

Kinetic Modeling of Electrostatic Ion thrusters

Workshop on Ion Propulsion and Accelerator Industrial Applications

<u>Julia Duras</u>^{*,+}, R.Schneider⁺, D.Kahnfeld⁺, P.Mathias⁺, G.Bandelow⁺, K.Lüskow⁺, K.Mayash⁺, S.Kemnitz^{s,+}, N.Koch^{*}

*Nuremberg Institute of Technology +Institute of Physics, University of Greifswald §Institute of Computaional Sience, University of Rostock

Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst

Ion thruster plume interaction with satellites

Ion thruster plume interaction with satellites

ESA-spacecraft BepiColombo (ESA / C.Carreau)

The HEMP thruster

patented by THALES Electron Devices with an initial patent filed in 1998

DLR Projects: 50 RS 0804, 50 RS1101

THALES

Self-consistent kinetic simulation:

Self consistent plasma + neutral dynamic Anomalous transport Secondary electron emission Integrated model of channel and plume System without grid and reduced wall contact

compus

Simulation tools **Compus Direct Monte-Carlo Binary Collision** Similarity Particle-In-Cell simulation of Cascade model scaling neutral transport 3D 2DCalibration of transport coefficients - Breathing modes Turbulence - Erosion / Deposition Plume dynamics - Spokes - Near-wall conductivity

SDTrimSP

Anomalous transport

- Volume driven
- Surface driven sheath instability

Own codes!

Particle-In-Cell: [1], [2] SDTrimSP: [3], [4], [5] Similarity scaling: [6]

- Self consistent coupling of all methods
- Reduction of empirical parameters
- Deduction from higher hierarchical models

MCC Particle-In-Cell simulation

Direct Monte-Carlo Collisions:

 $e^{-} + Xe \rightarrow Xe^{*} + e^{-}$ total excitation $e^- + Xe \rightarrow Xe + e^-$ elastic scattering $Xe^+ + Xe \rightarrow Xe^+ + Xe$ elastic scattering $Xe + Xe^+ \rightarrow Xe^+ + Xe$ charge exchange

 $Xe + e^- \rightarrow Xe^+ + 2e^-$ ionization $Xe + e^- \rightarrow Xe^{++} + 3e^-$ ionization $Xe^+ + e^- \rightarrow Xe^{++} + 2e^-$ ionization Coulomb collisions (e⁻-e⁻, Xe⁺-Xe⁺)

compus

Test: 1D PIC, 1 electron

Simulation results

HEMP DM3a thruster

Potential profile:

Compus-

Electron density with example particles:

- Magnetised electrons
- Non-Maxwellian velocity distribution $\lambda_e^{mfp} \approx L_{system}$
- Oscillating in front of the exit

 $50 \cdot \Delta t_{\rho}$

lon density with example particles:

 $2.000 \cdot \Delta t_e$

- Not magnetized
- Thermal velocity distribution in the channel
- Acceleration at the thruster exit

Neutral density with example particles:

 $10.000 \cdot \Delta t_{e}$

- Thermal velocity in the channel
- Expansion at the channel exit

Validation with experimental data

Erosion:

- Ion flux non-negligible in HEMP only at cusp positions
- Energy below the sputtering threshold ($E_{th} \sim 75 \text{ eV}$)

Total excitation:

and cusps

Light emission from axis "Grid-free grid thruster with minimized erosion"

[8] Matyash, Schneider; IEEE (2010).

Influence of electron source

<u>**Thermal source</u>** with $T_e = 2eV$ and $I_{src} = 0.3mA$ </u>

compus-

Influence of electron source

<u>Directed source</u> with drift velocity $v_{drift,e}$ =20eV, T_e =0.1eV and I_{src} =0.3mA

Julia Duras

Compus

International Workshop IPAIA, March 01-03, 2017, Bari

- Self-consistent kinetic simulation are needed \rightarrow computationally costly \rightarrow deduction from higher hierarchies
- Correction of E-field calculation for non-equidistant grids
- Validation with experiment: wall erosion & total emission
- Studies of electron sources:
 - Ion beam divergence is mainly determined by B-field
 - Screening of domain potential is important for simulation

Acknowledgment:

This work was funded by the Bavarian State Ministry of Education Science and the Arts and the DLR agency.

Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst

References

- [1] D. Tskhakaya, K. Matyash, R. Schneider and F. Taccogna: *The Particle-In-Cell Method*, **Contrib. Plasm. Phys.** 47: 563-594 (2007).
- [2] R. Schneider, K. Matyash, O. Kalentev, F. Taccogna, N. Koch, and M. Schirra: *Particle-in-Cell Simulations for Ion Thrusters*, Contrib. Plasma Phys. 49, No. 9, 655-661 (2009).
- [3] W. Eckstein, R. Dohmen, A. Mutzke and R. Schneider: *SDTrimSP: A Monte-Carlo Code for Calculating Collision Phenomena in Randomized Targets*, **IPP Report**, 12(3) 40 2007
- [4] A. Mutzke, R. Schneider and I. Bizyukov: *SDTrimSP-2D studies of the influence of mutual flux arrangement on erosion and deposition*, **J. Nucl. Mater.** 390-391: 115-118 (2009).
- [5] A. Rai, A. Mutzke and R. Schneider: Modeling of chemical erosion of graphite due to hydrogen by inclusion of chemical reactions in SDTrimSP, Nuclear Inst. and Methods in Physics Research, B 268(17-18), 2639-2648 (2010).
- [6] F. Taccogna, S. Longo, M. Capitelli and R. Schneider: *Self-similarity in Hall plasma discharges: Applications to particle models*, **Phys. Plasmas** 12: 053502 (2005).
- [7] J. Duras, K. Matyash, D. Tskhakaya, O. Kalentev, R. Schneider: *Self-Force in 1D Electrostatic Particle-in-Cell Codes for Non-Equidistant Grids*, **Contrib. Plasma Phys.** 2014; 54(8):697-711.
- [8] K. Matyash, R. Schneider, A. Mutzke, O. Kalentev, F. Taccogna, N. Koch and M. Schirra: *Kinetic Simulations of SPT and HEMP Thrusters Including the Near-Field Plume Region*, IEEE Transactions on Plasma Science, 99, 1-7 (2010).
- [9] O. Kalentev, K. Matyash, J. Duras, K. Lüskow, R. Schneider, N. Koch, M. Schirra: *Electrostatic Ion Thrusters Towards Predictive Modeling*, **Contrib. Plasma Phys.** 2014; 54(2):235-248.
- [10] J. Duras, R. Schneider, O. Kalentev, S. Kemnitz, K. Matyash, N. Koch, K. Lüskow, D. Kahnfeld, G. Bandelow: *Influence of electron sources on the near-field plume in a multistage plasma thruster*, Plasma Physics and Technology. 2016; 3(3):126-130.
- [11] J. Duras, D. Kahnfeld, G. Bandelow, S. Kemnitz, P. Matthias, K. Lüskow, N. Koch, R. Schneider: *Ion angular distribution simulation of the Highly Efficient Multistage Plasma Thruster,* **Journal of Plasma Physics.** 2017; 83.
- [12] O. Kalentev, K. Matyash, J. Duras, K. Lüskow, R. Schneider, N. Koch and M. Schirra: *Electrostatic Ion Thrusters Towards Predictive Modeling*, **Contrib. Plasma Phys.** 2014; 54(2):235-248.

compus

Particle-In-Cell simulation of ion thrusters

compus

Channel erosion

Ion fluxes to the channel wall

compus

Ion flux non-negligible in **HEMP** only at cusp position Energy below the sputtering threshold ($E_{th} \sim 75 \text{ eV}$)

[7] Matyash, Schneider; IEEE (2010).

Erosion rate

50

10

20

Z, mm

30