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Outline

* | ooking Inside jets: an introduction
* [heoretical understanding of taggers and groomers
e Back to phenomenology: W tagging with DD T

e Exposing the QCD splitting function



What I1s a jet !
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Jet definition(s)

* et algorithms: sets of (simple) rules to cluster
particles together

* Implementable in experimental analyses and
[fFtheoretical calculations — ------------mmmoom o R

e Must yield to finite cross sections

* First example :




Jet definition(s)

* et algorithms: sets of (simple) rules to cluster
particles together

* Implementable in experimental analyses and
[fFtheoretical calculations — -----------mmmmmoo o R

e Must yield to finite cross sections

* First example :

| To study jets, we consider the partial cross section

| of(E,B,R,¢,8) for e+e- hadren production events, in which all but

a fraction e <<]1 of the total e+e- energy E is emitted within
some pair of oppositely directed cones of half-angle § << 1,
lying within two fixed cones of solid angle @1 (with wé? << << 1)

...-
at an angle & to the e e beam line. We expect this to be measur-

Sterman and Weinberg,
6 Phys. Rev. Lett. 39, 1436 (1977):



Sequential recombination

e A large class of modern jet definitions Is given by sequential
recombination algorithms

e Start with a list of particles,
compute all distances dj and dis

e Find the minimum of all dj and dis

dj (weighted) distance between i |
dis external parameter or distance
from the beam ...

for a complete review see G. Salam,
Towards jetography (2009)
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Sequential recombination

e A large class of modern jet definitions Is given by sequential
recombination algorithms

e Start with a list of particles,
compute all distances dj and dis

e Find the minimum of all dj and dis

* |f the minimum Is a dj, recombine
i and j and Iterate

dj (weighted) distance between i |
dis external parameter or distance
from the beam ...

e Otherwise call i a final-state jet,
remove It from the list and terate

Actual choice for the measure d; determines the et
algorithm



Searching for new particles:
resolved analyses

* the heavy particle X decays into two partons, reconstructed

as two Jets
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http://arxiv.org/abs/1407.1376

Searching for new particles:

boosted analyses
o | HC energy (10* GeV) > electro-weak scale (10? GeV)

e F\VW-scale particles (new physics, Z/VW/H/top) are abundantly
produced with a large boost

- \

1

N /AN /

2/ \\\/

* their decay-products are then collimated
* | they decay into hadrons, we end up with localizec

deposition of energy Iin the hadronic calorimeter: a jet
|3
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Looking Inside |ets



Signal-jet mass
* First jet-observable that comes to mind

* Signal jet should have a mass distribution peaked near the
resonance

- \
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* However, that's a simple partonic picture



A useful cartoon

inspired by G. Salam

e o B
\e’/ hadronization

pert. radiation
(parton branching)
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A useful cartoon

inspired by G. Salam
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hadronization
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(multrple parton (parton branching)
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pile-up
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cffect of jet masses

* |n reality perturbative and non-pert emissions broadens
and shift the signal peak

e Underlying Event and pile-up typically enhance the jet mass
(both signal and background)

jet mass distribution from W bosons
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http://prd.aps.org/abstract/PRD/v86/i1/e014022

Beyond the mass: substructure

e [ et's have a closer look: background peaks in the EVV region
e Need to go beyond the mass and exploit jet substructure
 Grooming and Tagging:

|. clean the jets up by removing soft junk

2. identify the features of hard decays and cut on them
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http://prd.aps.org/abstract/PRD/v86/i1/e014022

Beyond the mass: substructure

e [ et's have a closer look: background peaks in the EVV region
e Need to go beyond the mass and exploit jet substructure
 Grooming and Tagging:

|. clean the jets up by removing soft junk

2. identify the features of hard decays and cut on them
e Grooming provides a handle on UE and pile-up
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http://prd.aps.org/abstract/PRD/v86/i1/e014022

Irimming

Krohn, Thaler and Wang (2010)
recluster discard subjets
% ﬁ
on scale Rsuo With < Zeut Pt

|. Take all particles in a jet and
re-cluster them with a
smaller jet radius Reup < R

2. Keep all subjets for which
ptsubjet = Dt

3. Recombine the subjets to

form the trimmed jet Before After

sk



A theorist's worry

e Complicated algorithms with many parameters
e Are we giving up on calculability / precision QCD ?

