

Spectral and spatial shaping of a laseraccelerated proton beam for radiation biology applications

Alessandro FLACCO Laboratoire d'Optique Appliquée Palaiseau - FRANCE

Acknowledgments

B. Vauzour, L. Pommarel, O. Delmas, D. Levy, M. Cavallone

F. Schillaci, F. Romano, V. Scuderi, G. A. P. Cirrone

E. Bayart (now at LOA), F.Megnin-Chanet, E. Deutsch, F.Goujil, C. Nauraye

Inserm

SAPHIR project

25 september 2017

EAAC 2017

Page 2 of 18

Why radiation biology

Page 3 of 18 V. Ponette et al, Int. J. Radiat. Biol. (2000)

Temporal scale of radiation damage

Scale	Process		Timescale
Atom	Energy	Excitation Ionization	ns
Molecule	H ⁺ e ⁻ OH- hydroxide H H ⁺ hydrogen ion H O ⁰ neutral hydroxide	Radical production Radiolysis Breaking chemical bonds	s
Cell	necrosis apoptosis death	DNA strand brakes Cell damages	day
Being		Somatic and hereditary diseases	y ear

Radiation biology: needs for in vitro

(O. Lund)

Repeatability

shot to shot, day to day, month to month (year to year).

Integrated dose

acceptable doserate \rightarrow dose per shot

Wide irradiation surface

Online dosimetry

25 september 2017

SAPHIR laser

SAPHIR interaction area

TNSA performances

25 september 2017

PMQs transport line

Transport beamline

Ionization chamber

Transmission ionization chamber

- wide diameter (15cm)
- low energy footprint: 110 μ H₂O

- Non-linear energy response
- Recombination and saturation effects

Dosimetry protocol

Pommarel et al. PRAB 2017

25 september 2017

Proton transport!

Proton transport on the target

Irradiation conditions

0 0.4 0.8 1.2 1.6 2 2.4 2.6 2.8 cm

Stable irradiation conditions

- 0.7Gy/shot for in vitro 2D
- stability : 6 % rms
- uniformity : 20 % rms
- duration : \sim ns
- peak doserate : 10^8 Gy/min
- repetition rate : 1/1.5s (quasi-automated)

Application to radiation biology

Page 16 of 18

Differential effect on HCT116

(average doserate: 2.1 Gy/min)

Pommarel et al., PRAB 2017

Conclusions and perspectives

- Transport and dosimetry on laser-accelerated proton beam
- Conditions for radiation biology: 0.7 Gy/shot, 1/1.5 Hz, 2 cm²
- 2D *in vitro* studies

- Stability and uniformity
- Room for more advanced dose-deposition profiles (eg. *in vitro* 3D)
- Improvement needed on dosimetry (error bars, proper diagnostic)