

Longitudinal and transverse ion cloud dynamics in an electron ring in presence of electromagnetic fields and gaps

Alexis Gamelin, Christelle Bruni Laboratoire de l'Accélérateur Linéaire (LAL), Orsay, France

Overview

<u>What</u>

• We want to locate ion clouds, generated by ionisation of the residual gas, in an electron storage ring

<u>Why</u>

- To minimize the beam dynamics degradation because of the ion cloud, a beam stability of 40 μm is needed in the interaction point (IP)

<u>How</u>

• By understanding the physics of the beam-ion interaction, simulating the ion dynamics and using mitigations strategies

ThomX, a storage ring without damping

- ThomX is a Compton Backscattering Source (CBS) of X rays under construction at LAL.
- The e- bunch is stored for 20 ms then it is dumped while a new one is injected.

Because of the short storage time and the low electron energy there is no

Flux = 10^{11-13} X/s E_X^{max} = 46-90 keV Divergence = 10 mrad

A model to describe the beam-ion interaction

The model gives the kick that an ion will feel when the electron beam is going through the beam pipe:

The model:

• Bassetti-Erskine formula¹ for transverse dynamics

Assumptions:

- "Strong-weak" model of the beam-beam interaction
- Electron bunch is supposed Gaussian

A model to describe the beam-ion interaction

The model gives the kick that an ion will feel when the electron beam is going through the beam pipe:

The model:

- Bassetti-Erskine formula¹ for transverse dynamics
- Sagan formula² for longitudinal dynamics

Assumptions:

- "Strong-weak" model of the beam-beam interaction
- Electron bunch is supposed Gaussian
- The beam trajectory is quasi-parallel to the longitudinal axis

Alexis Gamelin

NUAGE, ion cloud tracking

In NUAGE, the ion cloud is defined at the start of the simulation (composition, number of ions, ...) and tracked during a fixed time length. The simulation does not include the generation of new ions during the tracking.

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

Clearing electrode with longitudinal field

Config n°	Electrode polarity		Effect on axis	Colour
	1	2		
1	+	-	Transverse kick $E_y < 0$	Black
2	+	+	Transverse kick $E_x > 0$ and longitudinal expulsion point	Blue
3	-	-	Transverse kick $E_x < 0$ and longitudinal accumulation point	Red

Clearing electrode with longitudinal field

Alexis Gamelin

NUAGE simulation results for CO⁺ ions

NUAGE simulation, number of macro ions at start : 100 000

NUAGE simulation, number of macro ions at start : 100 000

Clearing gap, mixing ion positions

Alexis Gamelin

NUAGE simulation, number of macro ions at start : 39 000

NUAGE simulation, number of macro ions at start : 39 000

Neutralisation factor

Neutralisation factor

Local neutralisation factor

It is possible to define a local neutralisation factor³ which take into account the fact that the neutralisation is not homogeneous along the ring longitudinal position: $I_{i} dn_{i}$

$$\eta(s) = \frac{L}{n_e} \frac{dn_i}{ds}$$

Local neutralisation factor after 100 000 turns 0.012 -No electrode clearing With electrode clearing (Config 3) The mean value of the local neutralisation factor gives back the usual neutralisation factor: $\overline{\eta(s)} = \eta$ 0.002 0 2 3 6 7 8 0 5 9 Longitudinal position s (m)

Induced tune shift

The tune shift induced by the ions can be computed by considering the ion force on the beam as an equivalent quadrupole. Assuming that the ion transverse distribution can be approximated⁴ by a Gaussian distribution of $\sigma_i = \frac{\sigma_e}{\sqrt{2}}$, it gives:

$$\Delta Q_x = \frac{r_e n_e}{2\pi\gamma L} \int_0^L \frac{\beta_x \eta}{\sigma_{xe} (\sigma_{xe} + \sigma_{ye})} ds$$

Usually no information about the local neutralization factor is known so mean values are used:

$$\overline{\Delta Q_x} = \frac{r_e n_e}{2\pi\gamma} \frac{\overline{\beta_x} \overline{\eta}}{\overline{\sigma_{xe}} (\overline{\sigma_{xe}} + \overline{\sigma_{ye}})}$$

Configuration	ΔQ_x	$\overline{\Delta Q_x}$	Ratio	ΔQ_y	$\overline{\Delta Q_y}$	Ratio
No clearing	9,94 E-4	1,52 E-4	6,5	1,14 E-3	5,84 E-4	2,0
Clearing	2,24 E-4	3,23 E-5	6,9	2,78 E-4	1,24 E-4	2,2

The same type of approach is possible for other effects induced by ions like emittance growth, tune spread, pressure increase, ...

General conclusions from this study

- The longitudinal displacement of ion clouds is usually neglected but it can have an important impact. Understanding it helps to design effective mitigation strategies.
- Dipole magnets play an important role in the ion cloud dynamics.
- Possibility to use clearing electrode with longitudinal electric field for more effectiveness, to be demonstrated in ThomX.
- Use local values for the computation of the ion cloud induced effects in order not to minimize the effects, to be verified experimentally.

Thank you !

Backups

