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4Introduction and motivation

• LIU/HL-LHC projects:
- Double intensity per bunch from 1.3 · 1011 ppb to 2.6 · 1011 ppb

• Major limitation for LHC-type beams in PS: 
Longitudinal coupled-bunch instabilities during 
acceleration and on flat-top

• Feedback test system available for studies since 2016
- Prototype Finemet cavity up with 6 gaps (~6 kV)
- Prototype digital LLRF with 10 signal processing chains, 

covering all possible oscillation modes

→New range of longitudinal beam parameters accessible

• Additional measures to improve stability?
→ Use 20 or 40 MHz RF systems as Landau cavity at flat-top
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Acceleration 

2.8 – 10 MHz

40 MHz

80 MHz

RF Manipulations

200 MHz
Longitudinal blow-up

2

20 MHz0.4 – 5 MHz

RF systems in the PS

to SPS
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Triple splitting at Ekin = 2.5 GeV Split in four at flat top energy
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7Coupled-bunch oscillations in the CERN PS

→ Frequency domain (case of h = 21)

upper

lower

Dipole oscillation, 2π⋅10/21 phase advance Corresponding mode spectrum

• Oscillation of bunch position (dipole) or bunch length (quadrupolar)

→ Time domain

→ Instability: Synchrotron frequency, fs, side-bands of n · frev

Side-
band



8Observations along the cycle

21 bunches in h = 2118 bunches in h = 21

Mode spectrum during acceleration (~10 cycle average): 

→ Clean mode spectra for full ring with 21 bunches in h = 21
→ Mode n = 2 strongest, as independently found in simulations

→ More complicated spectra with 18 bunches (filling pattern)
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10Frequency domain feedback

→ Harmonic of frev attenuated by more than 40 dB compared to 
sidebands at ± fs (~300 Hz) → Extremely narrow: fs /f0 ~ 6 · 10-4

→ Precise 180° phase jump at center frequency
→ Ten notches covering all 20 possible modes (h = 21), other than n = 0

• Suppress fs side-bands by actively compensating them
→ Remove spectral components at n · frev and amplify n · frev ± fs

→ Robust: insensitive to bunch positions and filling pattern

Filter transfer function
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11PS coupled-bunch feedback overview
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Digital signal 
processing

Beam signal from 
wall current monitor

fclk = 256 frev

Six-cell Finemet cavity:
→ VRF up to 6 kV from 0.4 to 5 MHz 

• Detect fs sidebands at 11…20 frev

• Drive kicker cavity at 1…10 frev

frf



12Stability during acceleration
• Longitudinal stability at arrival on flat-top, Nb = 4 · 2.0 · 1011 ppb

Feedback on 
(every cycle)

Feedback off 
(bunch 12, cycle #3)

Feedback off 
(bunch 12, cycle #2)

Feedback off 
(bunch 12, cycle #1)
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13Final part of acceleration and flat-top
• Arrival at flat-top and high-energy splittings
• Mode pattern changes due to impedance

Feedback off (Nb = 1.8 · 1011 ppb) Feedback on (Nb = 1.8 · 1011 ppb)

→ Significant improvement of longitudinal stability with feedback



14Quadrupole oscillations after transition

• Emulating higher intensity by 
increasing density Nb/εl

→ Quadrupole instabilities 
observed  right after      
transition crossing

→ Measurements at 4 · 2.0 · 1011 ppb

→ No damping from coupled-bunch feedback

εl,90%:     
0.64 eVs

εl,90%:     
0.95 eVs

Nominal emittance: εl,90%: = 0.95 eVs Reduced emittance: εl,90%: = 0.64 eVs
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16Instability at flat-top

• Stop RF manipulations at flat-top to observe evolution of stability

Nb = 4 · 1.8 · 1011 ppb

2nd splitting, h = 42 → 84

1st splitting, h = 21 → 42

• Dipole coupled bunch oscillations build up along the batch
→ Low 2Q/ω0 impedance source decaying during ~400 ns gap