M. Schwartz (Boost 2012) : porest

precision

QCD \

o

* First comprehensive QCD study of these algorithms

25

Dasgupta, Fregoso, SM, Powling EP] C (2013)
Dasgupta, Fregoso, SM, Salam, JHEP 1309 029 (201 3)



Theoretical understanding of
jet substructure

26



Soft-gluon phase space

1A 1 Soft gluons off a hard
log ~ soft ® s parton (a quark for
N definiteness)
(/O
o

o |
o° ® collinear

Emission probability is uniform in the

(log z, log 0) plane: AP ~ —C dz; db;

29, T ZIL 9@




Irimming

Soft gluons off a hard
parton (a quark for
definiteness)

* [he action of a groomer Is to remove some of the allowed
phase space (typically soft and soft-collinear)

* VWhat are the consequences for physical observables, e.g.
the jet mass ! 28
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Irimming

Soft gluons off a hard
parton (a quark for
definiteness)

line of constant

m* = 2pq - pg = 2(1 _)()‘921?%

* [he action of a groomer Is to remove some of the allowed
phase space (typically soft and soft-collinear)

* VWhat are the consequences for physical observables, e.g.
the jet mass ! 30
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Trimmed mass: MC vs analytics

Pythia 6 MC: quark jets
m [GeV], forp;, =3 TeV, R =1

10 100 1000
0.3 —rrrr———rrr —
Trimming
Reyp = 0.2, Zg = 0.05 ———
Reyp =02, 2oy = 0.1 — — =
_ 02 i
©
_
'8 / .\\
L
= 0.1 i
0 o o [ o o [ o
10°° 107 0.01 0.1 1

2, 2 02
p=m/(pt R")  Dasgupta, Fregoso, SM and Salam (2013)

* Trimming is active (and aggressive) for zct <p < Rsub?/R? Zaut

e Not active below because of fixed Rqub
By



Trimmed mass: MC vs analytics
Modified LL (MLL): LL + hard collinear + running coupling

Pythia 6 MC: quark jets Analytic Calculation: quark jets
m [GeV], for p;=3 TeV, R =1 m [GeV], forp;, =3 TeV, R =1
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* Trimming is active (and aggressive) for zct <p < Rsub?/R? Zaut

e Not active below because of fixed Reub
BE



Trimmec

mass: MC vs analytics
Modified LL (MLL): LL + hard collinear + running coupling

Pythia 6 MC: quark jets
m [GeV], for p;=3 TeV, R =1

10 100
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in bkg distributions!
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Soft Drop: understanding at work

Larkoski, SM, Soyez and Thaler (2014)

Original Jet Clustering Tree
Go back In the jet
— — clustering history
— | E
|
Groomed
check momentum Groomed Jet Clustering Tree
sharing e
: =..7Zg
min ( ) — 5 Ieg
. Pr1, P12 — : , -z,
: pPT1 1+ P12 5

discard soft branches,
Ks

Zg < ZCU_t 95 Butterworth, Davison, Rubin and Salam (2008)

Dasgupta, Fregoso, SM and Salam (201 3) courtesy of |. Thaler
Tseng and Evans (201 3) 35



Soft Drop as a groomer

e useful to
consider the soft-
oluon phase space

* soft-drop
condition becomes

(7)
Z > Zcut E

* soft drop always removes soft radiation entirely (hence the name)

e for B>0 soft-collinear is partially removed
36




Soft Drop vs [rimming

* trimming had an
abrupt change of

behavior due to
ﬂXGd Rsub

* In soft-drop
angular resolution
controlled by the

exponent B

* phase-space
appears smoother

Soft drop in grooming mode (>0) works as a dynamical trimmer

S



Soft Drop and mMD T

e useful to
consider the soft-
oluon phase space

* soft-drop
condition becomes

(7)
2 > Zeut E

* soft drop always removes soft radiation entirely (hence the name)

e for B=0 soft-collinear is also entirely removed (mMD
38

imit)



