Muon collider: opzioni di macchina

M. Boscolo(LNF) for

M. Antonelli(LNF), R. Di Nardo(LNF), M. Biagini(LNF), A. Variola (LNF), P. Raimondi(ESRF), D. Lucchesi (Pd), M. Morandin (Pd), G. Simi (Pd), M. Rotondo (Pd), F. Bedeschi (Pi)

Gruppo 1, Catania, 2-3 dicembre 2015

Outline

Muons case

Ancora in fase di R&D o idee, ancora molto lontani rispetto al Linear Collider o Circular collider

• Muon accelerators challenges:

muon production

- ✓ Conventional: from protons on target
- \checkmark Unconventional: from e+e- annihilation
- emittance reduction via cooling
- high-gradient acceleration
- Conclusions

Ref. : "Discussion of the scientific potential of muon beams", CERN, Nov. 18th 2015 https://indico.cern.ch/event/450863/

I due approcci non sono confrontabili: per il primo c'e' uno studio, per il secondo l'idea che, appunto, proponiamo di studiare.

Muons: a long history of development

Rob

Ryne

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Muon based colliders great potential

Accelerator Arogram

As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider offers a precision probe of fundamental interactions without energy limitations

- By synchrotron radiation (limit of e⁺e⁻ circular colliders)
- By beam-strahlung (limit of e⁺e⁻ linear colliders)

Muon Collider is the ideal technology to extend lepton high energy frontier in the multi-TeV range with reasonable dimension, cost and power consumption

Muon based Higgs factory takes advantage of a strong coupling to Higgs mechanism by s resonance

IF THE MUON BEAM NOVEL TECHNOLOGY CAN BE DEMONSTRATED TO BE FEASIBLE

Muons: Issues & Challenges

Limited lifetime: 2.2 µs (at rest)

- Race against death: generation, acceleration & collision before decay
- Muons decay in accelerator and detector
 - Shielding of detector and facility irradiation
 - Collider and Physics feasibility with large background environment? Not by beamshtrahlung as with e+/e- but by muon decay (e, v) Reduced background at high energy due to increased muon lifetime
- Decays in neutrinos:
 - Ideal source of well defined electron & muon neutrinos in equal quantities whereas Superbeams by pion decay only provide muon v:

$\begin{array}{c} \mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \\ \mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu} \end{array} \end{array} \begin{array}{c} \text{The neutrino factory} \\ \text{concept} \end{array}$

Generated as tertiary particles in large emittances

- powerful MW(s) proton driver and pion decay
- novel (fast) cooling and acceleration methods
- $\pi^+ \rightarrow \mu^+ + \nu_\mu$ $\pi^- \rightarrow \mu^- + \nu_\mu$

Development of novel technologies with key accelerator and detector challenges

JP.Delahaye

Muon beams specific properties

Muons are leptons like electrons & positrons but with a mass (105.7 MeV/c²) 207 times larger

- Negligible synchrotron radiation emission (α m⁻²)
 - Multi-pass collisions (1000 turns) in collider ring
 - High luminosity with reasonable beam power and wall plug power consumption
 - relaxed beam emittances & sizes, alignment & stability
 - Multi-detectors supporting broad physics communities
 - Large time (15 μs) between bunch crossings
 - No beam-strahlung at collision:
 - narrow luminosity spectrum
 - Multi-pass acceleration in rings or RLA:
 - Compact acceleration system and collider
 - Cost effective construction & operation
 - No cooling by synchrotron radiation in standard damping rings
 - Requires development of novel cooling method

Muon Colliders potential of extending leptons high energy frontier with high performance

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Muon Colliders extending leptons high energy frontier with potential of considerable power savings

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Muon Source

Goals

- Neutrino Factories: O(10²¹) μ /yr within the acceptance of a μ ring
- **Muon Collider**: luminosities >10³⁴/cm⁻²s⁻¹ at TeV-scale (~N_μ²)

Options

Conventional: Tertiary production through **proton on target** (and then <u>cool</u>), baseline for Fermilab design study

Rate > $10^{13}\mu$ /sec N_u = 2×10¹²/bunch

Unconventional:

e⁺e⁻ annihilation: positron beam on target (very low emittance and no cooling needed), baseline for our proposal here
 Rate ~ 10¹¹ μ/sec N_u~ 5x10⁷ /bunch