• Already well developed at start of first splitting manipulation
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• Stop RF manipulations at flat-top to observe evolution of stability
• Coupled-bunch feedback enabled → significant improvement

Nb = 4 · 1.8 · 1011 ppb

Instability at flat-top
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• Stop RF manipulations at flat-top to observe evolution of stability
• Coupled-bunch feedback enabled → significant improvement

Nb = 4 · 1.8 · 1011 ppb Nb = 4 · 2.0 · 1011 ppb

• Dipole coupled-bunch oscillations well damped
• Again quadrupolar oscillations at ~4 · 2 · 1011 ppb

→ Not damped by feedback system? → Mode analysis

Instability at flat-top



19Quadrupole oscillations with feedback?

• Side-bands at ±2fS also pass the filters of the coupled-bunch feedback
→ BUT: phase advance wrong (set for dipole oscillation damping)

Feedback off

Feedback on

Nb = 4 · 2.0 · 1011 ppb Quadrupole mode spectrum

→ No damping from dipole coupled-
bunch feedback
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21High-frequency cavity as Landau RF system
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mode spectra

20 kV (h = 21) + 5 kV (h = 84)

→ No significant stability 
change in BL mode

• Proof-of-principle test adding 20/40 MHz at flat-top in 2016
→ Nominal intensity of 4 · 1.3 · 1011 ppb without coupled-bunch feedback
→ Bunch shortening (BS, in-phase) and lengthening (BL, counter-phase)
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Coupled-bunch 
mode spectra

20 kV (h = 21) + 5 kV (h = 84)

→ Much improved stability 
in BS mode

→ Similar condition than in the SPS with 200/800 MHz RF systems

• Proof-of-principle test adding 20/40 MHz at flat-top in 2016
→ Nominal intensity of 4 · 1.3 · 1011 ppb without coupled-bunch feedback
→ Bunch shortening (BS, in-phase) and lengthening (BL, counter-phase)

E. Shaposhnikova et al., PAC2005



23Damping of quadrupole instability
→ Nb = 4 · 2 · 1011 ppb together with dipole coupled-bunch feedback
→ Bunch shortening (BS, in-phase) and lengthening (BL, counter-phase)
→ Reduce higher harmonic voltage down to ratio V40 MHz/V10MHz = 0.1

Bunch shortening (BS)

Bunch lengthening (BL)

Quadrupole mode spectrum20 kV (h = 21) + 2 kV (h = 84)
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→ Encouraging results with combination 10 MHz/40 MHz
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In-phase (bunch shortening) Counter-phase (lengthening)

Synchrotron frequency distributions

h
= 

21
 (2

0 
kV

) +
h

= 
84

 
(h

ar
m

on
ic

 r
at

io
: 4

)
h

= 
21

 (2
0 

kV
) +

 h
= 

42
 

(h
ar

m
on

ic
 r

at
io

: 2
)

→ Much improved stability → Little effect on stability
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• Only one MD in 2016: promising → Study systematically in 2017
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26Maximum intensity at extraction

Feedback on, Nb = 2 · 1011 ppb Feedback off, Nb = 2 · 1011 ppb

• Coupled-bunch feedback significantly improves beam stability
→ Regularly delivered ~2 · 1011 ppb with nominal longitudinal emittance of 

εl = 0.35 eVs and bunch length of 4σ = 4 ns (Gaussian fit)
→ Beam quality as at ~1.3 · 1011 ppb without feedback



27Maximum intensity at extraction

• Coupled-bunch feedback significantly improves beam stability
→ Regularly delivered ~2 · 1011 ppb with nominal longitudinal emittance of 

εl = 0.35 eVs and bunch length of 4σ = 4 ns (Gaussian fit)
→ Beam quality as at ~1.3 · 1011 ppb without feedback

