Helicon Plasma Thruster Persepective and Development status and future development At University of Padua

D.Pavarin, M.Manente, F.Trezzolani, A.Selmo, M.Magarotto, E.Toson







- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### **Helicon thruster**



- 1) Plasma source
- 2) RF Antenna
- 3) Magnets
- 4) Injector
- 5) Outlet diaphragm
- 6) Gas injection line
- The electrodeless RF plasma thruster basically consists of a RF plasma source, where the plasma is generated and heated, and thanks to a magnetic nozzle / potential drop is accelerated into vacuum
- The **plasma marginally interacts** with the structure therefore the erosion is reduced.
- Internal electrodes are absent.
- The exhaust beam is neutral thus an external neutralizer is not needed.
- it can potentially operate with different propellants.
- One feeding line
- One Power Line

### **Helicon thruster**



- **Gas versatility**: not having sensitive parts exposed to plasmas they can operate with many different type of gases
- **Geometric versatility**: thanks to their simple shape they allow innovative thruster configuration .

### **Helicon thruster**



#### **Helicon Thruster overview**

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### Main exploitable feature of HPT

- Focus to exploit the main capabilities of the helicon thruster:
  - Capability to work with a variety of gases
  - High lifetime
  - Throttleability
  - Scalability
  - Low cost
- 21 mission scenarios identified (under ESA contract)
  - Preliminary mission analysis
  - Identification of propulsion requirements for each scenarios

### **Enabled operations**

- High Delta V missions for multiple U satellites
  - Orbit maintenance
  - Orbit configuration / re-configuration
  - End of life disposal
  - Exploration and complex scientific missions
- Utilization of chemical propellant vapours or pressurization gas for HPT usage
- International Space Station wastes enabled missions
  - Satellite Deorbiting
  - Satellite Servicing and Refuelling
  - ISS Orbit rising
  - Deep Space and Moon missions from ISS
- Human missions
  - Cis-lunar, Moon and NEOs exploration roadmap
  - Human mission to Mars

### **Enabled operations**

- Atmospheric Breathing enabled mission
  - Planets and moons explorations
    - Permanent exploration missions on planets and moons with atmosphere: Venus, Mars, Titan, Uranus, Neptune, Saturn, Jupiter
    - Permanent orbiter/drone on Mars
  - Refuelling and sample return from rocky planets and moons with atmosphere
    - Refuelling and sample return from rocky planets and moons with atmosphere: Mars, Venus, Titan
  - Earth missions
    - Observation missions with drag compensation on Earth
    - Earth active debris removal with refuelling during deorbiting phase
- Celestial body mining byproducts enabled missions
  - Asteroid soil volatiles exploiting
  - Lunar soil volatiles exploiting

### **Propellant availabiltiy**

|                                                                                 | Operative gases |    |          |     |     |    |        |        |       |       |                       |        |                 |  |
|---------------------------------------------------------------------------------|-----------------|----|----------|-----|-----|----|--------|--------|-------|-------|-----------------------|--------|-----------------|--|
|                                                                                 | Xe              | Ar | $N_2H_4$ | MON | MMH | He | $CO_2$ | $CH_4$ | $H_2$ | $N_2$ | <b>O</b> <sub>2</sub> | $H_2O$ | $\mathbf{NH}_3$ |  |
| Station Keeping Application                                                     |                 |    | Х        | Х   | Х   | Х  |        |        |       |       |                       |        |                 |  |
| Exploration Application                                                         |                 |    | Х        | Х   | Х   | Х  |        |        |       |       |                       |        |                 |  |
| Satellite Deorbiting                                                            |                 |    |          |     |     |    | Х      | Х      | Х     |       |                       |        |                 |  |
| Deep Space and Moon missions from ISS                                           |                 |    |          |     |     |    | Х      | Х      | Х     |       |                       |        |                 |  |
| Permanent exploration missions on planets and moons with atmosphere: Venus      |                 |    |          |     |     |    | Х      |        |       | Х     |                       |        |                 |  |
| Permanent exploration missions on planets and moons with atmosphere: Mars       |                 | Х  |          |     |     |    | Х      |        |       | Х     |                       |        |                 |  |
| Permanent exploration missions on planets and moons with atmosphere: Uranus     |                 |    |          |     |     | Х  |        |        | Х     |       |                       |        |                 |  |
| Permanent exploration missions on planets and moons with atmosphere: Jupiter    |                 |    |          |     |     | Х  |        |        | Х     |       |                       |        |                 |  |
| Permanent orbiter/drone on Mars                                                 |                 | Х  |          |     |     |    | Х      |        |       | Х     |                       |        |                 |  |
| Refuelling and sample return from rocky planets and moons with atmosphere: Mars |                 | Х  |          |     |     |    | Х      |        |       | Х     |                       |        |                 |  |
| Earth active debris removal with refuelling during deorbiting phase             |                 | Х  |          |     |     |    |        |        |       | Х     | Х                     |        |                 |  |
| Asteroid soil volatiles exploiting                                              |                 |    |          |     |     |    | Х      |        | Х     |       | Х                     | Х      | Х               |  |
| Lunar soil volatiles exploiting                                                 |                 |    |          |     |     |    |        |        | Х     |       | Х                     |        |                 |  |

