Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

> Evangelos Siminos¹, Mickael Grech², Benjamin Svedung Wettervik¹, Tünde Fülöp¹

¹Chalmers University of Technology, Sweden ²LULI, Ecole Polytechnique, France

EAAC Workshop 2017

- Hole boring scenario of radiation pressure acceleration
- Energy $\mathcal{E}_{\mathrm{HB}} \propto a_0^2/n_0$
- What is the lowest *n*₀ so that the pulse is reflected?

Relativistic transparency

• Relativistic correction to plasma frequency:

$$\overline{\omega}_{\mathrm{pe}} = rac{\omega_{pe}}{\gamma} = rac{\omega_{pe}}{\sqrt{1+a_0^2/2}}$$

Relativistic critical density:

$$n_c^{\text{eff}} = \sqrt{1 + a_0^2/2} \, n_c \,,$$

Classical critical density:

$$n_c = \epsilon_0 m_e \omega^2 / e^2$$

E. Siminos

Effect of plasma boundary

- Plasma boundary effects complicate this picture
- Transition threshold depends on
 - Laser pulse envelope (fast electron generation)
 - Ion charge-to-mass ratio

Effect of plasma boundary

1D PIC simulations with EPOCH (U. Warwick)

Cattani *et al.* (PRE 2000) Goloviznin & Schep (PoP 2000) E.S. *et al.* (PRE 2012) Weng *et al.* (NJP 2012)

Transition for immobile ions

- Electron density spike
- Equilibrium between ponderomotive and electrostatic force

Transition for immobile ions

- Electron density spike
- Equilibrium between ponderomotive and electrostatic force
- Different scaling $n_c^{eff} \propto a_0^{1/2}$

Cattani *et al* (PRE 2000) Goloviznin & Schep (PoP 2000)

Transition for immobile ions

Cattani *et al* (PRE 2000) Goloviznin & Schep (PoP 2000)

• PIC simulations show deviation for moderate *a*₀

E.S. et al (PRE 2012)

PIC simulation

• $a_0 = 15, n_0 = 5.5n_c$

- Electron escape responsible for transition:
 - Electrostatic force is reduced
 - Ponderomotive force prevails

Single electron phase space

- Use steady-state fields
- Hamiltonian $\underline{H}(x, p_x) = \gamma(x, p_x) \phi(x) = \text{ const.}$
- $\gamma(x, p_x) = \sqrt{1 + a(x)^2 + p_x^2}$
- Critical momentum $|p_x^{cr}|$ decreases with n_0/n_c

Theory vs PIC

 Electrons escape because separatrix width decreases for smaller n₀

Transition for mobile ions

- Double layer or laser-piston
- Hole-boring velocity $v_{HB} \sim a_0/\sqrt{n_0}$
- Much lower transition thershold
- Transition threshold depends on charge to mass ratio

Weng et al, NJP (2012)

How we detect the transition threshold

• For given a_0 vary n_0 and compare laser front velocity with

• $v_{\rm SIT}$ from immobile ion simulations

• v_{HB}

How we detect the transition threshold

• For given a_0 vary n_0 and compare laser front velocity with

- $v_{\rm SIT}$ from immobile ion simulations
- v_{HB}

Dynamic transition

E.S. et al, NJP (2017)

How we detect the transition threshold

• For given a_0 vary n_0 and compare laser front velocity with

- $v_{\rm SIT}$ from immobile ion simulations
- v_{HB}

Dynamic transition

E.S. et al, NJP (2017)

Electron phase space

• Three cases in reflection regime $(n_0 = 4.5 n_c, a_0 = 10)$

•
$$H(x, p_x, t) = \sqrt{1 + a(x, t)^2 + p_x^2} - \phi(x, t)$$

- Quasistatic approximation
- Lorentz transform H to frame moving at v_f : $\bar{H} = \gamma_f \left[H - v_f p_x / (m_e c^2) \right] \simeq \text{ const.}$

Electron phase space

• Three cases in reflection regime ($n_0 = 4.5 n_c, a_0 = 10$)

•
$$H(x, p_x, t) = \sqrt{1 + a(x, t)^2 + p_x^2} - \phi(x, t)$$

- Quasistatic approximation
- Lorentz transform H to frame moving at v_f : $\bar{H} = \gamma_f \left[H - v_f p_x / (m_e c^2) \right] \simeq \text{ const.}$
- Ion motion effects at time much sorter than $2\pi/\omega_{pi}$

Timescale for ion effects

- Strong electric field of order $E_x/E_c \simeq a_0$ where $E_c = m_e c \omega_L/e$.
- How soon does a change ΔE_x occur such that p_x changes by $m_e c$?

Timescale for ion effects

Ion momentum:

$$m_i n_i \frac{\partial V_i}{\partial t} + m_i n_i V_i \frac{\partial V_i}{\partial x} = q_i n_i E_x(x, t) ,$$

Maxwell-Ampere:

$$q_i n_i V_i = -\epsilon_0 \frac{\partial E_x}{\partial t}$$

Timescale for ion effects

• For $a_0 \gg 1$:

$$\tau_i = \frac{g(a_0)}{\omega_{pi}}$$

where

$$g(a_0) = \arccos\left(1 - \frac{1}{\sqrt{2}a_0}\right)$$

•
$$\tau_i = 1.2\tau_L \ll 2\pi/\omega_{pi} = 20\tau_L$$

for hydrogen with $n_0 = 4.5n_c$, $a_0 = 10$.

E. Siminos

Boundary of HB regime

• In HB regime no electrons escape

A look at phase space: RSIT

In RSIT regime electrons escape continuously

A look at phase space: Dynamic transition

- In the dynamic transition regime electron escape stops due to widening of the separatrix
- At the final stage we get hole boring
- $\mathcal{E}_{\mathrm{H}B} \propto a_0^2/n_0$

- Keep a_0 , n_0 fixed
- Control heating by varying ramp-up time au_r
- Decreased $\tau_r \rightarrow$ increased ponderomotive force \rightarrow increased heating
- Transient dynamics affects ion spectrum!

Piston oscillations

Piston oscillations

• Estimate $\Delta E_x/E_{x,\max} \simeq 1/3$

Schlegel *et al*, PoP (2009) E.S. *et al*, NJP (2017)

Conclusions

- Complex transition physics
- Fast electron escape triggers propagation
- Ion motion mitigates electron escape by inducing widening of separatrix
- Dynamic transition: Short time transient \rightarrow long time effect on ion spectra
- Transverse instabilities need to be controlled

- E. Siminos, M. Grech, B. Svedung Wettervik, T. Fülöp (2016), arXiv:1603.06436, to appear in NJP
- E. Siminos, M. Grech, S. Skupin, T. Schlegel, V. Tikhonchuk, Phys Rev E 86 056404 (2012)