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- Introduction to AWAKE

 AWAKE is the world’s first proton beam-
driven plasma wakefield experiment.

* AWAKE uses the 400 GeV proton beam from 15 Electron
CERN’s SPS accelerator. 4 , aree,
* AWAKE uses a 10 meter-long Rubidium vapor ' ' \
source (the longest of its kind).
* A TW-class laser ionizes the Rubidium.

* The proton beam is modulated by the
plasma and forms microbunches, which in
turn drive a high-amplitude wakefield.

* A streak cameras captures OTR light and
extracts information about the modulation.
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The proton beam from the SPS is much longer than the
plasma wavelength. The plasma shapes the beam into
micro-bunches via the self-modulation instability (SMI).
When we use a laser to start the seeding process, we
refer to this as seeded self-modulation (SSM).



Seeded vs. Unseeded Modulation

The self-modulation instability shapes the long
proton beam into microbunches, which can be
used to drive a high-amplitude wakefield.

Other instabilities exist. Hosing is the most
prominent instability that “competes” with
SMI. The ionizing laser seeds the SMI while
suppressing hosing.

Important question for AWAKE:
* How does the seed point influence the

development of microbunches?
» We scan the time delay between ionizing laser
pulse and proton beam in order to investigate.

Hosing Instability Suppression in Self-
Modulated Plasma Wakefields

J. Vieira, W. B. Mori, and P. Muggli
Phys. Rev. Lett. 112, 205001
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The modulated proton bunch is sent through a metal foil where it generates
optical transition radiation (OTR). This radiation is sent to the streak camera.



-al Beam

The SPS delivers a 400 GeV |
proton beam with 3E11 p*, and o ; e ] 1400
an rms bunch length of k- ' A
approximately 400 ps (12 cm).
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lay Scan (1 ns streak time-scale)
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Time Delay Scan (1 ns streak time-scale)

Position of Laser mmmp Delay = 0.5 ns 500, |
I ; . I — 05ns
k . — 350ns
| é o | 900 700 — 1000 ns |
200 - e > — 2500 ns
3 ] — 5000 ns
' PR 750 600 10000 ns |1
. 50000 ns
400 | e a4 | - 500 |
—y ‘j:;.
Beam Center ‘ | =) 1600
= ar e a00
600 ]
= I I 4450
I I 300 -
800 | 300
I I 200 +
| |
150
1000 | | | loop
1 I 1 I 1 1 0 0 L L L T 1
-4 -3 -2 -1 0 1 2 3 4 0 200 400 600 800 1000

T
X [m m ] ime [ps]

For each of shots on the previous slide, we take a projection of the image within the band outlined by the dashed
black lines. Each line is a single representative shot for the time delay.

The first three delays look fairly similar, despite the fact that the seed pulse is just within the tip of the bunch for
the 0.5 ns delay.

At longer delays, more charge is retained in the core of the beam and the instability seems to develop later along
the bunch.



-Iay Scan (fast time-scale)
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.tracting Frequency Content

For every delay, we take the FFT of
each shot. Before calculating the FFT,
we apply a Hann filter and embed the
image projection in an array of zeros.*
We then average the FFTs for every
delay to produce the image on the
right.

Each FFT has an arbitrary vertical offset
for clarity.

0.5 141.2 2.47
350 141.2 2.47
1000 139.5 241
2500 101.6 1.28
5000 70.6 0.62
10000 58.5 0.42
50000 39.2 0.19

*K. Rieger et al., Rev. Sci. Inst., 88, 025110 (2017)
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-ecombination

Naively, we expect the plasma decay to go as t:

dn

Sdt

Plasma density

But this doesn’t capture the behavior at small t, where we
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do not observe decay of the plasma density.

F. Chen Intro. to Plasma Physics
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FIGURE 5-9 Density decay curves of a weakly ionized plasma under recombination and
diffusion. [From S. C. Brown, Basic Data of Plasma Physics, John Wiley and Sons,

New York, 1959.]
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Plasma Recombination

Reality is more complicated. The recombination constant
a depends on the plasma electron temperature:

dN gx1d . !
¢ =—N(a,+N,a,) \ C. O’Connell |[— 2e14
dt ; | — 4e14
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Plasma Density (cm 3)
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a, =8.75-10T 43

And the plasma electron thermalization rate depends on
the density:

A 2
0;1;6 ~1.8.107 e T) ZeZln’//le’ (T, ~T.) i
(me i T m, e) 00 1 21-- ( )3 4

A, =23—In(n2ZT. %) for T.m, /m < T, <10Z%eV

These equations are solved simultaneously. The plasma

density does not decay during the thermalization period.*
*K. Marsh and P. Muggli, AAC Proc. 614 (2002)



Fitting the Data

We attempt to fit the data with two
different functions. First, we use the
thermalization model presented on
the previous slide. There are no free
parameters, expect for the initial
electron temperature. The ion
temperature is T,= 0.041 eV (~500 K).
A value of T, = 0.46 eV provides the
best fit to the first three points of the
dataset.

The thermalization model does not
provide a good fit to the data at large
t. Here, we fit the data with a power
law t1/2, But this does not capture the
small t behavior during the
thermalization period.

107°

1014:

Density [cm '3]

10"}

102

o Data ]
I - = Thermalization Model| -
i - — Power Law Fit ]
®
\ \
\
o 4
N
o!
N 1/2
Voo r /
\ - /
\ ~~~~~
1 S
\ T - e _ ]
\
> ~
~ . / t1
0 10 20 30 40 50 60



Conclusion

* Modulation of a 400 GeV proton beam is a sensitive diagnostic for the
plasma density.

* For approximately 1 microsecond after ionization, the plasma density
remains stable before decaying rapidly.
* This is because the plasma is thermalizing.

* The thermalization model does not fit the data for large time delays.

e Other effects might be important. For instance spatial effects like ambi-polar
diffusion and atomic effects like excited Rb states.

* We plan to test our data against models that include these effects.



Novosibirsk, Russia. March, 2017
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Observation of SSM

* We start by placing the seed

pulse in the center of the
bunch.

* In this case, the SMI starts to

develop a short distance behind
the seed pulse.
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Observation of SSM

* We start by placing the seed

pulse in the center of the
bunch.

* In this case, the SMI starts to

develop a short distance behind
the seed pulse.
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* Next we move the laser forward
% of the bunch length.

e We observe that the SMI starts to

develop just behind the seed
pulse.

Position ¥
of laser W i }

K. Rieger, M. Martyanov, P. Muggli, MPP



-on of Unseeded SMI

* Moving the laser well ahead of
bunch, we see that the SMI
appears at the same position of
the proton beam as in the
previous case.

* Where/How does SMI develop
if laser is much further ahead of
the proton beam? - Motivation
for time-delay scan.

K. Rieger, M. Martyanov, P. Muggli, MPP



its to the data
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The electron temperature after ionization is bracketed between 0.3 and 0.6 eV.



