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Stability of colliding 
beams

 How can we estimate the 
stability of beams in collision ?

 In the so-called strong-
strong regime, the dynamic 
of the two beams needs to 
be treated self-consistently

 Two main approaches based 
on normal mode analysis of :

 Coupled Vlasov equations 
[K. Yokoya, Y. Alexahin]

 Coherent one turn matrix 
[V.V. Danilov, E.A. 
Perevedentsev, I.N 
Nesterenko, S.M. White, X. 
Buffat]

π modeσ mode



  

Coherent one turn 
matrix

 In a general way, the model can be understood as the 
development and normal mode analysis of the one turn matrix for 
all bunches of the two beams

 Need to derive the linearised coherent forces in a given basis
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Coherent one turn 
matrix

 In a general way, the model can be understood as the 
development and normal mode analysis of the one turn matrix for 
all bunches of the two beams

 Need to derive the linearised coherent forces in a given basis

→ The circulant matrix model basis

... ... =MOne turn x (0)

Beam-beam interaction
Lattice

Transverse feedbackImpedance

b1
b2 b3 b1

b2b3

x (turn1)=M step 2 N⋅...⋅M step 2⋅M step1 x (0)



  

The circulant matrix 
model basis

 Polar discretisation of the longitudinal 
phase space in cells (slices and rings)

 The dynamical variables are the 
transverse positions and momentum 
(1 or 2 planes) of the cells

 The synchrotron motion corresponds 
to a rotation of the slices → circulant 
matrix

 The basis can be easily extended to 
describe several bunches per beam

 Initially developed to study the 
stabilisation of the TMCI with a 
feedback [V.V. Danilov] and for coherent 
synchrobetatron beam-beam modes in 
VEPP-2M [E.A. Perevedentsev]

x (t ) = MOne turn
t x (0)

= ∑
j

e−2 π i Q j t v j
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The unperturbed 
circulant matrix

Unperturbed betatron 
motion (w/o chromaticity)

Synchrotron motion within each ring
It may be extended to include the chromatic shift 
of the betatron phase (see backup)

Identical synchrotron 
tune for each ring → 
the matrix can also be 
constructed with a 
different Qs for each 
ring

Uniform weight 
factor (not 
fundamental)

[V.V. Danilov]

In practice, the matrix of each beam/bunch can be build based on different parameters

For multiple identical beam / bunches : 
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Example : Wake fields

s
Δ xs 2 '=W dip(ss 2−ss 1) xs 1

ss1

ss2

(
xs 1

xs 1 '
xs 2

xs 2 '
)

t+1

=(
1 0 0 0
0 1 0 0
0 0 1 0

W dip 0 0 1
)⋅M (

xs 1

xs 1 '
xs 2

x s 2 '
)

t

 The wake field is introduced as binary interaction between particles within the cells of each bunch and 
of the other bunches of the beam based on the integrated wake function

 The single beam model including the effect of the impedance (wake fields) is equivalent to 
Vlasov approach to second order in wake field strength assuming a slow synchrotron motion and 
a reasonable amount of slices

(1 << N
s
 << 1/Q

s
) [A. Maillard]

 This method is not appropriate in the presence of strong multiturn wake (e.g. resonators)

 Can be modeled by computing the effect of the multiturn wake assuming a given multibunch 
mode number → Requires normal mode analysis of all multibunch modes individually
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Example : Wake fields

(
xs 1

xs 1 '
xs 2

xs 2 '
)

t+1

=(
1 0 0 0
0 1 0 0
0 0 1 0

W dip 0 W quad 1
)⋅M (

x s 1

x s 1 '
x s 2

x s 2 '
)

t

s
Δ xs 2 '=W dip(ss 2−ss 1) xs 1

ss1

ss2

+W quad (ss 2−ss 1)x s 1

 The wake field is introduced as binary interaction between particles within the cells of each bunch and 
of the other bunches of the beam based on the integrated wake function

 The single beam model including the effect of the impedance (wake fields) is equivalent to 
Vlasov approach to second order in wake field strength assuming a slow synchrotron motion and 
a reasonable amount of slices

(1 << N
s
 << 1/Q

s
) [A. Maillard]

 This method is not appropriate in the presence of strong multiturn wake (e.g. resonators)
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Example : Beam-
beam interaction

( x1

x1 ')t+1

=( cos(2πQ) sin(2πQ)

−sin (2πQ) cos (2πQ))(
x1

x1 ')t



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)

t+1

=(
cos(2πQ) sin (2πQ) 0 0

−sin (2πQ) cos(2πQ) 0 0
0 0 cos (2 πQ) sin (2πQ)