• **by Gammas: GeV-scale Compton** γ s not discussed here Rate ~ 5×10¹⁰ µ/sec N_µ ~ 10⁶ (Pulsed Linac) [V. Yakimenko (SLAC)] Rate > 10¹³ µ/sec N_µ ~ few×10⁴ (High Current ERL) see also: W. Barletta and A. M. Sessler NIM A 350 (1994) 36-44

Exploring the potential for a Low Emittance Muon Collider with muon source from e⁺ beam on target

References:

- <u>M. Antonelli</u>, M. Boscolo, R. Di Nardo, P. Raimondi, *"Novel proposal for a low emittance muon beam using positron beam on target"*, **NIM A 807 101-107 (2016)**
- <u>P. Raimondi</u>, "Exploring the potential for a Low Emittance Muon Collider", in Discussion of the scientific potential of muon beams workshop</u>, CERN, Nov. 18th 2015
- <u>M. Antonelli</u>, Presentation Snowmass 2013, Minneapolis (USA) July 2013, [M. Antonelli and P. Raimondi, Snowmass Report (2013) also INFN-13-22/LNF Note

This idea has been investigated with a simulation study by SLAC team: L. Keller, J. P. Delahaye, T. Markiewicz, U. Wienands:

- *"Luminosity Estimate in a Multi-TeV Muon Collider using* $e^+e^- \rightarrow \mu^+\mu^-$ *as the Muon Source",* MAP 2014 Spring workshop, Fermilab (USA) May '14
- Advanced Accelerator Concepts Workshop, San Jose (USA), July '14

Proton-Based Source

M. Boscolo, G1, Catania, 3 Dic. 2015

Muon Accelerator Program (MAP) Muon based facilities and synergies

Palmer

Unique properties of muon beams (Nov 18,2015)

M. Palmer

Key Feasibility Issues

Nov 18, 2015 **Fermilab**

High Power Target Station Proton Driver Energy Deposition Front End **RF in Magnetic Fields** Cooling Magnet Needs (Nb₃Sn vs HTS) Performance Acceleration Acceptance (NF) >400 Hz AC Magnets (MC) Collider Ring **IR Magnet Strengths/Apertures** Collider MDI SC Magnet Heat Loads (µ decay) Collider Detector Backgrounds (µ decay)

Discussion of the Scientific Potential of Muon Beams

High Power Target

Discussion of the Scientific Potential of Muon Beams

Nov 18, 2015 Fermilab

- Initial operation with 1MW carbon target
- Upgrade to multi-MW with Liquid Metal Jet Technology (demonstrated in MERIT Experim.)

Proton Beam: KE = 6.75 GeV Normalization: For Hg $\Sigma(\mu^+ + \mu^-)/\text{proton} \approx 1$

Muon per proton production at Front End exit

Ionization Cooling

- No damping from SR ->Ionization 'dE/dx' cooling:
 - Helical 6D Cooling
 - **Ionization Cooling** PIC Experimental R&D Program **MICE** –International Muon Ionization Cooling Experiment μ-beam at RAL ISIS Systems test of complete cooling system MuCOOL Program Rf, absorber, magnet R&D-supports MICE MuCOOL test area (Fermilab) Muon Collider Task Force MUONS, Inc. (R. Johnson, et al.) High-pressure rf cavities Helical cooler, Parametric resonance cooler D. Neuffer

Ionization Cooling-general principle

This method, called "**dE/dx cooling**" closely resembles to the synchrotron compression of relativistic electrons - with the multiple energy losses in a thin, low Z absorber substituting the synchrotron radiated light.

Transverse Cooling:

- Particle loses momentum in material
- Particle gains only p₁₁ in RF

On the other hand, Multiple scattering in material increases rms emittance

M. Boscolo, G1, Catania 3 Dic. 2015

- Low-Z absorbers (H₂, Li, Be, ...) to reduce multiple scattering
- High Gradient RF⁴
 - To cool before μ-decay (2.2γ μs)
 - To keep beam bunched
- Strong-Focusing at absorbers then damped by absorber + RF
 - To keep multiple scattering
 - less than beam divergence …
 - ⇒ Quad focusing ?

D. Neuffer

- ⇒ Li lens focusing ?
- ⇒ Solenoid focusing?

