

Dr. Umberto De Sanctis

Outline

- Spent the whole career in the ATLAS Experiment
 Supersymmetry (SUSY)
 - Searches in the dilepton channel
- > Top Physics
 - tt cross-section measurement in single lepton channel
 - W+jets background estimation
 - > Top charge asymmetry measurement
- B-physics
 - \blacktriangleright Bs $\rightarrow \mu\mu$ BR measurement
 - Topological trigger studies
- > ATLAS upgrade activities for HL-LHC
 - LITrack project
- > NPTEV-2020 Project

Supersymmetry (SUSY)

SUPERSYMMETRY

Standard particles

INFN

SUSY particles

- New symmetry that associates to every SM particle a partner with different spin
- Solution to the "naturalness/hierarchy/fine-tuning" problem
- Candidate for Dark Matter (called LSP) if R-parity conservation holds

SUSY signatures at LHC

- Assuming R-parity conservation
- Strongly interacting sparticles (squarks, gluinos) should dominate production unless very heavy.
- Cascade decays to the stable, weakly interacting lightest neutralino follows.
- Event topology:
 - high p_T jets (from squark/gluino decay)
 - Large E_T^{miss} signature (from LSP)
 - High p_T leptons, b-jets, τ,
 jets (depending on model
 parameters).

SUSY activities

- 2005-2008: Master and PhD theses at Milano University
- Inclusive and exclusive searches in final states with:
 - 2 Opposite Sign Same Flavour (OSSF) high-P_T leptons (e, µ)
 - High-P_T jets + High missing transverse energy E^T_{MISS}
- Sensitive to SUSY scenarios with:
 - R-Parity conservation
 - Gluinos decay chains
 - Interpreted within mSUGRA framework
- New method to estimate tt backgorund for these searches (dominant one)
- > Results with I fb⁻¹ at \sqrt{s} =14 TeV:
 - Significantly extend the discovery potential of the inclusive searches
 - Reconstruct SUSY particles kinematic properties (e.g. mass differences) with a precision < 2%

Bs, d→µµ BR measurement

- 2014-2016: Postdoc at University of Sussex: B-physics
- Rare but clean decay suppressed by FCNC in the SM
 ightarrowBR(Bs→µµ) = (3.65 ± 0.23)×10⁻⁹
 ightarrowBR(Bd→µµ) = (1.06 ± 0.09) ×10⁻¹⁰ b
 75%
- Sensitive to New Physics contributions through loops
- Measurements by CMS and LHCb:
 - > BR(Bs $\rightarrow \mu\mu$) = (3.9^{+1.6}_{-1.4}) ×10⁻⁹ > BR(Bd $\rightarrow \mu\mu$) = (2.8^{+0.7}_{-0.6}) ×10⁻¹⁰

> Analysis strategy:

1 N F N

BR extracted w.r.t to a well know high statistics reference channel (B[±] → J/ψK[±]) → reduce systematics

Blind analysis; High reduction/control of the backgrounds

Bs, d→µµ BR measurement

- Results for full Run I dataset
- Simultaneous BR(Bs $\rightarrow \mu\mu$, Bd $\rightarrow \mu\mu$) extraction
- Comparable precision w.r.t. CMS and LHCb despite their better m(µµ) resolution

INFN

Eur. Phys. J. C 76 (2016) 513

- $BR(Bs) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$ (stat. ± syst.)
 - Compatibility with the SM: 2.0σ
- Upper limit on BR(Bd) placed at 4.2×10⁻¹⁰ (95% CLs)

Top physics

- Top quark is the heaviest particle in Nature
- ➢ Its lifetime is shorter than
 I/Λ_{QCD} → It doesn't
 hadronise
- Possibility to study the properties of a bare quark!
- > BR(t→Wb) ~ 99%
- > Experimental signatures:
 - High-P_T jets with both light and heavy flavours
 HF (from b and c quark decays)
 - High-P_T isolated lepton (e,µ)
 - High missing transverse momentum E^T_{MISS}

