Impedance Modeling In Low Emittance Ring

ICFA Mini-Workshop on Impedances and Beam Instabilities in Particle Accelerators

A. Blednykh Benevento, September 19-22, 2017

<u>Outlook</u>

- Intensity Increasing in NSLS-II
- Impedance modeling & Impedance Budget for σ_s =0.3mm
- Microwave Instability Measurements in NSLS-II
- Beam Dynamics Simulations with W_{||,tot}(s)
- Concluding Remarks

NSLS-II Beam Intensity Increasing

02 Jul. 2014	25 mA with CESR-B SC RF cavity
11 Jul. 2014	First time at 50mA
14 Jul. 2014	Shutdown for ID and FE installation
03 Oct. 2104	Start of ID commissioning
23 Oct. 2014	First light on beamline flag!
11 Feb. 2015	Beamline operations begins at 25 mA
25 Feb. 2015	50 mA with IVU's magnet gap closed
11 Mar. 2015	First time at 100 mA
15 Apr. 2015	First time at 150 mA
17 Apr. 2015	Beamline operations begins at 50 mA
23 Apr. 2015	First time at 200 mA
Jul. 2015	Beamline operations begins at 150 mA
28 Jul. 2015	First time at 300 mA
Oct. 2015	Start operation with Top Off at 150 mA
04 Jan. 2016	Start operation with 2 nd RF cavity
29 Jan. 2016	Beamline operations begins at 175 mA

ENERGY Office of Science

16 Feb. 2016	First time at 350 mA
17 Feb. 2016	Beamline operations begins at 200 mA
14 Apr. 2016	Beamline operations begins at 250 mA
18 Apr. 2016	First time at 400 mA
16 Feb. 2017	Beamline operations begins at 275 mA
05 Apr. 2017	Beamline operations begins at 300 mA
20 Jul. 2017	Beamline operations begins at 325 mA

	Storage Ring Operating Status						
	Beam Current	400.2 mA					
	Lifetime from DCCT	0.00 Hrs	Shutters				
	Lifetime from BPM	5.73 Hrs	Disabled				
	Daily Amp Hours	2320.09 mAh					
	Operating Mode: Accelerator	Studies					
Topoff Running	Next Injection: 83	Target E	Bucket: 414				
Ĩ╡ Fill Pattern							
0.5 U.4 U.0.4							
0 50 100 150 200 250 300 3	50 400 450 500 550 600 650 700 750	800 850 900 950 1000	1100 1200 132				

NSLS-II Parameters

Energy,	3
Revolution period,	2.6
Momentum compaction,	3.7 x 10 ⁻⁴
Energy loss,	287 (BM) 674 (BM + 3DW's)
RF voltage,	3.4
Synchrotron tune,	9.2 x 10 ⁻³ (BM + 3DW's)
Damping time,	54, 27 (w/o DWs) 23, 11.5 (with 3DWs)
Energy spread,	5 x 10 ⁻⁴ (BM) 8.7 x 10 ⁻⁴ (BM + 3DW's)
Bunch duration,	2.5 (w/o DWs)4.3 (with 3DWs)Ignoring bunch lengthening

• Two 500MHz SC RF cavities presently installed in NSLS-II

Software and Analytical Approach

- Several 2D & 3D electrodynamics codes available for time domain and frequency domain numerical simulations, *GdfidL*, *CST*, *HFSS*, *ECHO*, *URMEL*, *Vorpal*, *ACE3P*, *ABCI*, *Poisson/Superfish*,
- The code choice for the time domain simulations: parallel computing, complexity of the geometries and bunch length considered for calculations, cross-checking with analytical results at least for simplified geometries.
- Impedance model, longitudinal and transverse, needs to be calculated for a bunch length much shorter than the length of the circulated bunch, stabilizing effect of positive chromaticity and microwave instability thresholds analysis.
- Simulations of 3D geometries for short bunch length will require to increase the computer power resources (mesh size decreasing) or to have the code with dispersion free algorithms, window moving mesh algorithm or standard algorithm.
- Most of 3D electrodynamics codes are commercial.
- Analytical Approach for simplified geometries.