 $\frac{d\left\langle\theta_{rms}^{2}\right\rangle}{ds} = \frac{z^{2}E_{s}^{2}}{\beta^{2}c^{2}p_{\mu}^{2}L_{R}}$

small beam size and large divergence

M. Palmer

Muon

Cooling

Cooling Methods

- The particular challenge of muon cooling is its short lifetime
 - Cooling must take place very quickly
 - More quickly than any of the cooling methods presently in use
 - Utilize energy loss in materials with RF re-acceleration

Discussion of the Scientific Potential of Muon Beams

MAP Cooling scheme overview

P.Snopok

SIDE VIEW

methods

ADVANCED

WORKSHOP

Accelerator Concepts

Major **Accelerating field limitation** challenges by magnetic field (10 T)

High pressure (160atm) Gas (GH2) filled RF cavities

RF cavities in strong ADVANCED D.Li Accelerator Concepts magnetic field WORKSHOP **RF cavity in vacuum:** Accelerating field (MV/m) 25 📉 Safe Operating Gradient vs Magnetic Field

New cavity design

New cavity by LBNL/SLAC for tests in FNAL/MTA Breakdown by field emission very encouraging !

RF cavity filled with gas

No accelerating field degradation up to 3 T **Operation with beam under heavy beam loading** M. Palmer Muon Ionization Cooling

Discussion of the Scientific Potential of Muon Beams

3.-PIC, the Parametric Resonance Cooling of muons

C. Rubbia

- Combining ionization cooling with parametric resonances is expected to lead to muon with much smaller transv. sizes.
- A linear magnetic transport channel has been designed by Ya.S. Derbenev et al where a half integer resonance is induced such that the normal elliptical motion of particles in x-x' phase space becomes hyperbolic, with particles moving to smaller x and larger x' at the channel focal points.
- Thin absorbers placed at the focal points of the channel then cool the angular divergence by the usual ionization cooling.

LEFT ordinary oscillations RIGHT hyperbolic motion induced by perturbations near an (one half integer) resonance of the betatron frequency.

V. S. Morozov et al, AIP 1507, 843 (2012);

C. Rubbia

Details of PIC

- Without damping, the beam dynamics is not stable because the beam envelope grows with every period. Energy absorbers at the focal points stabilizes the beam through the ionization cooling.
- The longitudinal emittance is maintained constant tapering the absorbers and placing them at points of appropriate dispersion, vertical β and two horizontal β.
- Comparison of cooling factors (ratio of initial to final 6D emittance) with and without the PIC condition vs number of cells: more than 10x gain

Parametric Resonance Cooling

- The first muon cooling ring should present no unexpected behaviour and good agreement between calculations and experiment is expected both transversely and longitudinally
- The novel Parametric Resonance Cooling (PIC) involves instead the balance between a strong resonance growth and ionization cooling and it may involve significant and unexpected conditions which are hard to predict.
- Therefore the experimental demonstration of the cooling must be concentrated on such a resonant behaviour.
- On the other hand the success of the novel Parametric Resonance Cooling is a necessary premise for a viable luminosity of the initial proton parameters of the future CERN accelerators since the expected Higgs luminosity is proportional to the inverse of the transverse emittance, hence about one order of magnitude of increment is expected from PIC. RF cavities

Carlo Rubbia – FNAL May 2015

Acceleration Requirements

- Key Issues:
 - Muon lifetime ⇒ ultrafast acceleration chain
 - NF with modest cooling ⇒ accelerator acceptance
 - Total charge ⇒ cavity beam-loading (stored energy)
 - TeV-scale acceleration focuses on hybrid Rapid Cycling Synchrotron
 ⇒ requires rapid cycling magnets B_{peak} ~ 2T f > 400Hz

Discussion of the Scientific Potential of Muon Beams

M. Palmer

Acceleration

Technologies include:

- Superconducting Linacs (NuMAX choice)
- Recirculating Linear Accelerators (RLAs)
- Fixed-Field Alternating-Gradient (FFAG) Rings
- (Hybrid) Rapid Cycling Synchrotrons (RCS) for TeV energies

Discussion of the Scientific Potential of Muon Beams

Nov 18, 2015 🚰 Fermilab

Collider Rings

- Detailed optics studies for Higgs, 1.5 TeV, 3 TeV and now 6 TeV CoM
 - With supporting magnet designs and background studies
 - ✓ Higgs, 1.5 TeV CoM and 3 TeV CoM Designs
 - With magnet concepts
 - Achieve target
 parameters
 - Preliminary 6 TeV CoM design
 - Key issue is IR design and impact on luminosity
 - Utilizes lower power on target

Optics functions from IP to the end of the first arc cell (6 such cells / arc) for β *=5mm

