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= Coherent stability of colliding beams
= The circulant matrix model

= The mode coupling instability of colliding beams
= Mitigations
= Observations

= Landau damping of weak head-tail instabilities
due to the incoherent spread of beam-beam
Interactions

= Summary
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@ Stability of colliding @?‘@—5@

= How can we estimate the
stability of beams in collision ?

= |n the so-called strong-
strong regime, the dynamic
of the two beams needs to
be treated self-consistently

= Two main approaches based
on normal mode analysis of :

= Coupled Vlasov equations
[K. Yokoya, Y. Alexahin]

= Coherent one turn matrix
[V.V. Danilov, E.A.
Perevedentsey, |.N
Nesterenko, S.M. White, X.
Buffat]
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@ Coherent one turn @(@

Action 3 Action 2*N-1

Action 2 Action 2*N
Action 1

= In a general way, the model can be understood as the
development and normal mode analysis of the one turn matrix for
all bunches of the two beams

= Need to derive the linearised coherent forces in a given basis
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step 2

K(turnl):Mstep2N.” stepl)—<(0)

=M x(0)

Oneturn <

Transverse feedback

_ Lattice
Beam-beam interaction

Impedance

= In a general way, the model can be understood as the
development and normal mode analysis of the one turn matrix for
all bunches of the two beams

= Need to derive the linearised coherent forces in a given basis
— The circulant matrix model basis



@ The circulant matrix
7

model basis

= Polar discretisation of the longitudinal AS/05 _ on
phase space in cells (slices and rings) N A NI

= The dynamical variables are the ™. NS
transverse positions and momentum S N2 5/s
(1 or 2 planes) of the cells R NG

= The synchrotron motion corresponds
to a rotation of the slices — circulant
matrix

= The basis can be easily extended to
describe several bunches per beam

= Initially developed to study the X (t) Méne X (())
stabilisation of the TMCI with a o0
feedback [V.V. Danilov] and for coherent Z "V,
synchrobetatron beam-beam modes In J

VEPP-2M [E.A. Perevedentsev]
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@ The unperturbed
A

circulant matrix
NS S
]IN,,, 0 PNS ¢ &) BU(ZWQLU:O)
ot hvamone)

. cos(2nQ) psin(27Q)
0~ %lsin(Z'nQ) cos(2mQ)

M, =
b — NN
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circulant matrix «

Unperturbed betatron

motion (w/o chromaticity)

. cos(2nQ) psin(27Q)
0~ %lsin(Z'nQ) cos(2mQ)

Synchrotron motion within each ring

It may be extended to include the chromatic shift
2 . of the betatron phase (see backup)
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Unperturbed betatron
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B ( cos(2nQ) B sin(ZnQ))
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Synchrotron motion within each ring

It may be extended to include the chromatic shift
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Identical synchrotron
tune for eachring -  N=5
the matrix can also be
constructed with a
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ring 3
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The unperturbed

circulant matrix

My, =

Uniform weight
factor (not
fundamental)

Unperturbed betatron

motion (w/o chromaticity)\‘

= ( cos2nQ) p Sin(ZTCQ))
0 —

%1 sin(2rQ) cos(2nQ)

Synchrotron motion within each ring
It may be extended to include the chromatic shift

of the betatron phase (see backup)

Identical synchrotron
tune for eachring -  N=5
the matrix can also be
constructed with a

different Qs for each

ring 3

4 [V.V. Danilov] \1

For multiple identical beam / bunches : [V — ]INbea,m X ]INbunch X Mlb

In practice, the matrix of each beam/bunch can be build based on different parameters



X1

1 0 0 O Xs1
Xsl' — 0 I 00 M X51'
XSZ O 0 1 O XsZ
Xs2' t+1 Wdip 00 1 XSZ' t

=  The wake field is introduced as binary interaction between particles within the cells of each bunch and
of the other bunches of the beam based on the integrated wake function

= The single beam model including the effect of the impedance (wake fields) is equivalent to
Vlasov approach to second order in wake field strength assuming a slow synchrotron motion and
a reasonable amount of slices

(1 <<N_ <<1/Q) [A. Maillard]

= This method is not appropriate in the presence of strong multiturn wake (e.g. resonators)

