EAAC WG1 and WG8 joint session Elba, Italy | September 27th, 2017

FLASHFORWARD

Future-Oriented Wakefield-Accelerator Research and Development at FLASH

Research Group for Plasma Wakefield Accelerators Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies Helmholtz Association of German Research Centres, Berlin, Germany

Jens Osterhoff

FLASHFORWARD contributors

Core FLASHForward team

Engineers and technicians

Maik Dinter Sven Karstensen Kai Ludwig Frank Marutzky Amir Rahali Andrej Schleiermacher

Postdocs

Alexander Knetsch Vladyslav Libov Alberto Martinez de la Ossa Timon Mehrling Zeng Ming Pardis Niknejadi Kristjan Põder Lucas Schaper Stephan Wesch

Scientists

Richard D'Arcy Jens Osterhoff Bernhard Schmidt

PhD students

Alexander Aschikhin Simon Bohlen Lars Goldberg Olena Kononenko Jan-Hendrik Röckemann Sarah Schröder Jan-Patrick Schwinkendorf Bridget Sheeran Gabriele Tauscher Paul Winkler

Students

Severin Diederichs Martin Meisel Paul Pourmoussavi Martin Quast

DESY engineering and support groups

Collaboration partners

Universität Hamburg, Germany

John Adams Institute, UK

Stanford Linear Accelerator Center, US

Lawrence Berkeley National Laboratory, US

HELMHOLTZ

VH-VI-503

ASSOCIATION

VIRTUAL INSTITUTE

James Cook University, Australia

Max Planck Institute for Physics, Bavaria

CERN, Switzerland

Laboratori Nazionali di Frascati, Italy

ſ

University of California Los Angeles, US

University of Oslo, Norway

Linkich Heine

Friedrich-Schiller-Universität Jena, Germany

Heinrich-Heine-Universität Düsseldorf, Germany

FLASH drives free-electron laser and accelerator research SUPERCONDUCTING SYSTEM FEEDS MULTIPLE BEAM LINES SIMULTANEOUSLY

> FLASH is an FEL user facility

> FLASHForward is a beam line for PWFA research

> Both share the same superconducting accelerator front-end. Typical electron beam parameters:

- \lesssim 1.25 GeV energy with a few 100 pC at ~100 fs rms bunch duration
- ~2 µm trans. norm. emittance
- up to 800 bunches (≤ MHz spacing) at 10 Hz macro-pulse repetition rate, a few 10 kW average beam power

- - 3 GHz cavity for phase space linearization \rightarrow triangular current profiles

→ A. Aschikhin et al., NIM A 806, 175 (2016)

Experimental programme in preparation SEPARATED INTO CORE EXPERIMENTAL STUDIES AND PROTOTYPING

ain **FF** scientific goals

> X-1 High-brightness beam generation in plasma ("plasma cathode"):

> 1 GeV energy gain, trans. norm. emittance ~100 nm, current \ge 1 kA, ~fs bunch duration

> X-2 Plasma booster module for FLASH: > 1 GeV energy gain, conservation of energy spread and transverse emittance, depletion of drive beam energy, 10% conversion efficiency

> X-100 Demonstration of FEL gain from plasma-accelerated beams (≥ 2020)

Full start-to-end simulations implemented including CSR, space charge, and wakefield effects **FF** HIGHLIGHTS

Full start-to-end simulations implemented including CSR, space charge, and wakefield effects

HIPACE 1.0 0.10 0.8 0.05 Current 0.6 0.00 0.4 -0.05 0.2 -0.10 z (µm) 0.0 -100100 200 300 0

HIGHLIGHTS HIGHLIGHTS

Extension of hosing theory → T. J. Mehrling et al., Phys. Rev. Lett. 118,174801 (2017)

- > Energy spread in driver reduces hosing (i.e. BNS damping)
- Plasma taper can reduce hosing seed strength

X-11 Hosing StudiesPI: S. Wesch (DESY)

collaboration with U Hamburg and IST Lisbon

Betatron decoherence C_1 : No energy evolution C_2 : Energy evolution, no energy-spread 20 C_3 : Energy evolution, 5% energy spread X_b/\hat{X}_0 - PIC: C_2 15- PIC: C_3 105 020 30 40 500 10 60 $t \ (\omega_{\beta,0}^{-1})$ **Seed reduction** $0^{0}u/u^{0.5}$ $\left(\right)$ $-k_{\beta,0}L = 0$ $X_b/\hat{X}_{b,0}$ $k_{\beta,0}L = 5$ $k_{\beta,0}L = 10$ $k_{\beta,0}L = 20$ $\mathbf{0}$ 30 -20 -10 10 0 2040 5060 $z \ (k_{\beta,0}^{-1})$

HIGHLIGHTS HIGHLIGHTS

Extension of hosing theory → T. J. Mehrling et al., Phys. Rev. Lett. 118,174801 (2017)

collaboration with U Hamburg and IST Lisbon

Betatron decoherence C_1 : No energy evolution C₂: Energy evolution, no energy-spread 20 C_3 : Energy evolution, 5% energy spread $\left|X_b/\hat{X}_0 ight|$ PIC: C_2 15PIC: C_3 105 0 30 2040 500 10 60 $t \ (\omega_{\beta,0}^{-1})$

- Full start-to-end simulations confirm hosing modes can be excited
- Measurement of growth rates & hosing saturation vs. beam parameters

X-band transverse deflector for femtosecond phase-space characterization **FF** HIGHLIGHTS

- > A collaboration between DESY, CERN, and PSI to share expertise and develop X-band technology
- > A novel dual-polarisation RF deflecting cavity has been developed for prototyping on FLASHForward \rightarrow tomographic reconstruction of phase space
- > Resolutions witness* and driver** beam working points:

$$R_{z} = \frac{\sigma_{y}}{S} = \sqrt{\frac{\varepsilon_{y}(s)}{\beta_{y}(s_{0})}} \frac{1}{|\sin \mu_{y}|} \frac{E}{eVk}$$

 $R_t > 0.9$ fs (witness) $R_t > 1.5$ fs (driver)

P-9 X-Deflector PI: R. D'Arcy (DESY)

DESY coordinator: B. Marchetti

Courtesy of Alexej Grudiev, CERN

$R_{\delta} > 2 \times 10^{-4}$ (witness) $R_{\delta} > 1 \times 10^{-4}$ (driver)

 $*E = 1.5 \text{ GeV}, \epsilon = 0.5 \mu \text{m}$ $^{**}E = 1.0 \text{ GeV}, \epsilon = 2.0 \ \mu \text{m}$

How FLASHForward >> wants to help...

Jens O

3rd EAAC workshop, 25th

Challenges related to beam dynamics at high energy

- Varrow energy spread
- **Efficiency** and beam loading
- Emittance preservation
- Scattering (plasma)
- Beam break-up and hosing instabilities
- Spin polarization preservation
- Vion motion (plasma)
- Structure charging and radiation damage
- Numerical simulation

3rd EAAC workshop, 25th September 2017, Isola d'Elba, Italy

Summary

FLASHForward is a next-generation experiment for beam-driven plasma accelerator research Beamline commissioning has started in August 2017 → first plasma experiments in early 2018 > Work focusses on key challenges toward photon science and particle physics applications