Nov 18, 2015 **Fermilab**

M. Palmer

Discussion of the Scientific Potential of Muon Beams

Dipole/Quad

Quad/Dipole

M. Palmer Machine Detector Interface

- **Backgrounds** appear manageable with suitable detector pixelation and timing rejection
- ✓ Recent study of hit rates comparing MARS, EGS and FLUKA appear consistent to within factors of <2
 - Significant improvement in our confidence of detector performance

cm -50

-25-

25

Nov 18, 2015 **TELENILLAD** Discussion of the Scientific Potential of Muon Beams

M. Palmer

↑ North

Muon Collider Parameters

Permilab Site		Muon Collider Parameters					
				Higgs	Multi-TeV		
						Accounts for	
				Production			Site Radiation
	Parameter		Units	Operation			Mitigation
	CoM Energy		TeV	0.126	1.5	3.0	6.0
	Avg. Luminosity		10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12
	Beam Energy Spread		%	0.004	0.1	0.1	0.1
	Higgs Production/10 ⁷ sec			13,500	37,500	200,000	820,000
	Circum	nference	km	0.3	2.5	4.5	6
	No.	of IPs		1	2	2	2
	Repetit	tion Rate	Hz	15	15	12	6
	β*		cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25
	No. muons/bunch		10 ¹²	4	2	2	2
	Norm. Trans. Emittance, ϵ_{TN} Norm. Long. Emittance, ϵ_{LN} Bunch Length, σ_s Proton Driver Power		π mm-rad	0.2	0.025	0.025	0.025
			π mm-rad	1.5	70	70	70
			cm	6.3	1	0.5	0.2
			MW	4	4	4	1.6
	Wall Plu	ug Power	MW	200	216	230	270
		Success of advanced cooling concepts ⇒ several × 10 ³² [Rubbia proposal: 5×10 ³²]					
	Allows Direct Measurement Discussion of the ScientifiggSotratial of Muon Bear			ns Nov 18, 2015 SF FERMIIA			

e+ on target muon source

Idea for low emittance μ beam

Conventional production: from **proton on target** π , K decays from proton on target have typical **P_µ~ 100 MeV/c**

(π , K rest frame)

whatever is the boost P_T will stay in Lab frame \rightarrow very high emittance at production point \rightarrow cooling needed!

Direct μ pair production:

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} around the $\mu^+\mu^-$ threshold ($\sqrt{s}\sim 0.212$ GeV) in asymmetric collisions (to collect μ^+ and μ^-)

NIM A Reviewer: "A major advantage of this proposal is the lack of cooling of the muons.... the idea presented in this paper may truly revolutionise the design of muon colliders ... "

Advantages:

- **1.** Low emittance possible: $P\mu$ is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^- P\mu$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: Muon Energy spread also small at threshold, it gets larger as √s increases, one can use correlation with emission angle (eventually it can be reduced with short bunches)

Disadvantages:

• Rate: much smaller cross section wrt protons

 $\sigma(e^+e \rightarrow \mu^+\mu^-) \simeq 1 \ \mu b \ at \ most$

i.e. Luminosity(e+e-)= 10^{40} cm⁻² s⁻¹ \rightarrow gives μ rates 10^{10} Hz

Possible Schemes

- Low energy collider with e+/e- beam (e+ in the GeV range):
 - 1. Conventional asymmetric collisions (but required luminosity is beyond current knowledge)
 - Positron beam interacting with continuous beam from electron cooling (too low electron density, 10²⁰ electrons/cm⁻³ needed to obtain an reasonable conversion efficiency to muons)
- Electrons at rest (seems more feasible):
 - 3. e+ on Plasma target
 - 4. e+ on standard target, including crystals with channeling
 - Need Positrons of ~45 GeV
 - $\gamma(\mu)$ ~200 and μ laboratory lifetime of about 500 μ s

Muons angle contribution to μ beam emittance

X = L X'

max

e+

The target thickness and c.o.m. energy completely determine the emittance contributions due to muon production angle

M. Boscolo, G1, Catania, 3 Dic. 2015

Criteria for target design

• Number of $\mu^+\mu^-$ pairs produced per interaction:

n⁺ = number of e⁺

 ρ^{-} = target electron density

L = target length

ρ⁻ L costraints

- Ideal target (e⁻ dominated) (ρ⁻ L)_{max}=1/σ(radiative bhabha) ≈ 10 ²⁵ cm⁻² (beam lifetime determined by radiative Bhabha)
- With $(\rho^{-} L)_{max}$ one has a maximal $\mu^{+}\mu^{-}$ production efficiency ~10⁻⁵
- Muon beam emittance increases with L (in absence of intrinsic focusing effects) → increase ρ⁻
- Conventional target (ρ⁻ L)_{max} depends on material (see next slides)
Criteria for target design

