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Introduction and motivation

2

▪ The impedance of an accelerator is often developed with the help of 
beam based measurements. These allow to probe the effective 
impedance: product of the beam spectrum and the machine 
impedance.

▪ Various methods are applicable to evaluate the frequency 
characteristics of the impedance. In this presentation, we will focus on 
the evaluation of the reactive part of the longitudinal impedance. 

▪ Studies were done for the SPS at CERN, by measuring the synchrotron 
frequency shift with intensity. 

▪ Longitudinal instabilities in the SPS are one of the main limitations for 
the High Luminosity-LHC project. A reliable impedance model is 
necessary to understand and find means to mitigate these instabilities.



Outline
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▪ The SPS impedance and beam measurements techniques

▪ Synchrotron frequency shift measured from quadrupole 
oscillations

▪ Theory

▪ Measurements

▪ Simulations

▪ Identification of possible missing impedance and its frequency 
characteristics



The present SPS impedance model
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▪ Includes many 
contributions obtained 
from electromagnetic 
simulations and bench 
measurements

▪ Model has been 
constantly evolving over 
the past years

▪ Many sources (RF, 
flanges…) can be 
described by a resonator 
impedance:



Effective impedance

5

▪ Effective reactive impedance

▪ Effective resistive impedance

▪ Linear synchrotron motion

These equations are only valid in the linear regime, for particles with 
small amplitude of oscillations Ƹ𝜏
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Beam measurements of the impedance
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▪ Various methods are applicable to measure the impedance of a 
synchrotron and evaluate its frequency characteristics

▪ For stable bunches:
➢ Synchrotron frequency shift

➢ Debunching time

➢ Synchronous phase shift 

▪ For unstable bunches
➢ Growth rates and thresholds (dependence 

on longitudinal emittance)

➢ Direct measurements from the beam 
spectrum (identification of the vacuum
flanges impedance at 1.4 GHz)
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Quadrupole frequency measurements
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Measurement method:

▪ Quadrupole oscillations provoked by injection of short bunches 
into mismatched RF voltage (oscillations are mainly performed 
by particles with large amplitude of oscillations Ƹ𝜏)

▪ Frequency of bunch length (or peak amplitude) oscillations, 
≈2𝑓𝑠0 (𝑓𝑠0 = 172.4 Hz),  is measured for bunches with different 
intensities keeping same average bunch length



Synchrotron frequency shift in the CERN SPS
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▪ Reference measurements 
performed over many years to 
follow up the evolution of the 
impedance

▪ Measurements performed for 
bunches with different intensity, 
keeping the same average 
bunch length

▪ The slope b of the shift with 
intensity depends on the 
effective reactive impedance 𝑍1

▪ Small variations in bunch length 
can lead to inconsistent results

➢ 2000: SPS impedance reduction

➢ 2003&2006: addiction of extraction 
kickers for LHC



Quadrupole frequency dependences
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▪ The quadrupole frequency strongly depends on the average 
bunch length (emittance)

▪ The shift with intensity depends on the effective reactive 
impedance and contains

➢ The incoherent part (from stationary bunch distribution)
➢ The coherent part (from the perturbation)



Incoherent synchrotron frequency shift
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▪ Defined by the induced voltage of the stationary bunch 
distribution

▪ For a parabolic bunch (𝜇 = 1) and a constant reactive 
impedance Im𝑍/𝑛 (𝑛 = Τ𝑓 𝑓rev), the incoherent shift is:
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SPS equivalent impedance
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▪ The SPS impedance cannot be considered as a constant ImZ/n.

▪ The incoherent shift is computed numerically, and the 
“equivalent” impedance is given by:

Small amplitude Ƹ𝜏 Large amplitude Ƹ𝜏

Computed numerically

Behave as if no 
induced voltage!



Effect of the various SPS impedance sources
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▪ Dependence on bunch length:

➢ Depending on the frequency of the impedance source, the effective 
contribution is inductive (>0), or capacitive (<0).

➢ The longitudinal space charge impedance has constant ImZ/n, and it is not 
negligible on the SPS flat bottom!