Computer Cluster Resources

First NSLS-II Accelerator Physics Cluster Generation

Second NSLS-II Accelerator Physics Cluster Generation

Supported by:

- 2007 S. Ozaki S. Krinsky
- 2009 F. Willeke S. Krinsky
- Upgraded from Sep. 2006 to 2011
- **336** Cores & **1334**GB Total Memory (RAM)

Supported by: T. Shaftan / V. Smaluk (2016)

Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
264 Cores & 3102GB Total Memory (RAM)

- Computer cluster is necessary for numerical simulations of the Impedance Budget
- 3D electrodynamics parallel computing codes require significant computer resources for simulations with bunch length, $\sigma_z \ll 3mm$

Impedance Modeling Diagram

W. Bruns, http://www.gdfidl.de

I. Zagorodnov and T. Weiland, Phys. Rev. ST Accel. Beams 8, 042001 (2005)

I. Zagorodnov, Phys. Rev. ST Accel. Beams 9, 102002 (2006).

M. Borland, "elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation," Argonne National Laboratory, ANL/APS/LS-287, 2000

G. Bassi, A. Blednykh, and V. Smaluk, Phys. Rev. Ac-cel. Beams, vol. 19, p. 024401, 2016

Impedance/Vacuum Apertures Lattice

ome	ום ארי ייס ד @ Imped_Lattice_is_June8_2017										
Ŧ	X Cut Arial	* 10 * A	A - A	=	📑 ə Wrap Tex	tt i	General	· •	• 💷•	Normal 16 2 2 Norm	hal
e	Copy *				Herne &	Center T	¢ , % s	€.0 .00 Conditie	anal Format	Good Neut	
	Server Format				ivierge a	Center -	φ /0 /	.00 .0 Format	ting as Table		
	$ \times \sqrt{f_x} $ FAB	s									_
	С	D	E	F	G	н	1	J	К	L	
					-						
			Cells: 6	i, 14, 20 and 2	26						
	From left to right	S(mm)	betax(m)	betav(m)	L(mm)	L(mm)*4	RW	Conductivity	Radius (rv), m	s0	т
	Fast Corrector	48533.65	21.35395438	8,764469694	168.5	67	4 Inc	775194	0.0125	0.00010226	3
	BLW5(SS)	48702.15	21,28513577	8.346447559	5.540	22.1	16 SS	1350000	0.012	8.49962E-05	5
	BLW5(GCu)	48707 69	21 28292024	8 332989857	52 310	209.2	24 Cu	54050000	0.012	2 51097E-05	5
	BLW5(Ag)	48760	21 26214855	8 206817181	69 170	276.6	38 Ag	63000000	0.012	2 36082E-05	5
	CHM1	48820 17	21 23500252	8 042471821	3056.2	15825	2 4	31600000	0.012	2.00002E-00	6
	BI W6(SS)	52785 47	20.46575214	3 360208069	5500.5	20 4	- A	1350000	0.012	8 400625 05	á
	BLW6(GCu)	52703.47	20.40070214	3.309290000	77 740	22.	34 0	54050000	0.012	2 51007E 05	í
	BLW6(GCU)	52/91.01	20.40074729	3.309200002	60.170	310.0	20 A.C	6200000	0.012	2.0109/E-00	í
	CUM2	52008.72	20.40099030	3.370775402	09.170	2/0.0	Ag	03000000	0.012	2.30002E-05	2
		52937.89	20.400/1258	3.375132019	3956.2	15824	.o Al	31600000	0.0128	2.9/131E-05	2
	BLW5(SS)	56894.09	21.28587228	8.350921296	5.540	22.1	55	1350000	0.012	8.49962E-05	2
	BLW5(GCu)	56899.63	21.28809181	8.364403268	52.310	209.2	24 Cu	54050000	0.012	2.51097E-05	2
	BLW5(Ag)	56951.94	21.30919695	8.492601424	69.170	276.6	68 Ag	6300000	0.012	2.36082E-05	ō
	Fast Corrector	57021.11	21.33751506	8.664612992	168.5	67	4 Inc	775194	0.012	0.00010226	ò
					8655.96	34623.8	34				
		Cell 2	- EPU Straig	ht Section							
	From left to right	S(mm)	hetay(m)	betav(m)	L (mm)		DW/	Conductivity	Padius (n/) m		т
	Foot Corrector	3(1111)	Detax(III)	Detay(III)	169 5		Inc	775104	0.012	0.00010226	-
	Past Corrector				100.0			175194	0.0123	0.00010220	2
	BLW6(SS)				5.540		55	1350000	0.012	8.49962E-05	2
	BLW6(GCu)				77.710		Cu	54050000	0.012	2.51097E-05	2
	BLW6(Ag)				69.170		Ag	6300000	0.012	2.36082E-05	2
	CHM1				891.000		SS	1350000	0.012	8.49962E-05	5
	IPR1				200		Cu	54050000	0.009125	2.01431E-05	Ś
	EPUCHM1				4844.800		NEG	2.00E+06	0.00575	4.44296E-05	ō
	TPR2				315.000		Cu	54050000	0.009125	2.01431E-05	ō
	BLW5(SS)				5.540		SS	1350000	0.0125	8.49962E-05	ō
	BLW5(GCu)				52.310		Cu	54050000	0.0127	2.51097E-05	ō
	BLW5(Ag)				69.170		Ag	6300000	0.0125	2.36082E-05	5
	CHM2				1636.300		AI	31600000	0.0125	2.97131E-05	5
	FlangeABS1				25.400		Cu	54050000	0.0115	2.35019E-05	5
	BLW5(SS)				5.540		SS	1350000	0.0125	8.49962E-05	5
	BLW5(GCu)				52.310		Cu	54050000	0.0127	2.51097E-05	5
	BLW5(Ag)				69.170		Aa	6300000	0.0125	2.36082E-05	5
	Fast Corrector				168.5		Inc	775194	0.0125	0.00010226	3
					8655.96						-
		Cell 4	- IVU Straigh	nt Section							
	From left to right	S(mm)	betav(m)	betav(m)	l (mm)		DW/	Conductivity	Radius (n/)		+
	Fast Corrector	S(IIIII)	Detax(III)	Delay(III)	169 500		NVV /mm	775404	0.01250	0.000100060	+
	Past Corrector				168.500		Inc	//5194	0.012500	0.000102260	1
	врмсни				227.800		SS	1350000	0.012500	0.000084996	٢
	IBI W5(SS)				5 540		I SS	1350000	0.012500	II 0 000084996	ń.

