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Traveling-Wave Thomson-Scattering (TWTS)
provide incoherent, high-yield sources at hard X-rays

1keV≈1nm

Side-scattering and pulse front-tilt of ࣘ/૛
ensure continuous spatial overlap of laser and electrons

Self-consistent TWTS OFEL 
simulation (1.5D)

Steiniger, K. et al. „Optical free-electron lasers
with Traveling-Wave Thomson-Scattering.“
J. Phys. B: At. Mol. Opt. Phys. 47 (2014): 234011

Grating 1 - introduce angular dispersion
 Propagation angle depends on frequency

Input - Stretched petawatt
class laser pulse

Propagation - spatially separate 
frequencies and

temporally join frequencies

Grating 2 – remove most of
angular dispersion from grating 1

 ε controls residual angular dispersion

Propagation – spatially and
temporally join frequencies

Cylindrical mirror – focus pulse on electron bunch
 focusing in plane perpendicular to interaction plane

Frequency focus – laser field resembles
plane wave

 field strength suitable for OFEL operation
 ∆f controlled with residual angular dispersion (ε)

Spatial focus – strong focusing reduces
propagation distance to reach required laser beam width

Out of focus interaction – reduce
total laser propagation distance

Time-bandwidth
filtered TWTS

Yield-enhanced TS

Incoherent, ultrashort
<107 photons / pulse

sub-laser bandwidth

107-1012 photons/pulse 
incoherent source

TWTS applications

1.68 cm

68MW  1012 photons/pulse

Off-axis parabola,
focus pulse in interaction plane
Spatial frequency separation
turns into angular dispersion

providing pulse-front tilt

TWTS pulse synthesis
Two-grating setups provide
tunability for varying pulse-front tilts

TWTS OFEL

Electron energy [MeV] 22 15.0

Scattered wavelength [nm] 13.5 100

Interaction angle [deg] 12.1 10.1

Interaction distance Lint [mm] 16.8 5.66

Input laser width [mm] 175 175

feff [m] 35.9 32.4

Laser power [TW] 1016 997

Transv. intensity profile stability 3.6% 2.5%

Peak power [MW] 68 104

Number of VUV photons/pulse 1.0·1012 2.3·1013

VUVEUV

Large range of interaction angles are accessible with the same grating setup.

Possible for very different
interaction angles ϕ

ϕ=120°, 800nm laser
n1=1200, n2=2200
Ψin=3.3°, ε=-12.8°

1035nm laser

Broad tuneability of FEL wavelength
by interaction angle ࣘ

cylindrical focus
along slit nozzle

Traveling-Wave Electron acceleration (TWEAC)
eliminates the dephasing and depletion limit

 Two pulse-front tilted lasers enforce vacuum
speed of light propagation of the laser
overlap in plasma.

 Oblique laser beam geometry continuously
feeds a „fresh“ portion of the laser beams
into an unperturbed plasma.

 Small incident angles (2° - 15°) desired for 
energy efficiency, but larger angles possible.

 Tight cylindrical foci simplify optical setups 
and make them more compact.

A. Debus et al., „Breaking the dephasing and depletion limits of laser-wakefield acceleration“, (paper submitted)

Readily accessible in compact setups
with current lasers

5° incidence angle, 10cm acceleration length
peak a0=0.5, 2 x 1.5 J, 800nm, 25fs, w0,x=1.2µm

Useful also for high-emittance
or high-divergence electron beams.

Requires high-laser power and good 
electron beam quality.

TWTS based optical free-electron lasers
utilize optical undulators with 1000s of periods

A. Debus et al., Appl. Phys. B, 100(1), 61-76 (2010)

 Incident angles up to 120° desired for large photon energies.

 Requires substantial group-delay- and spatial-dispersion 

pre-compensation in TWTS pulse synthesis.

 Relatively compact optical setups with cylindrical focusing only.

 More laser power is better, but there is no initial threshold.

 Small incident angles at 5° - 15°

 Setups often larger than TWTS

and require additional focusing optics

 Requires ~1 PW laser system

 Requires high-electron quality:

350MeV, εn=0.2 mm mrad @ 0.15nm

EUV and VUV TWTS-OFELs are realizable with today available technology.

TWTS-OFEL promising for a future compact XFEL at Angstrom wavelengths

12.5 mm total plasma length

177 pC
bunch
charge

K. Steiniger et al., „Building an Optical
Free-Electron Laser in the Traveling-Wave
Thomson-Scattering Geometry“, (to be published)