Bremsstrahlung on nuclei and multiple scattering (MS) are the dominant effects in real life... Xo and electron density will matter:

- Heavy materials
 - minimize emittance (enters linearly) \rightarrow Copper has about same contributions to emittance from MS and $\mu^+\mu^-$ production
 - high e⁺ loss (Bremsstrahlung is dominant)
- Very light materials
 - maximize production efficiency(enters quad) \rightarrow H₂
 - even for liquid need O(1m) target → emittance increase
- Not too heavy materials(Be, C)
 - Allow low emittance with small e⁺ loss

optimal: not too heavy and thin

Application for Multi-TeV Muon Collider as an example

- Use thin target with high efficiency and small e⁺ loss
- Positrons in storage ring with high momentum acceptance
- No need of extreme beam energy spread

Possible target: 3 mm Be

45 GeV e⁺ impinging beam

• Emittance at $E_{\mu} = 22 \text{ GeV}$: $\epsilon_x = 0.19 \cdot 10^{-9} \text{ m-rad}$ Multiple Scattering

contribution is negligible

-> μ after production is not affected by nuclei in target

-> e+ beam emittance is preserved, not being affected by nuclei in target (see also next slide)

- Conversion efficiency: 10⁻⁷
- Muons beam energy spread: 9%

Muons at the target exit surface

Positrons Storage Ring Requirements

- Transverse phase space almost not affected by target
- Most of positrons experience a small energy deviation:
 - A large fraction of e^+ can be stored (depending on the momentum acceptance)
 - 10% momentum acceptance will increase the effective muon conversion efficiency (produced muon pairs/produced positrons) by factor 100

M. Boscolo, G1, Catania, 3 Dic. 2015

Schematic Layout for muon source from e+

M. Boscolo, G1, Catania, 3 Dic. 2015

Muon Collider: Schematic Layout for positron based muon source

Muon beam parameters

Assuming

- a positron ring with a total 25% momentum acceptance (10% easily achieved) and
- ~3 × LHeC positron source rate

	positron source	proton source
$\mu \text{ rate}[\text{Hz}]$	$9\cdot 10^{10}$	$2\cdot 10^{13}$
μ /bunch	$4.5\cdot 10^7$	$2\cdot 10^{12}$
normalised $\epsilon~[\mu {\rm m}{\text{-}{\rm mrad}}]$	40	25000

Very small emittance, high muon rates but relatively small bunch population:

> The actual number of μ /bunch in the muon collider can be larger by a factor ~ τ_{μ}^{lab} (HE)/500 μ s (~100 @6 TeV) by topping up.

LEMC Draft Parameters

comparable luminosity with

lower Nµ/bunch (lower background) thanks to very small emittance (and lower beta*)

much higher signal/noise ratio

Of course, a design study is needed to define this table

		LEMC-6TeV	LEMC-H
arameter	Units		
UMINOSITY/IP	cm ⁻² s ⁻¹	5.09E+34	1.69E+31
eam Energy	GeV	3000	62.5
lourglass reduction factor		1.000	1.000
luon mass	GeV	0.10566	0.10566
ifetime @ prod	sec	2.20E-06	2.20E-06
ifetime	sec	0.06	0.00
*tau @ prod	m	658.00	658.00
*tau	m	1.87E+07	3.89E+05
/tau	Hz	1.60E+01	7.68E+02
ircumference	m	6000	150
ending Field	Т	15	15
ending radius	m	667	14
lagnetic rigidity	Τm	10000	208
amma Lorentz factor		28392.96	591.52
l turns before decay		3113.76	2594.80
x @ IP	m	0.0002	0.0002
y @ IP	m	0.0002	0.0002
eta ratio		1.0	1.0
oupling (full current)	%	100	100
lormalised Emittance x	m	4.00E-08	4.00E-08
mittance x	m	1.41E-12	6.76E-11
mittance y	m	1.41E-12	6.76E-11
mittance ratio		1.0	1.0
unch length (zero current)	mm	0.1	0.1
unch length (full current)	mm	0.1	0.1
eam current	mA	0.048	0.1
evolution frequency	Hz	5.00E+04	2.00E+06
evolution period	S	2.00E-05	5.00E-07
lumber of bunches	#	1	1
I. Particle/bunch	#	6.00E+09	1.20E+08
lumber of IP	#	1.00	1.00
x @ IP	micron	1.68E-02	1.16E-01
y @ IP	micron	1.68E-02	1.16E-01
k @ IP	rad	8.39E-05	5.81E-04
_{y'} @ IP	rad	8.39E-05	5.81E-04