Feedback on, Nb = 2.3 · 1011 ppb Feedback on, Nb = 2 · 1011 ppb



28Longitudinal emittance along batch

• Above bunch intensities of 2 · 1011 ppb beam quality degrades
• Emittance along batch increase

Nb = 4 · 2.0· 1011 ppb
Nb = 4 · 2.3· 1011 ppb

Arrival at flat-top

Nb = 4 · 2.0· 1011 ppb
Nb = 4 · 2.3· 1011 ppb

After triple splitting, Ekin = 2.5 GeV

→ Again first few bunches much less affected than tail of batch
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Acceleration Flat-top

Summary of coupled-bunch mode
• Mode pattern changes at flat-top, as observed for dipole oscillations
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→ Measurements of coupled-mode spectra reproducible over years



31Summary

• Prototype frequency domain coupled-bunch feedback
→ Six-gap wideband Finemet cavity covering frev to hfrev/2
→ Ten-channel signal processing covering all possible modes

• Extensive studies with Finemet coupled-bunch feedback 
→ Dipolar oscillations well handled
→ Bunch intensity of 2.0 · 1011 ppb regularly delivered with excellent 

longitudinal beam quality

• Effects at higher intensity
→ Quadrupolar coupled-bunch instabilities → Not damped by feedback
→ Uncontrolled emittance blow-up along the batch
→ Low 2Q/ω0 source impedance(s) → Impedance modeling

• Complementary stabilization techniques
→ High frequency cavity as Landau RF system?
→ Damping of quadrupole oscillations at flat-top
→ New RF system covering frequency sweep during acceleration?
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H. Damerau, S. Hancock, CERN/GSI Meeting on RF Manipulations and LLRF in Hadron Synchrotrons
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Spare slides



34Timeline
2003/2004 • Coupled-bunch instability with LHC-type beams observed

2005 • Analog feedback covering modes nb = 1/20 and nb = 2/19
• Two accelerating cavities as feedback kickers
https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf

2006/2007 • Study of coupled-bunch oscillations
http://accelconf.web.cern.ch/AccelConf/p07/PAPERS/FRPMN069.PDF

2008-2011 • Mode scans along the cycle under various conditions
• Instability scales with longitudinal bunch density
http://accelconf.web.cern.ch/AccelConf/HB2010/papers/mopd52.pdf

2012/2013 • Excitation scans using existing coupled-bunch feedback
• All modes are well decoupled from each other
• Demonstration of cross-damping (band change)
http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/tupwa044.pdf

2014 (LS1) • Installation of Finemet wide-band kicker
• Beam-loading reduction feedback
http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/tupri060.pdf

2015 • Excitation of coupled-bunch modes
• Damping of all modes simultaneously, 1.7 · 1011 ppb reached
http://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupor028.pdf

2016 • Performance study, 2.0 · 1011 ppb operationally reached

https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf
http://accelconf.web.cern.ch/AccelConf/p07/PAPERS/FRPMN069.PDF
http://accelconf.web.cern.ch/AccelConf/HB2010/papers/mopd52.pd
http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/tupwa044.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/tupri060.pdf
http://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupor028.pdf
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Impedance at high frequency                             
and highest intensity



36Effect of 80 MHz cavity impedance

• 80 MHz cavity for lead ions tuned to 135 kHz below proton frequency, 
but 3 dB bandwidth about 0.7 MHz

→ 80 MHz structure during h = 42 → 84 splitting
Averaged difference, with and 

without effect of 80 MHz ion cavityGap C80-08 closed Gap C80-08 open

• Perturbation visible at 1.6 · 1011 ppb
→ Effect on beam quality?
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Bunch length at extraction

Cavities with gap open εRMS [eVs]
C40-78, C80-88, C80-89 0.231

C40-78, C80-88, C80-89
and C80-08 (at ion frequency)

0.238

Emittance at arrival on flat-top (4 final bunches)

Cavities with gap open 4σGauss [ns]
C40-78, C80-88, C80-89 4.03

C40-78, C80-88, C80-89
and C80-08 (ion frequency)

