG6, La Biodola, Isola d'Elba

27.09.2017 ex. 2/2

danger of

filamentation

large fields