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Traveling-Wave Thomson-Scattering (TWTS)
provide incoherent, high-yield sources at hard X-rays

Side-scattering and pulse front-tilt of ¢/2
ensure continuous spatial overlap of laser and electrons

= Incident angles up to 120° desired for large photon energies.
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= Requires substantial group-delay- and spatial-dispersion
- pre-compensation in TWTS pulse synthesis.
= Relatively compact optical setups with cylindrical focusing only.

= More laser power is better, but there is no initial threshold.

A. Debus et al., Appl. Phys. B, 100(1), 61-76 (2010)

TWTS applications
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Requires high-laser power and good
electron beam quality.
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Useful also for high-emittance
or high-divergence electron beams.

100 1000 10000
Electron energy [MeV]

TWTS based optical free-electron lasers
utilize optical undulators with 1000s of periods

EUV and VUV TWTS-OFELSs are realizable with today available technology.

TWTS OFEL EUV VUV Self-consistent TWTS OFEL
Electron energy [MeV] 22 15.0 simulation (1.5D)
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c 68MW > 102 photons/pulse
o [m] 359 324 Sos
Laser power [TW] 1016 997 E 04
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TWTS-OFEL promising for a future compact XFEL at Angstrom wavelengths

Traveling-Wave Electron acceleration (TWEAC)
eliminates the dephasing and depletion limit

= Two pulse-front tilted lasers enforce vacuum "
speed of light propagation of the laser
overlap in plasma.

= Oblique laser beam geometry continuously

feeds a ,fresh” portion of the laser beams L
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o an unperturbed plasma along slit nozzle o &y
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bunch
charge w - Small incident angles (2° - 15°) desired for

energy efficiency, but larger angles possible.

Tight cylindrical foci simplify optical setups
and make them more compact.

Readily accessible in compact setups
with current lasers
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5° incidence angle, 10cm acceleration length
peak a,=0.5, 2 x 1.5 J, 800nm, 25fs, w, =1.2um
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A. Debus et al., ,Breaking the dephasing and depletion limits of laser-wakefield acceleration®, (paper submitted)
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= Small incident angles at 5° - 15°
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Setups often larger than TWTS
and require additional focusing optics

b = Requires ~1 PW laser system
.. Cylindrical mirror

f,e4=2906mm = Requires high-electron quality:

r 350MeV, €,=0.2 mm mrad @ 0.15nm
Grating 2
n,=1505 l/mm
Wi, »=34.028° Steiniger, K. et al. ,Optical free-electron lasers
with Traveling-Wave Thomson-Scattering.”
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Possible for very different
interaction angles ¢

$=120°, 800nm laser
n,=1200, n,=2200
Y,,=3.3°, e=-12.8°

TWTS pulse synthesis
Two-grating setups provide
tunability for varying pulse-front tilts

Grating 1 - introduce angular dispersion
& | > Propagation angle depends on frequency

Large range of interaction angles are accessible with the same grating setup.

1035nm laser

Grating 2 - remove most of
angular dispersion from grating 1
> ¢ controls residual angular dispersion

Propagation - spatially separate
frequencies and
temporally join frequencies
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Off-axis parabola,
focus pulse in interaction plane

Spatial focus — strong focusing reduces
propagation distance to reach required laser beam width

Spatial frequency separation
turns into angular dispersion
providing pulse-front tilt

Out of focus interaction — reduce
total laser propagation distance
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Frequency focus - laser field resembles
plane wave
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- field strength suitable for OFEL operation
- Af controlled with residual angular dispersion ()
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K. Steiniger et al., ,Building an Optical
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Free-Electron Laser in the Traveling-Wave

I Cylindrical mirror — focus pulse on electron bunch
4 Thomson-Scattering Geometry*“, (to be published)

focusing in plane perpendicular to interaction plane
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