4.34

Average bunch length at extraction

80 MHz cavity impedance

open
closed

C80-08 gap

→ Minor emittance blow-up at arrival on flat-top, but
→ ~0.3 ns longer bunches due to impedance of additional 80 MHz cavity
→ Expect improvement with new multi-harmonic feedbacks

http://cds.cern.ch/record/1141522/files/AB-Note-2008-052-MD.pdf


38Higher intensity?
Pushing intensity at expense of larger longitudinal emittance
→ Bare minimum of 40/80 MHz cavities with gap open (C40-78, C80-88, C80-89)
→ Trips of remaining cavities C40-78 and C80-08 due to beam loading
→ Measurements difficult to perform, almost like dedicated MDs

Intensity ramp up Overall transmission Nej/(Ninj1+Ninj2)

→ Excellent transmission up to 2.6 · 1011 ppb, even with εl > 0.35 eVs
→ No further RF issues related to intensity



39Longitudinal beam quality
Longitudinal parameters at LIU/HL-LHC baseline intensity: 2.6 · 1011 ppb 
→ Additional longitudinal blow-up

• Average εl at arrival on flat-top: 
0.3 eVs (RMS, 4 final bunches)

• Corresponds to  ~0.45...0.5 eVs per 
bunch in usual convention

• Bunch length increase along 
the batch

→ Onset of instability

open
closed

C80-08 gap
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Impedance modeling
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Finemet 80 MHz20 MHz 40 MHz
Further impedances from RF systems

→Little effect in 
simulations
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fnfrev

f0 - fs

Each dashed 
line stays for:

Simplified mechanism of instability

• Asymmetry of cavity impedance at synchrotron frequency side-bands 
of revolution frequency harmonics, e.g.,

→ Impedance hRF + 2frev + fs larger than  impedance at hRF - 2frev - fs

→ Corresponding coupled-bunch mode nb = 2 unstable
→ Smaller impedance asymmetry hRF ± frev for nb = 1 mode

f0 + fs
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→ Single macro-particle per 
bunch

Previous impedance model Updated impedance model
→Multiple particles per bunch,  

length ~ 1 m

Simulations with 21 bunches in h = 21

• 1.3 1011 ppb

→ Twice shorter rise time 
when doubling intensity

• 2.6 1011 ppb

• 2.6 1011 ppb

→ Mode 2 grows faster than 
mode 1, as expected

→ Four times larger impedance 
translates in three times 
shorter rise time
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• 1.3 1011 ppb

• 2.6 1011 ppb

Mode nb = 1

Mode nb = 2

Mode nb = 3

Simulations with 18 bunches in h = 21

→ Single macro-particle per 
bunch

Previous impedance model Updated impedance model
→Multiple particles per bunch,  

length ~ 1 m
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→ Rise times not well defined

→ Stays of the order of ~50 ms
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Σ of all
10 cavities 
(real part)

• Studies revealed that 10 MHz cavity four times larger than previously 
assumed (G. Favia)

New 10 MHz cavity impedance model

→ Total impedance modelled as three resonators (fit of real part of impedance)
→ Input for MuSiC code (M. Migliorati)
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Coupled-bunch feedback implementation



47Time domain vs. frequency domain

Time domain Frequency domain
+ Damping independent from mode 

pattern
+ Feedback action directly observable
+ Few adjustment parameters 
− Synchronous bunch clock, difficult 

during RF manipulations
− Physical delay for time-of-flight 

compensation
− Separate compensation of Finemet

cavity transfer function

• Limited experience

+ Instability shows similar bunch-to-bunch 
phase advance

+ Gain, delay and phase adjustable per 
harmonic/mode → compensates Finemet
cavity transfer function