Soft Drop as a tagger

e useful to
consider the soft-
oluon phase space

soft dropped o soft-drop
condrtion becomes

(7)
2 > Zeut E

* soft drop always removes soft radiation entirely (hence the name)

e for <0 some hard-collinear is also partially removed
555




Groomed jet

Pythia8, parton

broperties

Analytic

025 — T 0.25 — T
— plain jet —— plain jet dashed: one em. 2) , -
— p= — p= solid: mult. em. >

02 | — B=1 Ci™ ~m”/pr
——— B=-05

0.15 - m
R=1, p;>3 TeV

Zcut=0. 1

0.1 —
0.05 -
O 1 || 1 1 || 1 1
10% 10° 10* 10° 102 107 10°
c
More Grooming l l l l Less Groomingl
i >
[3—»-00 B<O Bzo B>O B—»oo

courtesy of |. Thaler

* no more kinks

»  flatness in bkg can be achieved for =0
* |t's becoming the standard choice for CMS



Soft drop at NINLL

Results: NNLL+X;? Jet Substructure
350 ‘ ‘ ‘ ‘ : : ‘ ‘ ‘
L Soft Drop Groomed Mass 600 Soft Drop Groomed Mass
300F NLL+ay ] [ NNLL+a2 ]
»sob 13 TeV.pp - Z+j,pry > 500 GeV,R =08 ] 500;" 13 TeV, pp = Z+j, pry > 500 GeV,R =0.8 ]
_ [ —m== 2o =0.1,8=0 ] — [ ===z =0.1,8=0 ]
€ 200f = zw=01.5=1 T e W
518 I 5|E s00f B =
N’\U 150— B = | a~ ______________
e T .
100F e T N 200¢ T B =0 ™ N\
[ ,/' B =0 ’-\\‘ [ ’/l _____________ \
508 et P Tl W ] W\
O W =" ‘\\“
0 = ‘ ‘ ‘ ‘ \“ 0 + ‘ ‘ ‘ ‘ \‘_
10 104 0001 0010 0.100 1 105  10* 0001 0010  0.100 1
m3 mj
— —
PT pPT
NLL+0t NNLL+NLO NNLL+x.2

Frye, Larkoski, Schwartz, Yan (2016)

* soft-drop mass: something we can calculate

* reduced sensitivity to non-pert effects

* ooing to NINLL reduces scale variation but small changes in the shape
*|et's compare to datal soon!

45



Non-perturbative physics

soft drop largely reduces sensitivity to
non-perturbative physics

16—
1.4 |
1.2
1

1.6 ——r—r7
1.4
1.2

1

1 1 II 1 1 II 1 1 II 1 LI}
R=1,p>3 TeV, z,,=0.1

Pythia8

1 1 II 1 1 II 1 1 II 1 LI}
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Pythia8

ratio hadron(noUE)/parton
ratio hadron(UE)/hadron(noUE)

0.8 . 0.8 .
0.6 . 0.6 » .
0.4 — 0.4 g) 7]
0.2 p=-0.5 —— - 0.2 p=-05 ——
plain le plain let
O L Ll L IIII Ll L L1 L IIII 0 L IIII IIII IIII L1 L L L Ll
10% 10 10* 10° 102 01 1 10% 10 10* 102 102 01 1
c@ c@
1 1

Can we use It for precision physics !

Soft-drop thrust to determine &s and resolve disturbing
discrepancy with world average

20



Analytics to check MCs

* How solid are MC descriptions of jet substructure ?