▪ The measured synchrotron frequency shift corresponds to 
particles with large amplitude of oscillations

Small amplitude Ƹ𝜏 Large amplitude Ƹ𝜏



Coherent synchrotron frequency shift
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▪ The coherent motion of the bunch also contributes to the synchrotron 
frequency shift, which depends on the effective impedance of the 
perturbation spectrum

▪ For a constant ImZ/n impedance, the coherent shift reduces the total 
synchrotron frequency shift by ≈ a half

➢ For the SPS impedance, the coherent shift is small in comparison with 
the incoherent one

Constant ImZ/n 
impedance

SPS impedance



Measurements of the quadrupole frequency
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▪ Measurements done scanning both the average bunch 
length and the bunch intensity

▪ The data was organised in categories of bunch length, 
and fitted linearly (𝑓𝑠2 = 𝑎 + 𝑏 𝑁𝑏)



Measured slope b and origin a
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The origin a (non-linear 
synchrotron frequency without 
intensity effects) is

a ≈ 2𝑓𝑠0 1 −
𝜔𝑅𝐹𝜏𝐿

2

64

For constant ImZ/n, the 
synchrotron frequency 
shift scales as

𝑏 ∝
1

𝜏𝐿
3



Measured SPS equivalent impedance
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▪ Obtained with:

➢ Similar features to the equivalent impedance calculated 
for particles with large amplitude of oscillations

Q20 optics Q26 opticsAnalytical
Large amplitude Ƹ𝜏

Measured ≈

Measurements



Comparison of measurements with simulations
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▪ Simulations were done with BLonD and the present SPS 
impedance model, using the machine parameters and bunch 
profiles from measurements (done for two different optics 
settings Q20 and Q26)

➢ Reasonable agreement, in pattern and amplitude

➢ Deviations may indicate some missing impedance source

Q20 optics Q26 optics



Evaluating the missing impedance
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▪ Simulations were reiterated by adding a variable amount of 
ImZ/n, to determine for each bunch length the missing equivalent 
impedance

➢ The dependence of the missing equivalent impedance on bunch 
length suggests that a resonant impedance may be missing

➢ An accurate estimation of the longitudinal space charge 
impedance is essential



Adding a single resonator impedance
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▪ Simulations done by scanning the 𝑅 and 𝑓𝑟 of the 
additional resonator

➢ The agreement is improved by adding a resonator at 
𝑓𝑟 = 350 MHz with 𝑅/𝑄 = 3 kΩ (Q=1-10), the potential 
missing impedance source is now under investigation.

Q20 optics Q26 optics



Conclusions
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▪ The frequency characteristics of the SPS impedance was 
evaluated by measuring the synchrotron frequency shift with 
intensity as a function of bunch length

▪ Overall, particle simulations using the present SPS impedance 
model reproduces most of the features obtained in 
measurements

▪ The dependence of the missing impedance as a function of 
bunch length allows to get information about the frequency 
characteristics of that impedance. 

➢ In this example, the SPS impedance model seems to miss an 
impedance source that can be modelled by a resonator 
impedance with 𝑓𝑟 = 350 MHz and 𝑅/𝑄 = 3 kΩ (Q=1-10).



Spare slides



Coherent synchrotron frequency shift
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▪ The coherent synchrotron frequency shift is given by

where for a parabolic bunch

Constant ImZ/n 
impedance

SPS impedance



Effect of the various impedance sources
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▪ The various impedance sources have a different effect 
on the coherent synchrotron frequency shift.

▪ Overall, the contribution of all impedance sources is 
that the coherent synchrotron frequency shift is small.



Longitudinal space charge 
in the SPS



Longitudinal space charge
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 First estimations of space charge impedance were done analytically 
(𝑓0 = revolution frequency, 𝑍0=free space impedance)

Im𝑍

𝑛
= −

𝑖𝑍0
𝛽𝛾2

𝑔 , 𝑛 =
𝑓

𝑓0

 Geometrical factor g for a round uniform beam in a rectangle vacuum 
chamber (ℎ=chamber height, 𝑤=width, 𝑎=beam size)

𝑔 = 𝐶 + ln
2ℎ

𝜋𝑎
𝑡𝑎𝑛ℎ

𝜋𝑤

2ℎ

𝐶 =
1

2
on central axis ; 𝐶 =

1

4
if averaged over beam size

 Taking the average beam size and aperture over the ring
➢ ImZ/n ~ 1.3-1.4 Ohm averaged over the beam size

 This value can be refined by taking into account the variations of the vacuum 
chamber geometry and the beam size.

Electric field lines

Particle

h

w

a



Longitudinal space charge impedance
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▪ Calculated taking into account the 
variation of the aperture geometry 
and beam size

▪ The obtained values are (for 𝜖 =
1.7μm and 𝑑𝑝/𝑝 = 1.1 × 10−3 ):
➢ Q20 optics: -1.05
➢ Q26 optics: -1.17