0 0 −sin (2πQ) cos (2πQ)
)(

xB1

xB1 '
xB2

xB2 '
)

t



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)

t+1

=(
cos(2πQ) sin (2πQ) 0 0

−sin (2πQ) cos(2πQ) 0 0
0 0 cos (2 πQ) sin (2πQ)

0 0 −sin (2πQ) cos (2πQ)
)(

xB1

xB1 '
xB2

xB2 '
)

t

(linearised coherent force)Δ x 'B 1=
−2 r0 N

γr

1
Δ x

(1−e
−Δ x2

4σ 2

)≈k (xB 1−xB 2)



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)

t+1

=(
1 0 0 0

+ k 1 − k 0
0 0 1 0

− k 0 + k 1
)⋅M lattice(

xB1

xB1 '
xB2

xB 2 '
)

t

(linearised coherent force)Δ x 'B 1=
−2 r0 N

γr

1
Δ x

(1−e
−Δ x2

4σ 2

)≈k (xB 1−xB 2)



  

Example : Beam-
beam interaction

(
xB 1

xB 1 '
xB 2

xB 2 '
)

t+1

=(
1 0 0 0

+ k 1 − k 0
0 0 1 0

− k 0 + k 1
)⋅M lattice(

xB1

xB1 '
xB2

xB 2 '
)

t

(linearised coherent force)Δ x 'B 1=
−2 r0 N

γr

1
Δ x

(1−e
−Δ x2

4σ 2

)≈k (xB 1−xB 2)

→ This procedure is extended to binary collision of all the cells 
(possibly including the crossing angle and the hourglass effects)



  

Dos and don'ts
 Linear synchrobetatron motion

 Non-linear RF

 (Non-)Linear chromaticity

 RF-Quadrupole [M. Schenk]

 Single turn dipolar and 
quadrupolar wake fields

 5D beam-beam interaction (no 
energy change)

 Transverse feedback (including 
bandwidth limitation)

 Electron clouds ?

 Space charge ?

 Non-linear transverse motion

 Transverse Landau damping

 Yokoya factor

 Multiturn wake fields (can be 
done under strong assumptions)

 The limited memory of common 
computers limits the number of 
bunches

 Non-normal effects limit the 
predicting power of the normal 
mode analysis in some 
configurations (see backup)

 BimBim benchmark campaigns :
 Impedance : Multibunch HEADTAIL - PyHEADTAIL – DELPHI – NHTVS
 Beam-beam and impedance : COMBI – BeamBeam3D



  

Mode coupling instability
of colliding beams

 Considering a configuration 
with low sychrobetatron 
coupling :

 Small Piwinski angle 
(small crossing angle)

 Large β* w.r.t the bunch 
length

 Mode coupling instability 
occurs when the frequency 
of coherent beam-beam 
modes with a centre of 
mass motion (red dots) 
reach the frequency of the 
head-tail modes
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Stability mechanisms
Landau damping

L. Barraud, Master Thesis, UPMC, Paris

 In configurations with strong 
synchrobetatron coupling (e.g. 
HL-LHC), the instability occur at 
any beam-beam tune shift
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Stability mechanisms
Landau damping

L. Barraud, Master Thesis, UPMC, Paris

 In configurations with strong 
synchrobetatron coupling (e.g. 
HL-LHC), the instability occur at 
any beam-beam tune shift

 Landau damping from the 
beam-beam induced tune 
spread is usually effective if the 
coherent modes frequency is 
within the incoherent tune 
spread and its side bands [Y. 
Alexahin, W. Herr]

 Can become an issue in the 
case of head-on tune spread 
compensation with an e- lens 
[L. Jin, S.M White]

- - COMBI



  

Stabilisation mechanisms
Transverse feedback

 A transverse feedback 
based on the centre of 
mass motion of the bunches 
is effective  against the 
zero-mode coupling 
instability [S.M. White]

 Coupling instability of 
higher order head-tail 
mode is still observed for 
beam-beam interaction 
with sychrobetatron 
coupling (crossing angle, 
hourglass effect)

L. Barraud, Master Thesis, UPMC, Paris



  

Observations
VEPP - 2M

 Measured mode frequencies matches the prediction of the 
circulant matrix model

 No instabilities were observed due to the low impedance and 
strong radiation damping