10 100 1000
| v6.425 (DW) virtuality ordered == = = |
01k v6.425 (P11) p,ordered = = = |
' v8.165 (4C) p, ordered == « =
[ 3
o} )
© .
~ .
o k N gy =N
© N . :~ . -~
\g ~-, — "‘ ~§ - .\\
. N
h
.. \
R
[ pt,]et > 3 TeV ‘\
" mMDT (y,,, = 0.13) ‘}\ '
O ] ] L o1 M .
10 107 0.01 01 1

m [GeV], forp; =3 TeV, R =1

o = m?/(p? R?)

45

* [ake something we analytically understand very well (mMDT)

* [ake the spread as the
uncertainty ¢

e But we also have an
analytic calculation



Analytics to check MCs

* How solid are MC descriptions of jet substructure ?

* [ake something we analytically understand very well (mMDT)

m [GeV], forp; =3 TeV, R =1 °®
" ol - Take thg spread as the
e 35 vy vy v =~ uncertainty ¢
i v6.425 (P11) p,ordered = = = |
01 . v8.165 (4C) p:ordered —_—— y BUt WE alSO have dfn
Analytics m— ' :
o [« ve.428pre (P11) p, Q%Zr'gﬁ ...... ' analytlc calculation
3 Mlisiemao——~oo
RS . :
= e Problem In the shower:
by >3 TV fixed by the Authors In
J[tveos the 6.428pre version
107® 10 001 0.1 1

o = m?/(p? R?)

44



Back to

bhenomenology

45



2.2

W tageing with et shapes

Fully Hadronic JJ Diboson searches Run-1

T T T
E ATLAS ~o-Data
N 1 == Background model
18=BTeV. 20307 T S teveGMW.c=1 ]
20TeV EGM W, c= 1
25TeVEGM W, c =1
Significance (staf)
I Significance (stat + syst)

g
"

Events / 100 GeV
3

- Modest excess at Run-1: 3.4c local / 2.5G global

2

L 3
T T I T

'WZ Selection
- Analysis very similar to Run 1, with functional fit
of the background

3

groom to remove

- No significant excess is observed

g8 3 - E

] ] s ) y g 32 k|

however sensitivity not high enough for concly 8 J__ =

g - E

probe of the Run 1 excess _— 5 ‘ ‘ ‘ E

2 25

_~ my [TeV]
> 10°g > 10°g 3 3 19F 3
8 TLAS Preliminary —*— Data 2015 3 & E ATLAS Preliminary —— Data 2015 3 & E ATLAS Preliminary —— Data 2015 3
o =13TeV, 320" —— Fit bkg estimation | o [ Vs=13Tev,321" —— Fit bkg estimation | =3 [ Vs=13Tev, 321" —— Fit bkg estimation |
2 | 3 S0 ' = 210k ' E
= Fit exp. stats error 3z UE Fitesp.statsoror 5 T & Fitexp. stats error 3
g 2Z selection 1 5 F WW selection i 5 F WZ selection 3
& 3 & 10 5 @ g =
' | ﬂ | E 3 £ 3
I 3 1= = L3 =
e.g- Wl-t SO Op 10'E =] il 1o =
E 3 E 3 E 3

2 2 2
I N e — E R T — 105 okl — i
2 ] s R a=Reas |
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49
T ——————

Marumi Kado
(LAL, Orsay and CERN)

select mass window
about the resonance

Boosted QCD Jet, R = 0.6

TR use a shape to determine
Jh T prong structure

——— e.g. with N-subjettiness

46



N-subjettiness for W tagging

. - B B
_ Tz(ﬂ)(Jet; axeS) o Zi€constits Zj mm(ei,azl’ (9"732,2)

21 = o
(B) (: - > 0]
2 (_]et, axes) iEconstits i 9i,31,1

Thaler andVan Tilburg (201 ')