Top physics activities

- 2009-2013: Postdoc at S.I.S.S.A. (Trieste): Top physics
- Phenomenological works on the spin determination for high-mass resonances and contact interactions in di-jet events
- Work in ATLAS:
 - tt production cross-section measurement in the single lepton channel with and without b-tagging
 - → 36 pb⁻¹ at \sqrt{s} = 7 TeV → already systematics dominated
 - Compatible with the SM predictions at NLO
 - W+jets background estimation for tt analyses in the single lepton channel
 - Developed a new data-driven method based on the W⁺/W⁻ production charge asymmetry
 - > Determine both overall normalisation and flavour components $(Wb\overline{b}, Wc\overline{c}, Wc$ and W+ light jets)

 $\blacktriangleright Most precise method \rightarrow Adopted by all top analyses$

Top charge asymmetry

- \succ CDF reported a 3.4 σ excess over SM \rightarrow Started and led the activity for the two publication rounds LHC top \blacktriangleright Top charge asymmetry A_C is a small QCD anti-top NLO effect (1.2%) present in $q\overline{q}/qg$ events. SM predicts that top and antitop have
 - different rapidity widths $\Delta |y| \equiv |y_t| |y_{\bar{t}}|$
- > At LHC: less visible effect but much higher statistics \triangleright A_c measured after unfolding for detector/acceptance effects

Most precise LHC

measurement

- Inclusive and differential **ATLAS** measurements compatible with SM
- Comparison between ATLAS and CDF \rightarrow Some model disfavoured

Trigger & Upgrade activities

- Level- I Topological trigger
 - Optimised, supervising a PhD student, Run-2 trigger strategies for B-physics using Level-1 muon topological info
 - \rightarrow x3 rejection improvement \rightarrow Vital for B-physics in Run2!

- Level-I Track Project for HL-LHC
 - Goal: make a Level-1 trigger decision using ID info
 - \succ Low latency trigger (few μ s)
 - Pattern recognition and track fitting using Associative Memory and FPGA (à-la FTK)
 - Add flexibility to the trigger system for HL-LHC
 - Development of the track fitting algorithm based on Principal Component Analysis and tracking performance studies

The NPTEV-2020 project

- > NPTEV-2020 project: find New Physics in top events
- Tool: Soft Muon Tagging
 - > Identify the muon from the semileptonic decays of the b quark (e.g. $b \rightarrow c\mu v$) in $t \rightarrow W(\rightarrow \mu v)b$ decay
- Several measurements foreseen. One of them is to look for CP violation in b-semileptonic decays
- > 2 muons: one from W, one from the b-cascade
- Count the number of same-charge/opposite-charge muons N⁺⁺, N⁻⁻, N⁺⁻, N⁻⁺
- Build asymmetries sensible to CP violation both in B⁰-B⁰ mixing and direct b/c semileptonic decays

$$A^{ss} = \frac{P(b \to l^{+}) - P(\bar{b} \to l^{-})}{P(b \to l^{+}) + P(\bar{b} \to l^{-})} = \frac{\binom{N^{++}}{N^{+}} - \binom{N^{--}}{N^{-}}}{\binom{N^{++}}{N^{+}} + \binom{N^{--}}{N^{-}}}$$
$$A^{os} = \frac{P(b \to l^{-}) - P(\bar{b} \to l^{+})}{P(b \to l^{-}) + P(\bar{b} \to l^{+})} = \frac{\binom{N^{+-}}{N^{+}} - \binom{N^{-+}}{N^{-}}}{\binom{N^{+-}}{N^{+}} + \binom{N^{-+}}{N^{-}}}$$

16/12/2016 Roma Tor Vergata

- All asymmetries consistent with SM
- ➢ First limit on direct CPV in b→cX decay

Analysis on 13TeV data just started

WE'RE GOING TO HAVE FUN TOGETHER...

JUSINOV

memegenerator.net