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Introduction to PWFA

• Plasma wake excited by relativistic
particle bunch
• ”Blow-out” regime when nb/ne > 1
• Acceleration and focusing by plasma
• Accelerating field scales as n1/2e

• Typical: ne ∼ 1017 cm−3,
k−1
p = 17 µm, E & 10 GV/m, G &

MT/m

C. Joshi, W.B. Mori, (2006)

1 m, 20 MV/m 100 µm, 20 GV/m
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Hosing instability in PWFA

Courtesy of Weiming An from UCLA.
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Plasma wakefields

The terminology of wakefields in plasma can be confusing. The original
meaning of the wake in plasma is the field generated by the driver that
accelerates the witness beam. The driver is a beam of charged particles
(PWFA) or a laser beam (LWFA).

In this presentation, by wakefields I mean the fields (longitudinal and
transverse) with which the witness bunch acts on itself. They are
generated by the leading charges and act on the trailing charges of the
witness bunch.

In linear approximation, valid for nb � np, one can assume that the
perturbation of the plasma density is small, δne � ne . The wakefield
problem can be solved analytically for arbitrary charge distribution of the
driver and witness bunches1. This approach, unfortunately, does not
work in the blowout regime.

1
T. Katsouleas et al., Particle Accelerators, 22, 81 (1987).
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Wakefields in the blowout regime
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In the absence of theory some
researchers2 use for the short-range
wakefields formulas that work for a
round pipe with resistive wall,
corrugated pipe, dielectric pipe, etc.
They replace the pipe radius a in
these formulas by the bubble radius
rb at the location of the source
charge,

w`(z) =
4

r2b
h(z) wt(z) =

8z

r4b
h(z)

h(z) is the step function (in SI system of units multiply by Z0c/4π).

Our goal is to calculate the wakes by solving Maxwell equations with
correct plasma responce.

2 V. Lebedev, A. Burov, S. Nagaitsev, arXiv:1701.01498 (2017).
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Relativistic point charge moving in free space
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In wakefield theory for relativistic beams we
assume v = c . When a point charge q is
moving in vacuum, its field is

Er = Bθ =
2q

r
δ(z − ct)

What happens if the point charge is moving in uniform, cold plasma of
density n0?
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Point charge moving through plasma
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The remarkable result of Ref.3 is the existence
of the electromagnetic shock wave (EMSW)

Er = Bθ = 2qkpK1(kpr)δ(z − ct)

where kp = ωp/c =
√

4πn0e2/mc2 and K1 is
the modified Bessel function. For r � k−1

p we

recover Er ,Bθ ≈ 2qδ(z − ct)/r ; for r � k−1
p

the field decays exponentially,
Er ,Bθ ∝ e−kpr/

√
kpr . Remarkably, the fields in

EMSW are linear functions of charge.

The only external dimensionless parameter in the problem is

ν =
q

e
rekp = Nd rekp ∼ q

√
n0

For n0 = 1016 cm−3, q = 1 nC we have k−1
p = 53 µm, ν = 0.3.

3 N. Barov et al., PRAB 7, 061301 (2004).
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Plasma equations
This is the system of equations (in dimensionless units) that governs the plasma
dynamics in axisymmetric geometry. We assume a steady state with everything

depending on ξ = t − z and r =
√
x2 + y2. Introduce ψ = φ− Az ,

Ez = ∂ξψ, Er = −∂rψ

Eq. for ψ
1

r

∂

∂r
r
∂

∂r
ψ = ne(1 − vz) − 1

Eq. for Bθ
1

r

∂

∂r
rBθ = −

∂

∂ξ
nevr −

∂

∂r
nevz −

∂nd
∂r

−
∂nw
∂r

Eqs. of motion for plasma electrons

dpr
dξ

=
γ

1 +ψ
∂rψ− Bθ,

dr

dξ
=

pr
1 +ψ

, 1 − vz =
1

γ
(1 +ψ)

The continuity equation

∂ξ[ne(1 − vz)] +
∂

∂r
rnevr = 0

Remarkably, for a given plasma flow, ne , vr and vz , the fields are found through
an integration over r in each slice ξ.

E → Emcωp/e

ξ→ ξk−1
p
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Numerical solution of PWFA equations

We6 developed a matlab code that solves an axisymmetric plasma bubble
generated by a Gaussian driver and witness bunches. Illustrations: the
driver with σz = 13 µm, σr = 5 µm, plasma density 4× 1016 cm−3

(k−1
p = 26 µm).
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Plots of the longitudinal electric field. One unit of electric field is 19.2
GV/m.