LENC GTOV

LEMC H

Key Feasibility Issues

Muon Collider Study: Proton Based Source

- Proton Driver
- Target
- Front End
- Cooling (PIC)
- μ Acceleration
- Collider Ring
 - Collider MDI
 - **Collider Detector**

Positron Based Source

Positron Source

Muon Target

Positron Ring

(mostly) independent on muon source

synergy with the two options

Conclusions

- Very low emittance muon beams can be obtained by means of positron beam on target
- Interesting **muon rates require**:
 - Challenging positron source (synergy with LHeC, ILC, FCCee...)
 - Positron ring with high momentum acceptance (synergy with next generation SL sources)
- Fast muon acceleration concepts deeply studied by MAP
- Final focus design can profit of studies on conventional muon studies

Backup Slides

M. Palmer

↑ North

Muon Collider Parameters

	1 1	Muon Collider Deremotors											
6	the second secon	Muon Collider Parameters											
Act Comp Ring	Project X 2			<u>Higgs</u>		<u>Multi-Te</u>	eV						
4 P	Farget Moon Fraget Moon Fermilab Site						Accounts for						
				Production			Site Radiation						
	Para	ameter	Units	Operation			Mitigation						
	CoM	Energy	TeV	0.126	1.5	3.0	6.0						
	Avg. Lu	uminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12						
	Beam En	ergy Spread	%	0.004	0.1	0.1	0.1						
	Higgs Prod	uction/10 ⁷ sec		13,500	37,500	200,000	820,000						
	Circur	nference	km	0.3	2.5	4.5	6						
	No.	. of IPs		1	2	2	2						
	Repeti	tion Rate	Hz	15	15	12	6						
		β*	cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25						
	No. mu	ons/bunch	10 ¹²	4	2	2	2						
	Norm. Trans	s. Emittance, ϵ_{TN}	π mm-rad	0.2	0.025	0.025	0.025						
	Norm. Long.	Emittance, ε_{LN}	π mm-rad	1.5	70	70	70						
	Bunch	cm	6.3	1	0.5	0.2							
	Proton D	river Power	MW	4	4	4	1.6						
	Wall Pl	ug Power	MW	200	216	230	270						
		Exquisite Energy Allows Direct Me					ng concepts posal: 5×10 ³²]						
	Discussion of the	scientifigesvinatial o	of Muon Bea	ms	Nov	18, 2015	F rermiia						

M. Palmer

Conclusion

NF ⇒ precision v microscopes

- Multi-TeV MC ⇒ potentially only cost-effective route to lepton collider capabilities with $E_{CM} > 5 TeV$
- Key technical hurdles have been addressed:
 - High power target demo (MERIT) * Decays of an individual species (ie, μ^+ or μ^-)
- Accelerator **Energy Scale** Performance **Cooling Channel** ~200 MeV **Emittance Reduction** 5% MICE 160-240 MeV **Muon Storage Ring** Useable μ decays/yr* 3-4 GeV 3×10^{17} vSTORM 3.8 GeV **Intensity Frontier** v Factory 4-10 GeV Useable μ decays/yr* 8x10¹⁹ NuMAX (Initial) 4-6 GeV NuMAX+ 4-6 GeV 5×10^{20} 5×10^{20} **IDS-NF** Design 10 GeV Higgs/10⁷s **Higgs Factory** ~126 GeV CoM s-Channel µ Collider ~126 GeV CoM 3,500-13,500 **Energy Frontier** µ**Collider** Avg. Luminosity >1 TeV CoM $1.2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Opt. 1 1.5 TeV CoM $4.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Opt. 2 3 TeV CoM $12 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 6 TeV CoM Opt. 3

Nov 18, 2015 **Fermilab**

- Realizable cooling channel designs with acceptable performance
- Breakthroughs in cooling channel technology
- Significant progress in collider & detector design concepts

Muon accelerator capabilities offer unique potential for the future of high energy physics research

