Demonstration of increased interaction length in a high gradient dielectric laser acceleraton

UCLA: <u>D. Cesar</u>, P. Musumeci, X.Shen SLAC: R. J. England, K. P. Wootton

EAAC 2017, Elba Italy

Outline

- Dual-grating DLA structures
- High-gradient 'short-pulse' interactions
 - Kerr saturation
 - Compensation of nonlinear saturation via simple 'pulse-shaping'
- Pulse front tilt interactions
 - Longer interaction (up to 700um) and Larger ΔE (300keV)
 - Longitudinal dynamics (tuning γ_{res} of a stationary bucket)
- Conclusions & Outlook

'Accelerator on a chip'

Electron source \rightarrow injector stage \rightarrow acceleration stage(s) + laser \rightarrow application

Novel physics at each stage

Acceleration stage goals

High gradients Large energy gain Electron-DLA coupling

Mockup of potential DLA components

From SLAC newsroom: "\$13.5M Moore Grant to Develop Working 'Accelerator on a Chip' Prototype" (November 19, 2015)

UCLA/SLAC high gradient tests

High gradient tests using the grating structure with a relativistic ($\beta = 0.997$) electron(s).

Dual grating structure. Fabricated and first test by E.Peralta, Nature 2013

Laser parameters

λ	800 nm
Energy	<300µJ
Fluence	<0.75 J/cm ²
Size (w)	~35μm x 660μm
au (I fwhm)	45fs

Beam parameters

Energy	6.5 MeV
Charge	300fC→3fC
E spread	< 2 KeV
ϵ_n	40 nm→0.4nm
Bunch length	0.5ps

Measurement of Nonlinear DLA Response

Energy gain vs. incident laser field

- Peak 'gradient' 850 MeV/m ($E_{z,max}$ 1.8 GV/m)
- First use of ebeam to probe nonlinear dielectric structure response in the near field at optical wavelengths
- Fully reversible saturation explained by simulation (solid green curve) of non-linear Kerr effect
 - Dashed green curve shows theoretical prediction for perfectly aligned beam.

arXiv: "Nonlinear response in high-field dielectric laser accelerators" http://arxiv.org/abs/1707.02364

Compensation of the nonlinearity

Compensation features:

At low intensity introducing dispersion has no effect on energy gain At high intensity introducing dispersion rapidly increases energy gain

*The green line correspond to the lineouts shown on the previous slide **Data taken with 800nm gap (lower gradient, but stronger signal to noise ratio)

Pulse front tilt: extended high gradient interactions

High gradient interactions benefit from a short pulse

- •Pack in power before damage threshold
- •Extended interactions via pulse front tilt ("group velocity")

Extended interactions require increasingly careful phase control

PFT: Observations in longitudinal phase space

• Demonstrates that a single (temporal) slice of the transmitted electrons have interacted over a long distance

PFT: Extending the interaction length

Tilting the structure

Tuning the resonant energy

Dephasing (if $\Delta E \approx 0$): $L \approx \lambda/\theta$ $\Delta E = \alpha E_0 sin(\delta k l)/\delta k$.

•Laser w=600μm, centered over 500μm channel

•1mm channel is more sensitive to both linear phase offset and Kerr phase

1D Longitudinal dynamics

Decreasing resonant energy

•Extended interactions cause bunching and thereafter asymmetric energy gain/loss

•Optimal detuning for energy transfer:

$$\Delta \gamma_{res} \approx \pm \frac{0.41 \, \gamma_{res}^2}{N} \sim 0.4 MeV$$

Ponderomotive Focusing in DLAs

Use different spatial harmonics to provide oscillating force.

In [PRL **109** 164803 (2012)], Naranjo and Rosenzweig proposed a method of simultaneous focusing and accelerating in a specially designed photonic bandgap DLA by intentionally exciting two (or more) different harmonics.

Resonant defocusing

$$Y'' = Y \left\{ \frac{\alpha_0 k_0^2}{\gamma_0^3 \beta_0^2} \cos \phi - \frac{\alpha_0^2}{2 \gamma_0^2 \beta_0^4} \left[(B+D) + (C+E) \cos (2 \phi) \right] \right\}$$
Focusing/Defocusing

Resonant defocusing force is substantial: (~ 10⁷ m⁻²)

However, by enhancement of the focusing terms, a net focusing force can be achieved.

DLA Phase Velocity Taper and Phase Modulation

- In pulse front tilt geometry a liquid crystal mask can be used to program arbitrary phase profiles along the beam.
- As an example, we can obtain both a gradient in wave phase velocity (tapering) and the modulation required for ponderomotive focusing using the following phase profile over 2cm interaction distance.

$$\psi_r = 45 \deg$$

 $E_0 = 2 \,\text{GV} / \text{m}$ Average gradient: 250 MeV/m
 $U_0 = \gamma_0 \, m \, c^2 = 5 \,\text{MeV}$ Energy gain: 5 MeV

Acknowledgements

- <u>People</u>
 - UCLA: J.Maxson, Evan Threlkeld, Sean Custodio
 - SLAC: Edgar Peralta, A.D. Hanuka, Z.Wu, I.V. Makasyuk,
 - Stanford: Si Tan
 - And the entire ACHIP team (https://achip.stanford.edu/)

<u>Funding sources</u>

- Moore Foundation GBMF4744
- DOE grant No. DE-AC02-76SP00515

GORDON AND BETTY

UNDAT

PBPL

Conclusions

towards free-space demonstration of a stable DLA accelerator

- Resonant mode amplitudes of nearly 2GV/m in fused silica
- Pulse front tilt can group velocity match the laser and electron beam
 - Energy gain of ~300keV with average gradients of up 500MeV/m
- Pulse shaping techniques can be used to maintain particle-wave synchronicity

Ponderomotive Focusing

Focus question: what are the challenges for maintaining long distance (mm to cm) transport, phase matching, and focusing in a DLA at relativistic energies? What experiment(s) could be devised within the next year to demonstrate these concepts?

- Microbunching and net acceleration in a DLA.
- Extended interaction over 2 cm with ponderomotive focusing.
- PFT + phase mask provides dynamic control on the phase of the accelerator.

Longitudinal Phase Space Dynamics

Normalized acceleration gradient:

Plasma Accelerator

 $\alpha_0 > 5$

 $\alpha_0 = \frac{e E_0}{m c^2 k_0}$

RF Photoinjector

(useful for comparing acceleration schemes)

 $E_0 = 3 \,\mathrm{GV} \,/\,\mathrm{m}$ $\lambda = 0.8 \,\mu \text{m}$ $\alpha_0 = 7.5 \times 10^{-4}$

Example DLA parameters

DLA or Proton Accelerator $\alpha_0 \approx 0.001$

<u>Need to taper the phase velocity of the wave $v_{ph} = \frac{\omega}{\nu}$:</u>

- Change ω
- Change k

DLA photos

Grating in UCLA/SLAC run pre-acceleration May 2015

Grating in UCLA/SLAC run post-acceleration June 2015

Damage tests: Adi Hanuka 9/25/2015