 Oscillation measured by kicking the beams in the vertical plane

 Electron-positron 
collision in two IPs with 
β* = 6 cm and σ

s
 = 3.5 

cm

 Significant hourglass 
effect → 
synchrobetatron 
coupling

[N.I. Nesterenko]
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Observations
LHC

 Two-beam Instability observed 
for intermediate separations 
between the beams 
corresponding to the frequency of 
the mode coupling
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by the transverse feedback
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Observations
LHC

 Two-beam Instability observed 
for intermediate separations 
between the beams 
corresponding to the frequency of 
the mode coupling

 The stability was always ensured 
by the transverse feedback

 In agreement with the models

Single beam instability



  

Landau damping of the weak head-
tail instability

 In configurations were the 
coherent aspects of the beam-
beam interactions are well 
suppressed (e.g. with a 
feedback), the incoherent effect 
of beam-beam interaction 
remain

 Landau damping of the 
weak head-tail instability is 
strongly affected by the 
presence of beam-beam 
interactions [S. Meyers, L. 
Vos, X. Buffat, C. Tambasco]

 More details tomorrow with 
C. Tambasco



  

Summary
 The circulant matrix model is based on the derivation and normal mode analysis of 

the transverse one turn matrix of a discretised longitudinal distribution

 The longitudinal motion is modelled through a circulant matrix

 This model was successfully benchmarked with several codes in their own validity 
domain

 Single and two beam stabilisation mechanisms can be studied (transverse 
feedback, RFQ, Q', Q'')

 Non-normal aspects of the coupled bunch instability can be modelled

 It predicted accurately the frequency of synchrobetatron beam-beam mode 
frequencies at VEPP-2M as well as the mode coupling instability of colliding beams 
in the LHC

 It is currently used to evaluate the stability of colliding beams in the HL-LHC

 The non-linear effect of beam-beam interactions (→ Transverse Landau damping) 
has to be modelled differently

 Comparison of the linearised model with fully self-consistent multiparticle 
tracking simulation can be used to quantify the effect of Landau damping
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Backup
Chromaticity

 To achieve exact convergence with the 
Vlasov perturbation theory, the 
chromaticity may be introduced by 
modifying the circulant matrix [A. 
Maillard] :

 By reducing the effect of the impedance on low order head-tail mode (with a center of mass 
motion), the chromaticity allows for a mitigation of the mode coupling instability

 The situation is different when considering beam-beam interaction introducing a strong 
synchrobetatron coupling

Im
(Q

)
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Backup
Non-normal analysis

 In a linear accelerator, the effect of each bunch on the trailing ones 
creates a non-normal instability, known as the multibunch beam breakup 
instability

 In a ring with K1 >> K2, the short term behaviour may be dominated by 
an instability close to the multibunch beam breakup instability 
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Backup
Beam breakup instability

M d=(
λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

)
Consider a vector in the subspace associated to λ

i 
:

V⃗ =a1 e⃗1+a2 e⃗2
with e⃗1=(1

0) e⃗2=(0
1)

 Linear growth which depends on the initial condition

 The behaviour of the system under a small perturbation is no longer 
independent of the perturbation

 Non-linear growth expected for more complicated systems

V⃗ n=λi
n a1 e⃗1+λi

n a2 e⃗2+∑
k=0

n−1

(λi a2)
k e⃗1

M=(B 0
0 B)⋅( 1 0

K 1 1)
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BACKUP
Non-normality of multibunch instabilities

 The dynamics of the 
system is not well 
described by normal 
mode analysis

 Modern analysis tools are 
required to analyse the 
matrix

 In the LHC (mostly short 
short range wake fields) 
the non-normal 
behaviour of the beams  
is well mitigated by the 
transverse feedback Normal mode analysis

x (t )=MOne turn
t x (0)
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Backup
Pseudospectrum

 The pseudospectrum is a tool to describe the non-normality of a 
system

 Qualitatively, it provides the extend of the spectrum of the system 
under a perturbation of order ε

Spectrum(M )={λ∈ℂ∣∃ v⃗ :(M−λ I )⋅⃗v=0}

Pseudospectrum(M ,ϵ)={λ∈ℂ∣∃ v⃗ :∥(M −λ I )⋅⃗v∥<ϵ}
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Backup
Non-normal analysis

 The pseudospectrum 
gives insight into the 
non-normality of the 
system

 The transverse 
feedback acts 
effectively against 
coupled bunch 
instability
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Backup
Asymmetric collision scheme

 The coupled instability due to 
the offset collision in IP8 is 
well mitigated by the Landau 
damping of the head-on 
interactions in IPs 1 and 5
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