
We developed a special optic, called a
kinoform, which we use to create hollow
laser beams. The optic is a thin piece of
fused silica that is etched with a spiral
phase pattern given by

This phase pattern produces a focus
downstream of the plasma with a high-
order Bessel intensity profile

The transverse intensity profile does not
depend on the longitudinal position of the
focus, which allows us to create long
channel with constant radius.
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Introduction

Demonstration of the Hollow Channel 
Plasma Wakefield Accelerator 

Over the past decade, there has been enormous progress in the
field of beam and laser-driven plasma acceleration of electron
beams. However, both electron beams and positrons beams are
needed for a high-energy linear collider. Accelerating positron beams
in a plasma is particularly challenging, because the plasma response
to positrons is different from that of electrons, with plasma electrons
being pulled through the positron beam and creating a non-linear
focusing force.

Here, we demonstrate a technique called hollow channel plasma
acceleration that symmetrizes the wakefield response to beams of
either charge. Using a transversely shaped laser pulse, we create an
annular plasma of fixed radius measuring 25 cm long. We observe
the acceleration of a positron bunch with energies up to 33.4 MeV in
a 25 cm long channel, with effective accelerating gradients greater
than 100 MeV/m.

How do we make a hollow channel?
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How do we use HC-PWFA to accelerate e+? 
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We use the dipole deflecting
mode induced by an offset beam
to infer the shape of the channel.
Our “raster scan” shifts the laser
in parallel with the beam, and we
measure the resulting deflections
downstream. Both the kick map
and beam area map show an
annular ionized region.

How do we measure the channel shape?

 0 = k?r +m�

Left: A cut-away of the hollow channel plasma, showing the plasma
channel (orange), positron beam (blue), and trailing wakefield
(white). There are neutral vapor particles within the channel. The
beam creates a longitudinal field in the channel that can be used to
accelerate a trailing bunch. Right: A schematic of our experiment,
showing all of the critical elements needed to create a hollow channel
plasma and measure its effect on the beam.
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Max Energy 
33.4 MeV

Mean Energy = 19.9 MeV
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Observation of Acceleration

We compare the spectra with
plasma (laser on) to without
plasma (laser off) to measure the
energy gain. The average witness
energy gain is 19.9 MeV, and the
average drive beam energy loss is
11 MeV, indicating a transformer
ratio of 1.8.
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We use a high-charge positron
beam to create the wake in the
plasma and low-charge witness
beam trails the drive beam and
is accelerated. Using the
particle-in-cell code QuickPIC,
we can estimate both the field
strength and its wavelength for
our experiment. The expected
accelerating gradient is about
140 MeV/m.

We also developed an analytical theory for determining
the amplitude and wavelength of the field. We treat the
plasma as a dielectric and solve the wave equation

with the dielectric boundary conditions. We overlay our
analytical model with the results from simulation above.
There is good agreement between theory and simulation up
until the back of wake, where plasma electrons leave the
wall and the dielectric boundary condition is violated.
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