65 GeV < mj <95 GeV

0.08 :
— W jets
. ) 0.07 = QCD jets|
Fine-print ool
&)
S 0.05r
@ [ § '
o give more or less weight to large/small angles 8 0.04f
o [ ~ 2 seems slightly preferred in MC simulations 2
o 3 ~ 1 should be less sensitive to non-perturbative effects and P © 0.03
. o)
@ choice of axes: T 500l
o optimal, declustering, winner-takes-all, ...
o For a given (3, generalised-k;(p = 1/3)~optimal 0.01r
o use WTA for 5 <1 0
@ choice of jet: 0 0.2 0.4/ of %t6 0.8 1
o What to do with soft-and-large-angle emissions? ——

o apply on full jet? (more discrimination, more NP Sensitive)
o apply on groomed jet? (less discrimination, less NP Sensitive)

47



N-subjettiness and mass

>
© 10% = =

* T cut sculpts the mass
distribution

» the background develop an
artificial peak

ti ghteri’f.'.'_'" .: =

nitebl e e

10° =] ]

2 """""" S « discrimination power goes
\ 4 L e T [ S e L]
= =ire Bacrs down

soft drop mass [GeV], sucessive t,/t, cuts

Dolen, Harris, SM, Rappoccio, Tran see also Kasienczka et al. |HEP 1506 (2015) 203

» flat bkg was a bullt-in feature of soft drop
» we would like to de-correlate mass and shape, so that a flat cut
does not lead to a significant sculpting of the mass distribution

48



Designing De-correlated laggers
P~ weoor W

* to understand what's going on plot average
T as a function of log(mass)

P"_
E\l 1.4 —— bkg, p, = 300-400 GeV |
—=— bkg, p_ =500-600 GeV |
1.2 —— bkg, p, = 1000-1100 GeV—

concentrate
on bkg

----- sig, p_=300-400 GeV

1 --o-- sig, p_=500-600 GeV ]

--<-- sig, p, =1000-1100 GeV ]
0.8
0.6
0.4F

0.2

0

- R S S S R S S R
P A tavortie move among WWF © fama. Jahe defeatsy

s0ther oppones! wi the (07
Dolen, Harris, SM, Rappoccio, Tran (2016) 91 Tien Sporta, v

* [here exists a region of linear relation
- Can we understand this from first principle ¢

see work by Larkoski, Moult, Nelll & Dasgputa, Schunk, Soyez -



Designing De-correlated laggers

* Here we lImit ourselves to a pheno study
* First shift the variable to account for pt dependence

A e - Then fit the slope and change

—=— bkg, p_ =500-600 GeV |

12 o e oo cev ) the variable to

/T,

_____
----- sig, p, = 500-600 GeV ]
----- sig, p_ =1000-1100 GeV
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DD 1: results

sculpting, preserved |
side-bands

reduced mass
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Exposing the QCD splitting
function




1 do

o dzg

Momentum sharing zg

= (undeﬁned) Oés( infinity )

o
> 27 .(661?»(:.
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courtesy of |. Thaler
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» 7zy not IRC safe because Born is ill-defined
» avold singularity requiring opening angle S

515




Sudakov safety
1 do

e KT CAPCHINNY

all-order distribution:

emissions at zero angle are
exponential

p(zg) =

finite condrtional
probability for rs>0
Yy suppressed

It this procec

I" z, distributions
1
\ pr=2TeV,Ry=0.5

|| As B varies, we move from an
\ running «, fixed a,

IRC safe situation (f<0) to IRC
unsafe (but Sudakov safel)

regime (f>0)

ure gives a finite result, z; 1s said Sudakov safe

Larkoski, Thaler (2013)
Larkoski, SM, Thaler (2015)

remarkable result at B=0
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-} CMS 2010 Open Data |

—— Theory (MLL)
—— Pythia 8.219
----- Herwig 7.0.3

......... Sherpa 2.2.1
pIFC > 1.0 GeV; AK5

[n| < 2.4; ' > 150 GeV ]

SD: B = 05 zeye = 0.1

Measuring zg

» exposes the QCD splitting function

Larkoski, SM, Thaler (2015)

O(24 — zZcut) + O(as)

Larkoski, SM, Thaler, Tripathee, Xue (soon)
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and Merry Christmas !



