
Role of space charge in coherent instabilities

Michael Blaskiewicz BNL

• A caveat: I will be discussing synchrotrons, not linacs or 

other short cycle machines. Things like surface waves and 

turbulent emittance growth will not be discussed. 

• Introduction 

• Balbekov/Burov Model

• Simulations and checking

• Pitfalls

• Example
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Introduction 

• Negative mass instability is known since antiquity.

• Low frequency longitudinal space charge is essentially a negative 

inductance, albeit a very large one.

• For simulation purposes the simplest picture is to consider a 

macro-particle at (xj,yj,zj) with a charge density 

ρ0(x-xj,y-yj,z-zj). The charge densities of other macroparticles

are translated in space but not rotated.

• Lorentz transform to the rest frame of the bunch and assume 

motion there is non-relativistic. 

• Everything becomes electrostatic and the field is the gradient of a 

scalar potential. Forces are averaged spatially over ρ.
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• The kicks are of the form

• Where 

• In the second expression only leading order terms are kept 

and there is more than one way to get there.

• Some newer codes like Synergia [1] keep higher order terms 

that lead to nonlinear coupling and enhanced collisionless

damping. 

• For this talk I stick with the simple expression.
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• For coasting beams both transverse and longitudinal space 

charge can be handled well. 

• For smooth bunched beams transverse space charge includes 

a new term, detuning, that is different from an impedance. 

• In the simplest macro-particle model one has

• The term proportional to xj is the detuning. This term is the 

reason that no direct space charge tune shift can be measured 

using a centroid beam position monitor.
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Consider the following equations of motion

Vx is the transverse voltage due to the wall induced wakes.

Assume the single sideband approximation is valid and take 

1<Q<2 while modifying κ appropriately.

Update several (≈10) times per turn (betatron oscillation).

Nonlinear V(θ,τ) includes time dependent longitudinal space 

charge as well as synchrotron tune spread; important for 

collisionless damping.

Moment equations of corresponding Vlasov equation close in 

linear order.  
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Balbekov, Burov model  [2,3]

• Starts with the moment equation (new variables)

• They use the single sideband approximation with                               

• To make real progress they take

• The equations close approximately,  
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• I have limited the bunch shape to get a simple analytic form 

for ρ and U2, and kept only single bunch wakes so that G 

vanishes at the head of the bunch. 

• Can get accurate numerical solutions [4] . 

• α=3, HT phase =-18, resonator wake,ΔQsc/Qs=65.
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Simulations and checking

• For estimates that are sufficiently realistic to design an 

accelerator it appears that simulations are necessary.

• How do you know your code is right?

• For SC with linear RF and a parabolic line density we have 

Neuffer’s exact longitudinal solutions  [5].

• For boxcar bunches in linear RF with SC we have Sacherer’s 

exact transverse solutions  [6].

• For hollow bunches in a square well we have numerically 

exact transverse solutions with SC and wake potentials that 

are sums of (complex) exponentials.  [7,8]

• A new basis expansion technique generalizing [6] appears to 

give convergent solutions with wakefields [9]
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Pitfalls

• For a longitudinal smoothing time  Δτ need

Otherwise particles will jump over each other without           

interacting

• With linear transverse space charge need 

Otherwise you don’t Nyquist sample both sine and cosine 

components of the betatron oscillation. 

• With nonlinear forces you need to update more often 

depending on what order of nonlinearity you want to include.

• Need enough macro-particles per bunch so that instability 

and finite Np effects can be resolved (more later).
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RHIC proton injection as an example

• Want to know the impedance and to predict instability 

thresholds.

• Measured beam transfer functions at 250 MHz with much 

help from K. Mernick and the operations crew.

• Data are shown.

• The emittance changed with                                                       

intensity keeping ΔQsc fixed                                                        

so Zsc was varied in sims.

• Best fit gave 10 MΩ/m                                                             

which was 4 or 5 times                                                     

bigger than Zsc= 0 result.

• Variation of amplitude with                                          

intensity is not understood.
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What does an instability look like?

Unstable beam with parameters close to RHIC proton injection

≈ 1011 protons/bunch, C=3834m, ϒ= 25.5, ϒT=22.8,

100kV (h=360), 20 kV (h=7*360), Q=29.25,ξ=4 ,Zsc=25MΩ/m.

Results below for 1x1011 , wake 1.

Since RHIC is stable the actual wakefield is probably different.
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Growth rate is not monotonic in bunch charge.

Blue trace corresponds to previous figure. 

Only changed charge per macro-particle.
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Check stable mode more carefully 

• If bunch is stable expect stochastic cooling in reverse.
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Stochastic cooling in reverse
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The growth at 1011 is real
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Code uses linear interpolation and smoothing
• Higher order deposition does not appear to be important.

• relative weights for nodes at -1,0,1

• with 2nd order deposition.
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Space charge can damp instabilities.

Simulations using wake for case 2. 
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Summary and Conclusions

• Took vertical BTF data at 250 MHz for RHIC at 25.5 GeV

• Space charge reduced tune shift by factor of 4 over no SC.

• Took measured Zy but guessed at fres and Q.

• “Reasonable”  parameters led to marginally stable beams, 

need to investigate this more.

• Exact solutions with space charge exist and should be used to 

test code during development. 

• Stable simulations exhibit emittance growth scaling as 1/Np, 

which can be useful when testing for the presence of actual 

instability.

• For fixed impedance the growth rate can be non-monotonic in 

intensity. 

• As seen before, space charge can stabilize things. 
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