+ No need for physical delay
+ Insensitive to bunch phases and 

filling patter → no need for bunch clock
− Many parameters to be adjusted → only 

easy for cavity with fixed impedance
− Requires sharp filters to extract 

synchrotron frequency side-bands

• Experience with previous coupled-bunch 
feedback

→ Frequency domain approach chosen



48Filtering of fs sidebands

→ Harmonic of frev attenuated by more than 40 dB compared to 
sidebands at ± fs (~300 Hz)

→ Precise 180° phase jump at center frequency
→ Notches covering all other frev multiples and their fs sidebands

Transfer function measurements for one signal processing chain
• fcenter = 10 MHz corresponding to hCB = 20 at frev = 500 kHz
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sin(hdown frevt + φ)

cos(hdown frevt + φ)

Tracking filters – coupled-bunch damping

ADC DAC
Cavity 
drive

cos(hdown frevt + φ) sin(hup frevt)

sin(hdown frevt + φ) cos(hup frevt)

• Sharp attenuation to separate ± fs of sidebands from frev harmonics
• Sharp 180° phase jump at center frequency
• Programmable gain, delay and phase

fs side-
band filter

fs side-
band filter

fs side-
band filter = 3rd order 

deep CIC
df/dt Gain 

control
Leaky 

integrator

Wall 
current 
monitor

• Demodulation (at hdown)/modulation (at hup) at different harmonics
• Sideband inversion for cross-damping

hdown = huphdown + hup = hRF = 21



50Extension to multiple harmonics

ADC DAC
Cavity 
return

Cavity 
drive

ADC
Wall 

current 
monitor

Single harmonics signal 
processing

→ Straight-forward extension to multiple harmonics

Single harmonics signal 
processing

Single harmonics signal 
processing

ED
A

-2
17

5,
 D
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• PS 1-turn delay feedback 
hardware (4 modules)

• 3 harmonics per board
• 12 harmonics to reduce beam 

induced voltage
• Beam synchronous clock



51Choice of frequency ranges: cross-damping
→ Best shunt impedance: 0.4 to 5 MHz

1. Detect fs sidebands at 11…20 frev

2. Correct beam at 1…10 frev

→ 20 modes   → 10 signal 
processing chains

Kick

Measure
Correction Preferred detectionNetwork 

analyzer From beam 
induced voltage
(low intensity)

Impedance per cell with amplifier

Detect at 8 frev, damp at 13 frev (2012 test)

frf



52Cross-damping
• Profit from spectral symmetry:

→ Avoid detection at low harmonics
→ Detect at fRF/2…fRF

→ Use maximum impedance of                                                                        
Finemet damper cavity
→ Apply correction at frev…fRF/2

→ Inversion of side-bands
→ Must lock all numerical local                                                                                            

oscillators to frev

frf

→ With all RF sources synchronized cross-damping works as expected

Network 
analyzer From beam 

induced voltage
(low intensity)



53Cross-damping

Feedback on and off In phase /anti-phase

→ Intermittent state when synchronization missing

• Successfully commissioned with new hardware in 2015
• Synchronization of all RF sources for down- and up-conversion with 

respect to h = 1 (frev)



54Measured transfer function of all harmonics
• Difficult to measure due to freq. conversion: fout = hRF fclk/256 - fin

→ Excitation sweeps upwards from 10.5 frev to 20.5 frev

← Detection sweeps downwards from 10.5 frev to 0.5 frev

fs/frev ≈
0.0006

→ Feedback design fully validated
→ All 10 signal processing channels operational 
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Cavity impedance of PS Finemet cavity

→ No tuning, impedance unchanged during acceleration
→ Impedance quasi constant within 10% frequency range
→ With 20 dB reduction → ~10 Ω/cell (cf., e.g., wall current monitor: 6 Ω)
→ Harmonic dependent delay, especially for low harmonics
→ Damping needed at many harmonics: ~ frev to 40 frev

M
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Frequency [MHz]
D
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Impedance per cell with amplifier Delay of cells 5+6

Network 
analyzer From beam 

induced voltage
(low intensity)
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