LOOKING INSIDE JETS

Simone Marzani University at Buffalo, The State University of New York

Università degli Studi di Genova December 20th 2016

Outline

- Looking inside jets: an introduction
- Theoretical understanding of taggers and groomers
- Back to phenomenology: W tagging with DDT
- Exposing the QCD splitting function

What is a jet ?

Jet definition(s)

- Jet algorithms: sets of (simple) rules to cluster particles together
- Implementable in experimental analyses and in theoretical calculations
- Must yield to finite cross sections
- First example :

Jet definition(s)

- Jet algorithms: sets of (simple) rules to cluster particles together
- Implementable in experimental analyses and in theoretical calculations
- Must yield to finite cross sections
- First example :

To study jets, we consider the partial cross section. $\sigma(E,\theta,\Omega,\varepsilon,\delta)$ for e⁺e⁻ hadron production events, in which all but a fraction $\varepsilon <<1$ of the total e⁺e⁻ energy E is emitted within some pair of oppositely directed cones of half-angle $\delta <<1$, lying within two fixed cones of solid angle Ω (with $\pi\delta^2 <<\Omega <<1$) at an angle θ to the e⁺e⁻ beam line. We expect this to be measur-

> Sterman and Weinberg, Phys. Rev. Lett. 39, 1436 (1977):

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}

for a complete review see G. Salam, Towards jetography (2009)

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine *i* and *j* and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine / i and j and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine /
 i and *j* and iterate
- Otherwise call *i* a final-state jet, remove it from the list and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

- A large class of modern jet definitions is given by sequential recombination algorithms
- Start with a list of particles, compute all distances d_{ij} and d_{iB}
- Find the minimum of all d_{ij} and d_{iB}
- If the minimum is a d_{ij}, recombine /
 i and *j* and iterate
- Otherwise call *i* a final-state jet, remove it from the list and iterate

d_{ij} (weighted) distance between i j d_{iB} external parameter or distance from the beam ...

Actual choice for the measure d_{ij} determines the jet algorithm

Searching for new particles:

resolved analyses

• the heavy particle X decays into two partons, reconstructed as two jets

• look for bumps in the dijet invariant mass distribution

Searching for new particles: boosted analyses

- LHC energy (10⁴ GeV) \gg electro-weak scale (10² GeV)
- EW-scale particles (new physics, Z/W/H/top) are abundantly produced with a large boost

- their decay-products are then collimated
- if they decay into hadrons, we end up with localized deposition of energy in the hadronic calorimeter: a jet

CMS Experiment at LHC, CERN Run 133450 Event 16358963 Lumi section: 285 Sat Apr 17 2010, 12:25:05 CEST

JETS Nimated, energetic rs of particles

R

00000000000

We want to look inside a jet

exploit jets' properties' to distinguish signal jets from bkg jets

R

h

 \boldsymbol{q}

15

 $p_t > 2m/R$

Looking inside jets

- First jet-observable that comes to mind
- Signal jet should have a mass distribution peaked near the resonance

• However, that's a simple partonic picture

A useful cartoon

inspired by G. Salam

A useful cartoon

inspired by G. Salam

underlying event (multiple parton interactions)

jet

hadronization

pert. radiation (parton branching)

A useful cartoon

jet

inspired by G. Salam

underlying event (multiple parton interactions)

hadronization

pert. radiation (parton branching)

pile-up (multiple proton interactions)

Effect of jet masses

- In reality perturbative and non-pert emissions broadens and shift the signal peak
- boosted X
 Understyng vent an catpute-up typically enhance the jet mass (both signal and background)

21

ATLAS, JHEP 1309 (2013) 076

Beyond the mass: substructure

- Let's have a closer look: background peaks in the EW region
- Need to go beyond the mass and exploit jet substructure
- Grooming and Tagging:
 - I. clean the jets up by removing soft junk
 - 2. identify the features of hard decays and cut on them