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### **Code combination**



### F3MPIC, GETDP, FEMM/SPICE

- **F3MPIC** Particle-in Cell 3D solver with EM fields
  - B, geometry, antenna characteristic  $\rightarrow$  flux parameters ( $\alpha$ , $\beta$ )
- GetDP Wavecode ADAMANT, EM solver with plasma tensor
  - Antenna, B, Plasma → antenna to plasma power deposition plasma resistivity
- FEMM MS solver
  - magnet  $\rightarrow$  MS fields
- **SPICE** circuit solver
  - Plasma Impedance  $\rightarrow$  overall antenna coupling parameter (Z,  $\omega$ ,  $\eta$ )

### **GLOBAL MODEL**

- GLOBAL MODELS are Zero-Dimensional models describing the chemistry of the plasma: different atomic/molecular species and excited states
- Kinetic scheme : continuity equation with plasma chemistry and reactions, plus surface processes.
- Wall diffusion is accounted by empirical-analytical formulations
- Magnetic nozzle exhaust and Potential drop momentum delivery is evaluated by means of exhaust and acceleration parameters computed with F3MPIC
- Electron energy equation

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### **Thrust balance**

We developed a **Thrust balance** specifically for RF thruster testing.

We can tune sensitivity according to expected thrust levels and thruster masses.

We use a High accuracy **laser interferometer** for displacement measurements.

We reduce mechanical noise by means of **Eddy current brake** for oscillation damping.

We perform in-vacuum calibration of the balance with an **Electromagnetic coil** for immediate compensation of noise/disturbances.







#### **Experimental activities**

### **Experimental set-up**

- Several experiments were carried out during this activity
- Purposes:
  - Codes validation
  - Comparison of R-Helicon and S-Helicon antennas
  - Estimation of plasma parameters at various power levels (from 50 to 375 W)
  - Multipropellant operation testing
- Setup → CISAS electric propulsion facility:
  - Vacuum chamber with high capacity pumping system (12600 l/s)
  - Rich plasma diagnostics array → RPA, Faraday probes, microwave interferometer, optical spectrometers thrust balance
  - V/I probes for RF network monitoring
  - In-air, completely reconfigurable experiment  $\rightarrow$  fast and flexible thruster characterization
  - In-vacuum experiment → full thruster characterization in vacuum







#### **Experimental activities**

### Type of tests

- Thruster design optimization → low power optimization tests
  - Thruster geometry experimental optimization
  - Result: identification of optimal HPT geometry for the desired propellant type and input power
- Multi-propellant investigation → Low power testing with CO2
  - Result: the HPT can achieve target performance either with CO2 or Argon, requiring only a geometric re-arrangement → simple adaption to different propellants
- High power investigation → Testing at 50 W 480 W with Argon
  - Result: the technology of the HPT can be scaled at higher power levels with no critical issues







#### **Experimental activities**

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### High Power Helicon Design Requirements

- Selected mission → Satellite Deorbiting Mission Scenario from ISS
- ISS regenerative systems  $\rightarrow$  recycling of a wide range of human by-products
- Some gases cannot be recycled → reliable source of propellant for an EP subsystem able to utilize them
- The human crew produces relevant quantities of CO2 (  $\approx$  6 kg/day )
- Mission requirements:
  - Thrust level: 70-100 mN
  - Specific impulse: 2100-2500 s





#### **High Power Helicon**

### **Helicon thruster Overview**



**High Power Helicon** 

### **Thruster main parameters**

#### Overall results of thruster design for HPT 100 mN @1.7 kW

- Thruster configuration
  - 2 MHz S-Helicon antenna
  - SmCo permanent magnets
  - Completely passive TCS
  - overall mass = 6.45 kg
  - size: φ = 145 mm, I = 162 mm
- PPU
  - input power = 1771 W
  - mass = 7 kg
- Performance with CO<sub>2</sub> propellant
  - net power coupled to plasma = 1496 W
  - thrust = 94 mN
  - specific impulse = 2139 s