Microsoft Excel Spreadsheet

- At the beginning of the project the vacuum apertures lattice is unknown.
- Impedance analysis begins for a preliminary geometry some of the components.
- It can take several iterations on impedance optimization until the design will be finalized.
- Communication with RF, Diagnostic, Vacuum, Engineering, Mechanical groups is very important.
- Microsoft Excel is used to keep track on changes in the vacuum apertures lattice.
- As the final, the apertures in the arcs of the storage ring are fixed, but in the straight sections they will be updated based on ID's installation.
- Vacuum apertures lattice should be flexible and convenient for changes.
- Conductivity, radius and length from the Microsoft Excel Spreadsheet are used as the input parameters for the rw wakefield simulations in Mathematica script.

BROOKHAVEN National Synchrotron NATIONAL LABORATORY Light Source II

Resistive Wall Wakefield Simulations

Wrw 06142026 fbessel[u] := If | u < 0, Abs $[u]^{3/2} e^{-u^2/4}$ $(Bessell[1/4, u^2/4] - Bessell[-3/4, u^2/4] - Bessell[-1/4, u^2/4] + Bessell[3/4, u^2/4]),$ Abs[u]^{3/2} e^{$-u^2/4$} $(Bessell[1/4, u^2/4] - Bessell[-3/4, u^2/4] + Bessell[-1/4, u^2/4] - Bessell[3/4, u^2/4])]$

 $bCu = \{0.0125, 0.0125, 0.0127, 0.0125, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.002$ 0.0127, 0.0125, 0.0125;

```
Z0 = 120 * 3.1415;
```

```
con = {775 194, 1 350 000, 54 050 000, 63 000 000, 31 600 000, 1 350 000, 54 050 000, 63 000 000,
   31600000, 1350000, 54050000, 63000000, 775194};
```

 $\sigma z = 0.3 \times 10^{-3}$:

Lrw = {168.5, 5.540, 52.310, 69.170, 3956.3, 5.540, 77.710, 69.170, 3956.2, 5.540, 52.310, 69.170, 168.5} $\star 10^{-3}$;

```
c = 299 792 458;
```

```
charge = 1 \times 10^{-12};
```

```
Np = charge / (1.6 \times 10^{-19})
```

J.S. DEPARTMENT OF

Office of

Science

```
mur = 1;
```

```
re = 2.818 \times 10^{-15};
```

```
E0 = 0.51 \times 10^6;
```

```
phi = 0;
r0 = 0;
```

Mathematica Script

The rw wakefield is generated in Mathematica using the analytical approach developed by K Bane & M Sands or A Piwinski

> K. Bane J. M. Sands. SLAC-PUB-95-7074 A. Piwinski, DESY Report 72/72, 1972

$$W_{||,rw}(s) = 0.8 \times \frac{r_e m c^2 N_e}{2b\sqrt{2\mu_r Z_0 \sigma_{con}}} \left|\frac{s}{\bar{\sigma}_s}\right|^{3/2} e^{-s^2/4\bar{\sigma}_s^2}$$

$$\times \left[I_{1/4} \left(\frac{s^2}{4\bar{\sigma}_s^2} \right) - I_{-3/4} \left(\frac{s^2}{4\bar{\sigma}_s^2} \right) - sgn(s)I_{-1/4} \left(\frac{s^2}{4\bar{\sigma}_s^2} \right) + sgn(s)I_{3/4} \left(\frac{s^2}{4\bar{\sigma}_s^2} \right) \right]$$

Arcs + LS + SS

Short & Long Straights Sec.

