

Hybrid Modelling of Single and Double Stage Hall Thrusters

Laurent Garrigues, Directeur de Recherche CNRS

Laboratoire Plasma et Conversion d'Energie – LAPLACE Université de Toulouse, CNRS-UPS-INPT Bâtiment 3R2, 118 Route de Narbonne 31062 Toulouse Cedex 9, France

laurent.garrigues@laplace.univ-tlse.fr

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy-

1

Outline

- How a Hall thruster works?
- Hybrid Model
- Single Stage Hall thruster
- Double Stage Hall thruster concepts
- Double Stage Hall thruster

Conclusions and future work

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy-

2

A Single Stage Hall Thruster (HT)

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

3

Definitions

(kg/s)

Thrust: produced by the ejection of propellant at high velocity

Specific impulse: related to the propellant velocity

$$I_{sp} = \frac{\mathbf{v}_e}{g_0} - [s]$$
 [s] gravity on Earth (9.81 m/s²)

Efficiency: conversion of electric power in kinetic power of the jet $P_{elec} = I \times U$

$$\eta = \frac{P_{kine}}{P_{elec}} = \frac{\dot{m}v_e^2}{2P_{elec}} \qquad \qquad \eta = \frac{T^2}{2\dot{m}P_{elec}} - \text{electric power (W)} \qquad \dot{m} \quad v_e$$

4

Laplace

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

Performances & HT missions

Performances	
Thruster	SPT-100
External diameter (mm)	100
Power (W)	1350
lsp (s)	1600
Thrust (mN)	80
Efficiency	0.5
Lifetime (hours)	9000

 Adapted to satellite station keeping and long trip missions (saving propellant mass thanks to high lsp)

Near future: orbit transfer mission (replace chemical thruster)

2D Hybrid modelling hypotheses

- hypothesis 1: quasineutral plasma
 - Sheath size s << L
- hypothesis 2: fluid description of electrons
 - Maxwellian EEDF
 - Electric field obtained from Ohm's Law
- transport of ions: kinetic description
 - Calculation of plasma density
 - Time step constrain (CFL- $\Delta t \sim few 10^{-8} s$)
- transport of atoms: kinetic description
 (90 % of neutral flux is ionized)
- static magnetic field

(induced magnetic field from Hall current negligible)

6

Anomalous transport

flux normal to the magnetic field – drift-diffusion form

 $\Gamma_{e,\perp} = -\mu_{e,\perp} \big(nE_{\perp} + \nabla_{\perp} (nT_e) \big)$

mobility

$$\mu_{e,\perp} = rac{e}{m
u} rac{1}{1+(\omega/
u)^2} pprox rac{e}{m} rac{
u}{\omega^2}$$

• *v* frequency of momentum exchange

$$v = v_{coll} + v_{ano}$$

- *v_{ano}* frequency of effective collisions
 - o Wall and turbulence effects
 - Empirical way to account for them (adjustable coefficients)
 - Mobility profile deduced from LIF experiments

$$\mu_{e-w} \propto lpha \,
u_{e-w} / B^2$$

$$\mu_{turb} \propto k \, v_{turb} / B^2 \propto k / B$$

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

7

HT operation @ 300V, 5 mg/s

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

8

Single Stage HT in different regimes

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

9

Limit of (conventional) SSHT

Future missions need a versatile thruster

- High T, low lsp: orbit transfer (large m and low applied voltage)
- Low T, high lsp : station keeping (low m and large applied voltage)

Double Stage Hall Thruster concepts (DSHT)

- Acceleration stage : magnetic barrier as standard HT
- Ionization stage: generates a plasma

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

11

LGIT (NASA/Univ. Michigan)

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

12

Operation of the LGIT

Two modes tested

- o single stage
 - external cathode: e- for discharge and neutralization
 - disconnect DC power supply and coils
 - floating internal cathode

o double stage

- external cathode: e- for neutralization
- connect DC power supply (few ten's of V) and coils
- Internal cathode: e- for discharge

Performances in DS mode

- low efficiency: ion trajectories un-controlled
- o interface between ionization and acceleration

Helicon Hall Thruster

- o promising results @ high mass flow ($\eta \sim 0.5$)
- o different gases tested

Galatea – magnetic confinement

A.I. Morozov et al., Physics Uspekhi (2003)

- Magnetic confinement system proposed in 60-70' (Sov. Union) for fusion machine
- Trap electrons to reach very high plasma densities
- Tokamak systems prefered

SPT-MAG – magnetic configuration

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

SPT-MAG - electrodes

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

16

Electron trajectories

magnetic field lines ~ same electric potential

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy

SPT-MAG Modelling – emissive cathode

- Simulations predict the formation of a potential well (magnetic field lines are almost equipotentials)
- Plasma density ~ 10¹² cm³
- Ions are guided towards the acceleration stage
- 300 W needed to form the plasma

SPT-MAG Modelling – non emissive cathode

- No electric potential well is formed
- Large ion losses on walls
- Ionization takes place at the entrance of acceleration stage
- Interest for a ionization stage?
- Separate the two stage operations if the ignition is influenced by the external cathode?

19

Hybrid model

Able to describe the thruster working (linked with experiments)
 Need improvements in electron anomalous transport
 (electron drift instability, see Vivien Croes Talk)

Double stage Hall thruster

- Demonstration of efficiency not achieved
- Role of ionization stage? Electric power cost?
- Key issue of DSHT: guide the ions towards the acceleration stage
- Joint project between Laplace & Icare laboratories, France, with Cnes funding is starting

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy-

Hall Thruster in the world

22

Ion trajectories

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy-

23

SPT-MAG tested in the PIVOINE facility

Conditions

- Xenon mass flow: 4 mg/s
- Voltage in the acceleration stage: 300 V
- Voltage in the ionization stage: 50 V

Int. Workshop on Ion Propulsion and Accelerator Industrial Applications – March 2017, Bari, Italy-