### **Operations with different propellants**

- Use of different propellants  $\rightarrow$  potential advantage both for helicon and S-H technology.
- Investigation by means of the 3D particle-in-cell code F3MPIC:
  - · determination of ejection and acceleration coefficients for different propellants
  - multiple ions species analysis
- Analyzed propellants: CO2, N2, O2, Ne, Ar
- The same thruster can potentially operate with different propellants:
  - solution 1 →thruster optimization with different propellants and thruster design as a compromise between the optimized solutions (simpler, lower performance level)

• solution 2 → reconfigurable thruster: variable magnetic field configuration, variable length and outlet diameter (more complex, higher performance)



#### **High Power Helicon**

### **Experimental test bed**





- 1 kW prototype thruster
- **Permanent magnets** for magnetic field generation
- Aluminum frame (structural support + thermal management)
- Boron nitride discharge chamber → light weight, high operating temperature, high dielectric strength
- Partially re-configurable geometry (outlet section, magnets and antenna position) → optimization with different gases is possible
- Completely passive TCS
- S-Helicon antenna (International PCT/IB2016/050199 15.01.2016, Italian patent number VR2015A000007 del 16.01.2015) → high power transfer efficiency, high ionization rate

#### **High Power Helicon**

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### Past activities on low power helicon



- Jan 2009 Start of the HPT Program
- Jun 2009 First helicon source operational
- Jan 2010 1-D plasma simulation code operational, first thruster lab model operational

- Jun 2010 First high efficiency source operational
- Jan 2011 First thruster EM
- Jan 2012 Code completed, advanced thruster design
- Jun 2012 EM final development and test



#### **Low Power Helicon**

### **First Engineering Model**

The first HPT EM was realized in cooperation with KhAI under an FP7 program which ended in June 2012.

Thruster main characteristics:

Power, W Thrust , mN Isp, s Efficiency Mass Flow Rate, mg/s Working gas Mass, kg Lifetime, h 50 1.5 1350 0,35 0,2 multiple 1,2 >>5000



**Low Power Helicon** 

### Low power HPT today

The thruster EM was consequently optimized to get a new EM.

- The technology was updated to get: •Lower mass and size targeting nano to micro satellite markets •Lower complexity and costs
- The new technology is flexible and versatile to

achieve different thrust level requirements with very limited modifications.

The complete system fits in a 100x100x100 mm envelope, with standard data and power interfaces with the satellite.

In function of the required Total Impulse, the propellant tank has different sizes.





**Low Power Helicon** 

### Low power HPT platform



### Low power HPT actual perfromances



Low Power Helicon

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

### Thruster operation: IMPEDANCE MATCHING

• Impedance matching between amplifier and antenna is critical for power efficiency

VS

#### **R-Helicon antenna**

- A matching box is required → mass, complexity, moving parts
- Very low antenna impedance compared to circuital elements → high power losses in the circuit

#### S-Helicon antenna

- Impedance matching by means of frequency variation
- No matching box is required → no additional mass, no moving parts
- High antenna impedance with respect to circuital elements → low power losses in the circuit





#### **HPT Operations**

# S-HELICON: Plasma Ignition and sustainment

Experimental experience  $\rightarrow$  ignition and operation procedure:

- the operating frequency is set to the resonant frequency of the antenna → purely resistive load, high impedance, minimal power absorption without plasma
- 2) mass flow rate is set to 3-4 times its nominal value
- 3) the antenna voltage is rised to 2-2.5 times its nominal value
- 4) discharge ignition:
  - phase shift between antenna voltage and current  $\rightarrow$  reactive component
  - antenna impedance drop
- 5) frequency re-matching  $\rightarrow$  purely resistive load
- 6) mass flow rate and voltage set to nominal values
- 7) minor frequency adjustments until temperature stabilizes
- 8) long term operation without re-matching

- Helicon Thruster overview
- Mission scenario
- Design Tools
- Experimental activities
- Low power helicon
- High Power helicon
- Operations
- Power Processing Unit

## RF electronics design and development: power amplifier preliminary testing



#### **Power Processing Unit**

### Conclusion

Helicon thruster could lead to new unconventional feature enabling

new innovative mission

Helicon thruster represent a possible option for satellites currently

with no propulsion system enabling new inedit mission