Geometric Impedance

Stripline Kicker

Transverse Impedance $g_{\perp} = 1.07, Z_{ch,\perp} = 25\Omega$

 $Z_{\perp}(k) = \left(g_{\perp}^2 Z_{ch,\perp}/kb^2\right) [sin^2(kL) + jsin(kL)cos(kL)]$

b=25.2mm, t=2mm, 90°, d=39.69mm, L=310mm

 Z_{ch} and g can be found analytically or numerically with 2D POISSON Code

Frequency, GHz

D.A. Goldberg and G.R. Lambertson, "Dynamic Devices: A Primer on Pickups and Kickers," LBL-31664, 1991 A. Blednykh, W. Cheng, S. Krinsky, "Stripline Beam Impedance" NAPAC13

12

10

6

2

ReZy, kΩ/m

6

GdfidL

Ea.

8

Impedance Budget

Table: List of the NSLS-II vacuum components

		Number of
		components
Bellows	BLW	218
Large Aperture BPM	LABPM	237
Small Aperture BPM (11.5mm x 60mm)	SABPMDW	10
Small Aperture BPM (8mm x 55mm)	SABPMEPU	3
Damping Wiggler Chamber (11.5mm x 60mm)	DW	3
Elliptically Polarized Undulator Chamber (11.5mm x 60mm)	EPU1	2
Elliptically Polarized Undulator Chamber (8mm x 55mm)	EPU2	2
Gate Valve (Standard)	GV	61
Flange Absorber (21mm x 64mm)	FABS	67
Flange Absorber S4 (21mm x 64mm)	FABSS4	39
Flange Absorber Rest	FABS2	7
Stripline (BBF), L=300mm	SL300	2
Standard RF Sealed Flanges	FLNG	739
EPU RF Sealed Flanges	EPUFLNG	4
DW RF Sealed Flanges	DWFLNG	13
Direct-Current Current Transformer	DCCT	1
Kickers Ti-Coated Ceramics Chambers	ССНМ	5
RF HOM Damper	HOMD	2
500 MHz RF Cavity*	CAV	2
RF Tapered Transition	TPRDRF	1
RF Flange Absorber (21mm x 64mm)	FABSRF	1
Stripline (TMS), L=150mm	SL150	2
In-Vacuum Undulator	IVU	9

* The fundamental E_{010} -Mode was subtracted from the GdfidL simulated wakepotential of the RF cavity using the following electrodynamics parameters, $R_{sh,||}=33375M\Omega$, $Q_0=750\times10^6$ and $f_r=502MHz$ and the Broad-Band Resonator (BBR) analytical expression.

ENERGY

Microwave Instability Measurements in NSLS-II

3DW lattice and all other ID's gap open (Aug. 28, 2016). Measurements of the horizontal beam size vs. single bunch current at different RF voltages using SLM Camera. The error bars has been omitted on this plot for better data representing.

- Horizontal beam size σ_x vs sb current I_0 measured at different RF voltages V_{RF} for Bare lattice & 3DW lattice
- Different diagnostic methods: SLM, IVU spectrum at 5th & 7th harmonics, Beam spectra.
- Non-Uniform Intensity related waveform beam pattern

A. Blednykh, B. Bacha, G. Bassi, O. Chubar, M. Rakitin, V. Smaluk, M. Zhernenkov, Proceedings of IPAC2017, Copenhagen, Denmark

 I_0 , mA Summary of microwave beam pattern at different V_{RF}

Horizontal beam size measurements from SLM camera vs single bunch current for 3DW lattice

TIONAL LABORATORY Light Source II

National Synchrotron

Microwave Beam Pattern and Beam Spectra

3DW Lattice, V_{RF}=2.7MV

• Discrepancy in bunch lengthening simulations needs to be understood

A. Blednykh, B. Bacha, G. Bassi, W. Cheng, O. Chubar, M. Rakitin, V. Smaluk, M. Zhernenkov, Y. Chen-Wiegart and L. Wiegart, NSLS-II TechNote – 239, 2017

National Synchrotron

BRUUKHMVEN

NATIONAL LABORATORY Light Source II

Concluding Remarks

- Impedance modeling approach has been discussed.
- Microwave instability thresholds estimated numerically using the calculated impedance/wakefield and compared with measured SLM camera data. The results are in reasonable agreement.
- Discrepancy in bunch lengthening simulations is under investigation. Low frequency contribution?
- Analysis of beam spectra in progress.