ATLAS, JHEP 1309 (2013) 076

Beyond the mass: substructure

- Let's have a closer look: background peaks in the EW region
- Need to go beyond the mass and exploit jet substructure
- Grooming and Tagging:
 - I. clean the jets up by removing soft junk
 - 2. identify the features of hard decays and cut on them
- Grooming provides a handle on UE and pile-up

Krohn, Thaler and Wang (2010)

- I. Take all particles in a jet and re-cluster them with a smaller jet radius R_{sub} < R</p>
- 2. Keep all subjets for which $p_t^{subjet} > z_{cut} p_t$
- 3. Recombine the subjets to form the trimmed jet

A theorist's worry

- Complicated algorithms with many parameters
- Are we giving up on calculability / precision QCD ?

First comprehensive QCD study of these algorithms

Dasgupta, Fregoso, SM, Powling EPJ C (2013) Dasgupta, Fregoso, SM, Salam, JHEP 1309 029 (2013) Theoretical understanding of jet substructure

Soft-gluon phase space

Emission probability is uniform in the $(\log z, \log \theta)$ plane:

 $dP_i \sim \frac{\alpha_s}{\pi} C_r \frac{dz_i}{z_i} \frac{d\theta_i}{\theta_i}$

- The action of a groomer is to remove some of the allowed phase space (typically soft and soft-collinear)
- What are the consequences for physical observables, e.g. the jet mass? 28

- The action of a groomer is to remove some of the allowed phase space (typically soft and soft-collinear)
- What are the consequences for physical observables, e.g. the jet mass ?

- The action of a groomer is to remove some of the allowed phase space (typically soft and soft-collinear)
- What are the consequences for physical observables, e.g. the jet mass ?
 30

- The action of a groomer is to remove some of the allowed phase space (typically soft and soft-collinear)
- What are the consequences for physical observables, e.g. the jet mass ?
 31

Trimmed mass: MC vs analytics

Trimming is active (and aggressive) for z_{cut} < ρ < R_{sub}²/R² z_{cut}
Not active below because of fixed R_{sub}

Trimmed mass: MC vs analytics

Modified LL (MLL): LL + hard collinear + running coupling

Trimming is active (and aggressive) for z_{cut} < ρ < R_{sub}²/R² z_{cut}
Not active below because of fixed R_{sub}

Trimmed mass: MC vs analytics

Modified LL (MLL): LL + hard collinear + running coupling

Soft Drop: understanding at work

Larkoski, SM, Soyez and Thaler (2014)

Soft Drop as a groomer

soft drop always removes soft radiation entirely (hence the name)

• for $\beta > 0$ soft-collinear is partially removed

Soft Drop vs Trimming

 trimming had an abrupt change of behavior due to fixed R_{sub}

 in soft-drop angular resolution controlled by the exponent β

 phase-space appears smoother

Soft drop in grooming mode (β >0) works as a dynamical trimmer

Soft Drop and mMDT

- soft drop always removes soft radiation entirely (hence the name)
- for $\beta = 0$ soft-collinear is also entirely removed (mMDT limit)

Soft Drop as a tagger

soft drop always removes soft radiation entirely (hence the name)

• for $\beta < 0$ some hard-collinear is also partially removed

Groomed jet properties

courtesy of J.Thaler

- no more kinks
- flatness in bkg can be achieved for $\beta=0$
- it's becoming the standard choice for CMS

Soft drop at NNLL

- soft-drop mass: something we can calculate
- reduced sensitivity to non-pert effects
- going to NNLL reduces scale variation but small changes in the shape
- let's compare to data! soon!