= Can be modeled by computing the effect of the multiturn wake assuming a given multibunch 22

mode number — Requires normal mode analysis of all multibunch modes individually
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AXSZ _Wdip(552_551> Xs1
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=  The wake field is introduced as binary interaction between particles within the cells of each bunch and
of the other bunches of the beam based on the integrated wake function

= The single beam model including the effect of the impedance (wake fields) is equivalent to
Vlasov approach to second order in wake field strength assuming a slow synchrotron motion and
a reasonable amount of slices

(1 <<N_<<1/Q) [A. Maillard]

= This method is not appropriate in the presence of strong multiturn wake (e.g. resonators)

= Can be modeled by computing the effect of the multiturn wake assuming a given multibunch 22

mode number — Requires normal mode analysis of all multibunch modes individually
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beam Interaction

cos(2nQ) sin(2nQ)
—sin(2xQ) cos(2nQ)

cos(2nQ) sin(2nQ)
—sin(27Q) cos(27Q)




Example : Beam-
)

beam Interaction

Ax',, = _Z;SN Alx (1—e 4Ao)§ )~k(x,,—x,,) (Inearised coherentforce)
Xg1 cos(2mQ) sin(2mQ) 0 0 Xp1

Xg,'| _|—sin(2mQ) cos(2mQ) 0 0 Xg,'

e 0 0 cos(2xQ) sin(2mQ) || x5,

Xp2 [e+1 0 0 —sin(2xQ) cos(2wQ)/\x,, ],




=, .

Example : Beam- ot

beam Interaction

lattice




Example : Beam- @«-@%

( =

beam interaction 0+

1 0 0 0
XBl' = i k L - k O 'Mlattice XBl'
Xp2 0 0 1 O o
Xpy'liey 7K 0 +k 1 ol

— This procedure is extended to binary collision of all the cells
(possibly including the crossing angle and the hourglass effects)



@ Dos and don'ts @

= Linear synchrobetatron motion = Non-linear transverse motion
= Non-linear RF = Transverse Landau damping
= (Non-)Linear chromaticity = Yokoya factor

= RF-Quadrupole [M. Schenk]

= Single turn dipolar and

quadrupolar wake fields = The limited memory of common
computers limits the number of
bunches

Multiturn wake fields (can be
done under strong assumptions)

= 5D beam-beam interaction (no
energy change)

= Non-normal effects limit the
predicting power of the normal
mode analysis in some

= Electron clouds ? configurations (see backup)

= Transverse feedback (including
bandwidth limitation)

= Space charge ?

= BimBim benchmark campaigns :
= Impedance : Multibunch HEADTAIL - PyHEADTAIL — DELPHI — NHTVS
= Beam-beam and impedance : COMBI — BeamBeam3D



Mode coupling instability Cﬁ?j

of collidinc s
= Considering a configuration

with low sychrobetatron IR VUV Rt SO B
COUpllng O'g??fca66555;;;'°f???29000ueaéégg;;-oof::ﬂgwoeg
) ) i g—l °°°o;;;° 066454, Sanas 006pg 66 6800y,

u Sma” PIWInSkI angle 3_2 . .665...'90..98 - 6666666666 So0ys
(small crossing angle) e, ey,
00000000, o000 03888 8o 00040
= Large B* w.r.tthe bunch -4, 770 co0usy, s YT

length

(o¢]

= Mode coupling instability
occurs when the frequency
of coherent beam-beam
modes with a centre of
mass motion (red dots)
reach the frequency of the 26 49 60 80 oo
head-tail modes

(@)}

N

Growth rate [10 4 x turn !
I

o
ooooo




Mode coupling instability Cﬁ?j

of collidinc e

= Considering a configuration
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of collidinc e

= Considering a configuration
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= In configurations with strong
synchrobetatron coupllng (e'g' L. Barraud, Master Thesis, UPMC, Paris

HL-LHC), the instability occur at
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= In configurations with strong
synchrobetatron coupling (e.qg.
HL-LHC), the instability occur at
any beam-beam tune shift

L. Barraud, Master Thesis, UPMC, Paris
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= In configurations with strong

synchrobetatron coupling (e'g' L. Barraud, Master Thesis, UPMC, Paris
HL-LHC), the instability occur at haK e
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Stability mechanisms