6
G. Stupakov, P. Baxevanis, V. Khudik, to be published.
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Longitudinal wake in the bubble

����

���� ��� ������

������ ������

��� ��

ξ
-� � � � � � �

-���

���

���

���

���

ξ

�
� ��=� ��

��=��� ��

��=��� ��

∆Ez(0, ξ)

I developed theory that calculates a jump in Ez immediately behind the
witness charge, ∆Ez(r , ξ). Remarkably, the theory predicts that this
jump is proportional to the (dimensionless) witness charge νw (the
charge has not to be small). So we can introduce the longitudinal wake
is w` = ∆Ez(0, ξ)/νw .
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Calculation of the longitudinal wake

First, one needs to calculate the strength of the EMSW, D(r , ξ), at the
location of the witness charge:

Er (r , ξ) = D(r , ξ0)δ(ξ− ξ0)

(here ξ0 is the position of the source charge in the bubble). It satisfies
the following equations

∂

∂r

1

r

∂

∂r
rD =

ne0(r , ξ)

γ0(r , ξ)
D

Here ne0 and γ0 are the quantities in the bubble without the witness
charge. Then

∆Ez = −
1

r

∂

∂r
rD

This result can be benchmarked against the wakefields in a hollow
plasma channel.
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Wakefields in a hollow plasma channel

Wakefields for a hollow plasma channel were calculated in7 in linear
approximation (small charge limit).
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������ Longitudinal wake

w`(z) = 2κ cos

(
Ω

c
z

)

κ =
2

a2
K0(akp)

K2(akp)

In my analysis I use ne0(r) = n0h(r − a) and γ0(r) = 1 and obtain

w`(0) =
4

a2
K0(akp)

K2(akp)

The wake w`(0) is valid not only in the linear, but in nonlinear regime as
well.

7
C. Schroeder, D. Whittum, J. Wurtele. PRL, 82, 1177 (1999).
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Longitudinal wake as a function of ξ
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This wake is in good agreement with the simulated jump in ∆Ez of a
witness charge on the axis of the bubble.

13



Transverse wake in the bubble
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The source charge is now off axis, the
offset is assumed small. The shock wave
is not axisymmetric, Er ∝ D̂(r , ξ) cos θ,
Eθ ∝ D̂(r , ξ) sin θ. Behind the wave
∆Ez(r , ξ, θ) = ∆Êz(r , ξ) cos θ. The
fields satisfy the following equations

∂rr D̂ +
1

r
∂r D̂ −

4D̂

r2
=

ne0(r , ξ)

γ0(r , ξ)
D̂

∆Êz = −∂r D̂ −
2D̂

r

The transverse wake is wt is found from the Panofsky-Wenzel relation and it is a
linear function of the distance between the source and the witness,
wt = w ′

t (ξ1 − ξ). Our result agrees with the linear approximation of the
transverse wake in a plasma channel calculated by Schroeder et al.

w ′
t =

8

a4
K1(akp)

K3(akp)
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Transverse wake as a function of ξ
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BBU instability of the witness bunch

With the model for the wakefields in the plasma bubble, we apply them to the
beam-breakup instability of the witness bunch.

z
X (s, z)

X (s, z) is the transverse offset of the
slice, z is the coordinate in the bunch, s
is the distance along the accelerator:

[
∂

∂s
γ(s)

∂

∂s
+ γ(s)k2

β(s)

]
X (s, z) = Nbre

∫∞
ζ

fw (z
′)wt(z

′ − z)X (s, z ′)dz ′

Here γ(s) is the energy increase with distance due to acceleration, kβ(s) is the
focusing, fw is the longitudinal distribution in the bunch.

Assume γ(s) = γ0 + gs, kβ(s) = k0
√
γ0/γ(s). If the focusing is due to plasma

ions, then k0 = kp/
√

2γ0.

We can solve the BBU equation numerically for an arbitrary distribution
function.
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Numerical solution for a Gaussian bunch

Parameters of Weiming An simulations: the driver has σz = 12.77 µm,
σr = 3.65 µm, Q = 1.6 nC, (Ipeak = 15 kA); the witness has
σz = 6.38 µm, σr = 3.65 µm, Q = 0.69 nC, (Ipeak = 13 kA). Plasma
density 4× 1016 cm−3. The distance between the bunches is a) 108 µm
and b) 150 µm.

108µm

150µm

108µm

150µm
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Numerical solution for a Gaussian witness bunch

108µm 150µm

One way to characterize BBU is to calculate the projected emittance:

ε2proj(s) = 〈(X − X̄ )2〉〈(X ′ − X̄ ′)2〉− 〈(X − X̄ )(X ′ − X̄ ′)〉

where the averaging means

〈. . .〉 =
∫
dz(. . .)fw (z)
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BBU instability—projected emittance
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For a particular application this result can be translated into the jitter
tolerance for the witness bunch.
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Summary
A method is developed to calculate longitudinal and transverse
short-range wakes in the PWFA blowout regime. The calculation
requires the knowledge of the energy-density radial distribution in
the bubble, which can be taken from 2D simulations of PWFA. We
developed a matlab code that solves axisymmetric plasma bubble
excited by a driver with arbitrary longitudinal current distribution
(run a few minutes on a desktop computer).

The calculated transverse wakefield is then used for the study of
BBU instability. The strength of the instability critically depends on
the position of the witness bunch in the bubble.
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