Acknowledgments

BNL/NSLS-II

B. Bacha, G. Bassi, G. Wang, T. Shaftan, V. Smaluk,
W. Cheng, S. Kramer, L.-H. Yu, D. Padrazo, E. Zitvogel,
A. Derbenev, R. Smith, R. Reiner, O. Chubar, Y. Chen-Wiegart, M. Zhernenkov, M. Rakitin, L. Wiegart,
B. Podobedov, A. Fluerasu, C. Hetzel, Y. Li, B. Kosciuk,
Y. Hidaka, J. Choi.

• <u>ANL/APS</u> R. Lindberg, B. Stillwell

• <u>SLAC National Accelerator Laboratory</u> K. Bane, G. Stupakov

Back - Up

Microwave Instability Measurements in NSLS-II

Horizontal beam size (σ_x) measurements from SLM camera and FWHM measured from the IVU spectrum of 7th harmonic at V_{RF}=2.6MV for the two different lattices.

Tune Shift Dependence On The Average Current

Beamline Shutter Emmline Control								
Beamline Co	ontrol	ID (Gap (m	ım)				
	ID Gap	BMPS	Detail	ID 1	ID 2			
2 SIX	Open	Open	EPU57	220.0				
3 H X N	Closed	Open	IVU20	6.63				
4 ISR	Closed	Open	IVU23	10.00	.0.00			
5 SRX	Closed	Open	IVU21	6.92				
8 ISS	Closed	Open	DW100	15.0	15.0			
8BM TES	None	Open						
10 IXS	Closed	Open	IVU22	7.73				
11 CH X	Closed	Open	IVU20	6.64				
11BM CMS	Inserted	Open	3PW	0	.0			
12 SMI	Open	Open	IVU23	40.00				
16 LIX	Closed	Open	IVU23	5.91				
17 AMX/FMX	Closed	Open	IVU21	6.75	7.00			
17BM XFP	Inserted	Open	3PW	0	.0			
18 FXI	Closed	Open	DW100	15.0	15.0			
19 NYX	Open	Closed	IVU18	20.30				
21 ESM	Closed	Open	EPU57	36.3				
23 C SX	Closed	Open	EPU49	20.0	30.8			
28 XPD	Closed	Open	DW100	15.0	15.0			

Horizontal and vertical betatron tune shifts vs. average current

• Bare Lattice: $\frac{\text{Tune Slope}}{\frac{dv_{\chi}}{dI_{av}}} = 0.044, \frac{dv_{y}}{dI_{av}} = 0.071$ • All ID's closed : $\frac{dv_{\chi}}{dI_{av}} = 0.083, \frac{dv_{y}}{dI_{av}} = 0.079$

Contributors: Banding Magnets, Multipoles Magnets, ID's

National Synchrotron

NATIONAL LABORATORY Light Source II

Low – Frequency Quadrupole Impedance Of Undulators and Wigglers

A. Blednykh, G. Bassi, Y. Hidaka, V. Smaluk, Brookhaven National Laboratory, Upton, NY 11973, USA

G. Stupakov, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Damping wiggler chamber cross-section with magnetic gap closed, $d_{dw} > t_{dw} + b_{dw}$ and $t_{dw} \ll b_{dw}$

Damping wiggler at open position and the aluminum vacuum chamber (side-view)

Image of IVU without side cover

Horizontal (a) and Vertical (b) betatron tune shifts versus average current for lattices with local $\beta_{m} = 21m$. DDDDVL RATES

National Synchrotron

BROOKHAVEN

NATIONAL LABORATORY Light Source II

Vacuum Components

U.S. DEPARTMENT OF Office of Science

National Synchrotron

BROOKHAVEN NATIONAL LABORATORY Light Source II

Diagnostic Straight Section (Cell16)

Bunch-by-Bunch Transverse Feedback System

U.S. DEPARTMENT OF

Office of

Science

Tune Measurements System

Odd Cell & Straight Section

BROOKHAVEN

NATIONAL LABORATORY Light Source II

National Synchrotron