Discussion of the Scientific Potential of Muon Beams

Few statements on the plasma option

- Plasma would be a good approximation of an ideal electron target ++ autofocussing by Pinch effect
- enhanced electron density can be obtained at the border of the blow-out region (up x100)
- Simulations for n_p=10¹⁶ electrons/cm³ (C. Gatti, P. Londrillo)
- Region size decreases with 1/Vn_p even don't know if blowout occurs at n_p~10²⁰electrons/cm³

Positron sources: studies on the market

• Summary of e⁺ sources projects (all very aggressive): In [F. Zimmermann, et al., '**POSITRON OPTIONS FOR THE LINAC-RING LHEC'**, WEPPR076 Proceedings of IPAC2012, New Orleans, Louisiana, USA]

	SLC	CLIC	ILC	LHeC	LHeC
				pulsed	ERL
E [GeV]	1.19	2.86	4	140	60
$\gamma \epsilon_x [\mu m]$	30	0.66	10	100	50
$\gamma \epsilon_y [\mu m]$	2	0.02	0.04	100	50
$e^{+[10^{14}s^{-1}]}$	0.06	1.1	3.9	18	440

This is the most critical issue

Processes at \sqrt{s} around 0.212 GeV

- Bhabha scattering, $\mu^+\mu^-$ production $\gamma\gamma$ (not relevant)
- $e^+e^- \rightarrow \mu^+\mu^-$ cross section:

Muonium production also investigated: huge cross section (mb range) 10⁻⁴ eV width

Not viable.... Deeper studies?

Processes at $\sqrt{s} \sim 0.212$ GeV e⁺ on target

 $e^+e^- \rightarrow \mu^+\mu^-$ muons energy spread:

M. Boscolo, G1, Catania, 3 Dic. 2015

Processes at $\sqrt{s} \sim 0.212$ GeV e⁺ on target

 $e^+e^- \rightarrow e^+e^-(\gamma's)$ is the dominant process

- Babayaga for "large" angles and
- BBBrems for collinear (dominant $\sigma \sim 150 \text{ mb}, \delta \text{E/E} < 2\%$)

M. Boscolo, G1, Catania, 3 Dic. 2015

C. Rubbia Future accelerators programs at CERN

- A new LHC injector complex to increase the collider luminosity 10x with the High Luminosity LHC (HL-LHC)).
- Two accelerators (the LP-SPL and a new 50 GeV synchrotron, PS2) would replace the three existing ones (Linac2, the PSB, and the PS), with the injection of the SPS at 50 GeV,

C. Rubbia

CERN-SPL parameters

Layout of superconducting	Parameter	Units	HP	SPL	LP-SPL	
SPL with intermediate			Low-current	High-current		
extractions.	Energy	GeV	5	5	4	
extractions.	Beam power	MW	4	4	0.144	
SPL design is very flexible	Repetition rate	Hz	50	50	2	
and it can be adapted to	Average pulse current	mA	20	40	20	
•	Peak pulse current	mA	32	64	32	
the needs of many high-	Source current	mA	40	80	40	
power proton beam	Chopping ratio	%	62	62	62	
• •	Beam pulse length	ms	0.8	0.4	0.9 1.13	
applications.	Protons per pulse	10 ¹⁴	1.0	1.0		
			↓	1		
160 MeV 753 MeV 1460) MeV 260	0 MeV				
82 m 211 m 28	7 m 3	92 m		584 m	50 Hz	
i i				4	MWa	
		(=)				
Linac4 medium β high β	high β 	ejection	high β	5 GeV		
cryomodules cryomodules		eje	cryomodule	es MW	/	
	Y	Ý			_	
$20 \times 3 \qquad 5 \times 8$	6 x 8 β=1 cavities		12 x 8			
β =0.65 cavities β =1 cavities		¥	β=1 cavities			
	.5 GeV	2.6 Ge	V	CERN	14-07	
	Isolde	RIB				

C. Rubbia A muon based Higgs factory at CERN

- A muon cooled Higgs factory can be easily housed within CERN
- The new 5 GeV Linac will provide at 50 c/s a multi MWatt H- beam with enough pions/muons to supply the muon factory.
- The basic additional accelerator structure will be the following:
 - ➤ Two additional small storage rings with R ≈ 50 m will strip H- to a tight p bunch and compress the LP-SPL beam to a few ns.
 - Muons of both signs are focused in a axially symmetric B = 20 T field, reducing progressively pt with a horn and B = 2 T
 - ➤ A buncher and a rotator compresses muons to ≈ 250 MeV/c
 - > Muon Cooling in 3D compresses emittances by a factor 106.
 - Bunches of about 2x1012 m± are accelerated to 62.5 GeV
 - Muons are colliding in a SC storage ring of R ≈ 60 m (about one half of the CERN-PS ,1/100 of LHC) where about 104 Higgs events/y are recorded for each of the experiments.