Landau damping
= In configurations with strong

synchrobetatrqn Coupllng (e'g' L. Barraud, Master Thesis, UPMC, Paris

HL-LHC), the instability occur at = s, 5 ; ~

any beam-beam tune shift fr T e S
= Landau damping from the §_ ,. """

beam-beam induced tune Sy,

spread is usually effective if the _a....

coherent modes frequency is
within the incoherent tune
spread and its side bands [Y.
Alexahin, W. Herr]
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Stability mechanisms

Landau damping
= In configurations with strong
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% _1 398 e

= Landau damping from the §_2 ............... i, o
beam-beam induced tune N (2, . DEW
spread is usually effective if the o ol i,
coherent modes frequency is
within the incoherent tune R
spread and its side bands [Y. 5 R N

Alexahin, W. Herr]

N

=

Growth rate [10~* x turn ']

o




= In configurations with strong

synchrobetatron coupling (e'g' L. Barraud, Master Thesis, UPMC, Paris
HL-LHC), the instability occur at = s, 5 T e,
any beam-beam tune shift Olqun et T
C | 3868 e

= Landau damping from the §_2 ______ it o553y ';;;j
beam-beam induced tune B o, e RS
spread is usually effective if the _4\\2;' ST
coherent modes frequency is
within the incoherent tune 4-==COMBL.. . eeses. S S
spread and its side bands [Y. 5 e DT N

Alexahin, W. Herr]

N

= Can become an issue in the
case of head-on tune spread
compensation with an e’ lens
L. Jin, S.M White]
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Stabilisation mechanisms

Transverse feedback

‘ L. Barraud, Master Thesis, UPMC, Paris

= A transverse feedback
based on the centre of
mass motion of the bunches
IS effective against the
zero-mode coupling
instability [S.M. White]

= Coupling instability of

"1"("1"""‘“"
|uuuull|lu
i

higher order head-tail '

mode Iis still observed for -,

beam-beam interaction -

with sychrobetatron <.,

coupling (crossing angle, & = e ———
hou g lass effe Ct) : - -



Observations

VEPP - 2M

[N.I. Nesterenko] ;
] = Electron-positron
0.16f -~ | collision in two |IPs with
| cm

= Significant hourglass

e
[
N

8

.:
—
I

synchro-betatron mode tunes
=
@

0.12

o1 effect -

B . synchrobetatron
% "'6'.‘6‘05 001 0015 002 0025 003 0035 0.04 Coupllng

4
= Measured mode frequencies matches the prediction of the
circulant matrix model

= No instabilities were observed due to the low impedance and
strong radiation damping

= Oscillation measured by kicking the beams in the vertical plane



= Two-beam Instability observed
for intermediate separations
between the beams
corresponding to the frequency of
the mode coupling

=
=

Q

L

o
»n

03—
0.320]
503181 b

0316 ‘II':'I:‘i:‘.'II:‘“ \ il

i 'll"l-k..'“'. |1k 'I.‘-- ) i,
| h 'Il'rl'!l | 'jl lr | “'.I'I" il I .‘II .:I_' ]'w”l' i
| “t '!llf H|II||I ||| 5 l‘l ‘4;\' |~|f.| Ill,l'l- *u';'mnlh: Ll
L i '|'I IHIM i [\_M “ j
fe N
i ||'|I|. Wtﬁ I 'lnhl i T'I'h; :

0.314

T I‘I'T};?“I

—10 -5

| |"‘I" I. I' i [ml"

#

0

I“f‘lllllll“i lI Illl‘tllal' by |Ih|‘ ||| |
) Ip,q“u;" ) | ,r,m ! .1.'?""4&_"..’_;:“"!1'."'
e
"If'“‘i‘l“"fﬂr \z . ~.,,

i Il Ill ‘;‘l |‘ |
! 1] Tl

wflm ‘W 1'.gmml; 11 i '-!”II :'{T.t m;w

|J .

