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» Dual-grating DLA structures

« High-gradient ‘short-pulse’ interactions
— Kerr saturation
— Compensation of nonlinear saturation via simple ‘pulse-shaping’

 Pulse front tilt interactions
— Longer interaction (up to 700um) and Larger AE (300keV)
— Longitudinal dynamics (tuning y,.s of a stationary bucket)

 Conclusions & Outlook
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'‘Accelerator on a chip’

Electron source = injector stage - acceleration
stage(s) + laser - application

Novel physics at each stage

. Mockup of potential DLA components
Acceleration stage goals

High gradients
Large energy gain
Electron-DLA coupling
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From SLAC newsroom: “$13.5M Moore Grant to

FOUNDATION n' Hlp Develop Working ‘Accelerator on a Chip’ Prototype”
(November 19, 2015)
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UCLA/SLAC high gradient tests

High gradient tests using the grating structure Laser parameters
with a relativistic (f = 0.997) electron(s). yi 800 nm
Energy <300J
Dual grating structure. Fabricated and Fluence <0.75)/em?
first test by E.Peralta, Nature 2013 Size (w) ~35um X
660um

T (I fwhm)  45fs

. | Beam parameters
e ERERE Energy 6.5 MeV
Charge 300fC—>3fC
E spread <2 KeV
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Response

Energy gain vs. incident laser field
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o Peak ‘gradient’ 850 MeV/m (E ;45 1.8 GV/m)
o First use of ebeam to probe nonlinear dielectric structure response in the near field at optical

wavelengths
o Fully reversible saturation explained by simulation (solid green curve) of non- linear Kerr effect

o Dashed green curve shows theoretical prediction for perfectly aligned beam.

arXiv: “Nonlinear response in high-field dielectric laser accelerators” http://arxiv.org/abs/1707.02364
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Compensation features:
At low intensity introducing dispersion has no effect on energy gain
At high intensity introducing dispersion rapidly increases energy gain

*The green line correspond to the lineouts shown on the previous slide
**Data taken with 800nm gap (lower gradient, but stronger signal to noise ratio)



Interactions

0.4 =

High gradient interactions benefit from a short pulse
*Pack in power before damage threshold
*Extended interactions via pulse front tilt (“group velocity”)

Delay distance (mm)

Extended interactions require increasingly careful phase control
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 Demonstrates that a single (temporal) slice of the transmitted electrons have
interacted over a long distance
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A smaller number of electrons interact for a
much longer distance:
*Max energy gain =300keV
*‘Interaction length’ 1000 periods

*Max observed average gradient:
=500MeV/m over 500 um (with EO = 7GV/m
+ nonlinear saturation)
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Htlng tHe structure

bres = kg =+ ko sin(0y) 2 — w(k) ¢
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Offset (match to w0)
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*Qy is equivalent to altering
the grating period ck




Preliminary results  yres(MeV)
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Dephasing (if AE<0): L=A/6  AE = a E, sin(dk [)/dk.

eLaser w=600um, centered over 500um channel
*Imm channel is more sensitive to both linear phase offset and Kerr phase
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Decreasing resonant energy

*Extended interactions cause bunching and thereafter asymmetric
energy gain/loss

0.41 v,
*Optimal detuning for energy transfer: AYyos = T N ~ 0.4MeV
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Use different spatial harmonics to provide oscillating force.

In [PRL 109 164803 (2012)], Naranjo and Rosenzweig proposed a method of
simultaneous focusing and accelerating in a specially designed photonic bandgap DLA
by intentionally exciting two (or more) different harmonics.

Resonant defocusing Focusing
o ko* 2*
Y'=Y cos ¢ — [((B+ D)+ (C+E)cos (2¢)]
{703 Bo? 2 0% Bo* }

Focusing/Defocusing

Resonant defocusing force is substantial: (~ 107 m)

However, by enhancement of the focusing terms, a net focusing force can be
achieved.



~ DLA Phase Velocity Taper and Phase

Modulation

» In pulse front tilt geometry a liquid crystal mask can be used to program arbitrary
phase profiles along the beam.

» As an example, we can obtain both a gradient in wave phase velocity (tapering) and
the modulation required for ponderomotive focusing using the following phase
profile over 2cm interaction distance.
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Conclusions

towards free-space demonstration of a
stable DLA accelerator

— Resonant mode amplitudes of nearly 2GV/m
in fused silica

— Pulse front tilt can group velocity match the
laser and electron beam

» Energy gain of ~300keV with average gradients of
up 500MeV/m

— Pulse shaping techniques can be used to
maintain particle-wave synchronicity
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Ponderomotive Focusing

Focus question: what are the challenges for maintaining long distance (mm to cm)
transport, phase matching, and focusing in a DLA at relativistic energies? What
experiment(s) could be devised within the next year to demonstrate these concepts?
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Beam Energy = 5 MeV

Imaging lens

Grating

Programmable Liquid Crystal
phase mask (LC-SLM)

< IMmaging lens

Pulse front tilt +
phase shaped beam

e-beam MM
LU

e Microbunching and net acceleration in a DLA.
e Extended interaction over 2 cm with ponderomotive focusing.
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Normalized acceleration gradient: g = mecz(;co ‘ A =0.8 um
@p=T5%107*

(useful for comparing acceleration schemes) _
Example DLA parameters

Plasma Accelerator RF Photoinjector DLA or Proton Accelerator
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Grating in UCLA/SLAC run  Grating in UCLA/SLAC run Damage tests:
pre-acceleration post-acceleration Adi Hanuka 9/25/2015
May 2015 June 2015