Staged Neutrino Factory and Muon Colliders main parameters

	Neutrino Factory at intensity frontier					Muon Collider at the energy frontier									
System	Parameters	Unit	nuSTORM	NuMAX Commissioning	NuMAX	NuMAX+			Higgs F	actory	Top Thresh	old Options	Multi-TeV	/ Baselines	
Perfor- mance	v _e or v _μ to detectors/year	-	3×10 ¹⁷	4.9×10 ¹⁹	1.8×10 ²⁰	5.0×10 ²⁰						111 1			Accounts for
Pe	Stored μ+ or μ-/year	-	8×10 ¹⁷	1.25×10 ²⁰	4.65×10 ²⁰	1.3×10 ²¹	Davamotor	Units	Startup Operation	Production	High Posolution	High			Site Radiation
	Far Detector:	Туре	SuperBIND	MIND / Mag LAr	MIND / Mag LAr	MIND / Mag LAr	Parameter CoM Energy	TeV	Operation 0.126	0,126	Resolution 0.35	,			Mitigation 6.0
	Distance from Ring	km	1.9	1300	1300	1300									0.0
۲	Mass	kТ	1.3	100 / 30	100 / 30	100 / 30	Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	0.07	0.6	1.25	4.4	12
Detector	Magnetic Field	Т	2	0.5-2	0.5-2	0.5-2	Beam Energy Spread	%	0.003	0.004	0.01	0.1	0.1	0.1	0.1
Det	Near Detector:	Туре	SuperBIND	Suite	Suite	Suite	Higgs* or Top ⁺ Production/10 ⁷ sec	,	3,500*	13.500*	7.000 ⁺	60.000+	37,500*	200.000*	820.000*
	Distance from Ring	m	50	100	100	100	Circumference	km	0.3	0.3	0.7	0.7	2.5	4.5	5
	Mass	kТ	0.1	1	1	2.7		NII	0.0	0.0	V./	V./	۷.٫٫	4.J	0
	Magnetic Field	Т	Yes	Yes	Yes	Yes	No. of IPs		1	1	1	1	2	2	2
	Ring Momentum	GeV/c	3.8	5	5	5	Repetition Rate	Hz	30	15	15	15	15	12	6
O) 🖣	Circumference (C)	m	480	737	737	737	0*			17		0.0	1/05 1	0 [(0 2 2)	0.05
Rin	Straight section	m	184	281	281	281) ⁺	cm	3.3	1.7	1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	0.25
ž	Number of bunches	- 1×10 ⁹		60	60	60	No. muons/bunch	10 ¹²	2	4	4	3	2	2	2
	Charge per bunch			6.9	26	35	No. bunches/beam		1	1	1	1	1	1	1
rati	Initial Momentum	GeV/c	-	0.25	0.25	0.25	NO. DUILLIES/DEdil			1			1	1	1
Accelerati on	Single-pass Linacs	GeV/c	-	1.0, 3.75	1.0, 3.75	1.0, 3.75	Norm. Trans. Emittance, $\epsilon_{\scriptscriptstyle TN}$	$\pi\text{mm-rad}$	0.4	0.2	0.2	0.05	0.025	0.025	0.025
Acc	Repetition	MHz Hz	-	325, 650 30	325, 650 30	325, 650 60	Norm. Long. Emittance, ϵ_{IN}	π mm-rad	1	1.5	1.5	10	70	70	70
Cooling		112	No	No	Initial	Initial	• · u		-			0.0	1	0.5	0.2
	Proton Beam Power	MW	0.2	1	1	2.75	Bunch Length, σ_s	cm	5.6	6.3	0.9	0.5	1	0.5	0.2
er Ver	Proton Beam	GeV	120	6.75	6.75	6.75	Proton Driver Power	MW	4 [¢]	4	4	4	4	4	1.6
Proton Driver	Protons/year	1×10 ²¹	0.1	9.2	9.2	25.4	Cooling		≺ 5D no	final	\leftarrow	E.	ull 6D		
₽ 0	Repetition	Hz	0.75	15	15	15	Cooling		סוו עמ	mal		r (,	

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