I\
ILIH ' l

q1l||"11h

fl. | .I" I If |‘ U f\p‘l

5

o AN

10 15

Time [min]

.\.' '.II“
|1!I|I"‘.

il

|M

Separauon J

(X {i

Sepa:ratlon [o]

n.:l i 1]]1 11

AR )0

41



= Two-beam Instability observed
for intermediate separations
between the beams

corresponding to the frequency of

the mode coupling
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= Two-beam Instability observed

for intermediate separations
between the beams

corresponding to the frequency of

the mode coupling
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= Two-beam Instability observed
for intermediate separations
between the beams

corresponding to the frequency of

the mode coupling

by the transverse feedback

10* Single beam instability
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tail instability 5

E@ﬁ Landau damping of the weak head- @(@@
5) | |

Tome

= In configurations were the
coherent aspects of the beam-
beam interactions are well

0.320f

suppressed (e.g. with a
feedback), the incoherent effect "
of beam-beam interaction 00318
remain 20317
= Landau damping of the Fuae
weak head-tail instability is 0315}
strongly affected by the 0.314|

presence of beam-beam
Interactions [S. Meyers, L.
Vos, X. Buffat, C. Tambasco]

= More details tomorrow with
C. Tambasco

Horizontal tune



Summary

The circulant matrix model is based on the derivation and normal mode analysis of
the transverse one turn matrix of a discretised longitudinal distribution

= The longitudinal motion is modelled through a circulant matrix

This model was successfully benchmarked with several codes in their own validity
domain

Single and two beam stabilisation mechanisms can be studied (transverse
feedback, RFQ, Q', Q")

= Non-normal aspects of the coupled bunch instability can be modelled

It predicted accurately the frequency of synchrobetatron beam-beam mode
frequencies at VEPP-2M as well as the mode coupling instability of colliding beams
In the LHC

= [tis currently used to evaluate the stability of colliding beams in the HL-LHC

The non-linear effect of beam-beam interactions (- Transverse Landau damping)
has to be modelled differently

= Comparison of the linearised model with fully self-consistent multiparticle
tracking simulation can be used to quantify the effect of Landau damping
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@ o )
Chromaticit e
= To achieve exact convergence with the N 1 NsQs
Vlasov perturbation theory, the e I 0
chromaticity may be introduced by Pn. ; . :
modifying the circulant matrix [A. omie2i_sn
Maillard] : ! 0 e @@
20
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10 —
o =
2 &
0
-5
0 0.002 0.004 0.006 0.008 0.01
S

= By reducing the effect of the impedance on low order head-tail mode (with a center of mass
motion), the chromaticity allows for a mitigation of the mode coupling instability

= The situation is different when considering beam-beam interaction introducing a strong
synchrobetatron coupling
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Non-normal analysis

Beam Beam
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= In a linear accelerator, the effect of each bunch on the trailing ones
creates a non-normal instability, known as the multibunch beam breakup
Instability

= |n aring with K1 >> K2, the short term behaviour may be dominated by
an instability close to the multibunch beam breakup instability
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Beam breakup instability &
M — | Consider a vector in the subspace associated to )\i:
0 B |K,
‘7:05+a€ with é’:l 5:0
7\1 1 0 0 =1 2%-2 1 0 5 )
Md: O )\’1 O O )
O O }\'2 1 ﬁ Vn:}\‘?alél_l_}\’?aze—;
0 0 0 2,

Linear growth which depends on the initial condition

The behaviour of the system under a small perturbation is no longer
iIndependent of the perturbation

Non-linear growth expected for more complicated systems
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Non-normality of multibunch instabilities

= The dynamics of the x(t)=M..x(0)
system is not well
described by normal Xl

mode anaIySIS — Multlpartlcle tracklng A

= Modern analysis tools are 15/ — MM
required to analyse the -
matrix

Amplitude
o

short range wake fields) g

the non-normal ST 13 6 18 20
behaviour of the beams Tur % 10
Is well mitigated by the

transverse feedback Normal mode analysis
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Pseudospectrum
Spectrum (M )={h€C|AV:(M—\I)-v=0|

Pseudospectrum(M ,e)={A€C|TV:||(M —\1I)-V||<€e]

= The pseudospectrum is a tool to describe the non-normality of a
system

= Qualitatively, it provides the extend of the spectrum of the system
under a perturbation of order €
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0.5 1 bunch

=  The pseudospectrum
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Asymmetric collision scheme

IP5 T e
0312 —— =
SHEN i
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Ipg 0302 = -
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« The coupled instability due to ™™ .

. . . . 08 & . 8
the offset collision in IP8 Is g L Aeymfling]
well mitigated by the Landau ¢, =
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