Non-perturbative physics

soft drop largely reduces sensitivity to non-perturbative physics

Can we use it for precision physics ? Soft-drop thrust to determine **α**_s and resolve disturbing discrepancy with world average

Analytics to check MCs

- How solid are MC descriptions of jet substructure ?
- Take something we analytically understand very well (mMDT)

- Take the spread as the uncertainty ?
- But we also have an analytic calculation

Analytics to check MCs

- How solid are MC descriptions of jet substructure ?
- Take something we analytically understand very well (mMDT)

- Take the spread as the uncertainty ?
- But we also have an analytic calculation
- Problem in the shower: fixed by the Authors in the 6.428pre version

Back to phenomenology

W tagging with jet shapes

TLAS-CONE-2015-073

Boosted QCD Jet, R = 0.6

5.8

Fine-print

• β:

- give more or less weight to large/small angles
- $\beta \sim 2$ seems slightly preferred in MC simulations
- $\beta \sim 1$ should be less sensitive to non-perturbative effects and P

• choice of axes:

- optimal, declustering, winner-takes-all, ...
- For a given β , generalised- $k_t (p = 1/\beta)$ ~optimal
- \bullet use WTA for $\beta \leq 1$

• choice of jet:

- What to do with soft-and-large-angle emissions?
- apply on full jet? (more discrimination, more NP Sensitive)
- apply on groomed jet? (less discrimination, less NP Sensitive)

N-subjettiness and mass

Dolen, Harris, SM, Rappoccio, Tran

- **T**₂₁ cut sculpts the mass distribution
- the background develop an artificial peak
- discrimination power goes down

see also Kasienczka et al. JHEP 1506 (2015) 203

- flat bkg was a built-in feature of soft drop
- we would like to de-correlate mass and shape, so that a flat cut does not lead to a significant sculpting of the mass distribution

Designing De-correlated Taggers

• to understand what's going on plot average T_{12} as a function of log(mass)

Dolen, Harris, SM, Rappoccio, Tran (2016)

- There exists a region of linear relation
- Can we understand this from first principle ?

see work by Larkoski, Moult, Neill & Dasgputa, Schunk, Soyez

THE DD1

Designing De-correlated Taggers

- Here we limit ourselves to a pheno study
- First shift the variable to account for p_T dependence

Dolen, Harris, SM, Rappoccio, Tran (2016)

• Then fit the slope and change the variable to

$$\tau_{21}' = \tau_2/\tau_1 - M \times \rho',$$

DDT: results

- roughly same signal efficiency
- bkg better behaved
- reduced systematics

Bkg Uncertainty = 23

J... = 9.6 +/- 1.4

78.15 +/- 0.72

 $\tau_{12} < 0.45$

Events / 3 GeV 150 / 150 Exposing the QCD splitting function

77

courtesy of J.Thaler

1

• z_g not IRC safe because Born is ill-defined

 $p(z_g)$

avoid singularity requiring opening angle

alculable

q

order-by-order in αs

Sudakov safety

 $p(z_g) = \frac{1}{\sigma} \frac{d\sigma}{dz_g} = \int dr_g \, p(r_g) \, p(z_g | r_g)$ all-order distribution:
emissions at zero angle are
exponentially suppressed
finite conditional
probability for $r_g > 0$

If this procedure gives a finite result, z_g is said Sudakov safe

54

As β varies, we move from an IRC safe situation (β <0) to IRC unsafe (but Sudakov safe!) regime (β >0) Larkoski,Thaler (2013)

Larkoski, SM, Thaler (2015)

remarkable result at $\beta=0$

• exposes the QCD splitting function

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \frac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} \mathrm{d}z \,\overline{P}(z)} \Theta(z_g - z_{\mathrm{cut}}) + \mathcal{O}(\alpha_s)$$

Larkoski, SM, Thaler (2015) Larkoski, SM, Thaler, Tripathee, Xue (soon)

now used as a probe for medium induced modification in heavy ion collisions

Jet substructure at LHC

ideas, phenomenology, MC simulations, *etc.*

more efficient

Jet substructure at LHC

deeper understanding QCD, calculations, etc.

ideas, phenomenology, MC simulations, etc.

more efficient

Thank you !

and Merry Christmas !