Vibrational Kinetics of Electronically Excited States in H₂

Gianpiero Colonna CNR-PLASMI-lab, Bari

Plasma Kinetics & Processes Lucia Daniela Pietanza Giuliano D'Ammando Roberto Celiberto Mario Capitelli Annarita Laricchiuta

G. Colonna: Vibrational kinetics of electronically excited states in H_2 Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

OVERVIEW

- Self-consistent chemical kinetics
- Electron Kinetics: Boltzmann equation
- Discharge Modeling
- Hydrogen plasma kinetics
- Vibrational kinetics of singlets and improved ion model
- Results

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

ELECTRON KINETICS 1

BOLTZMANN EQUATION $\frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla}_r f + \vec{A} \cdot \vec{\nabla}_v f + \vec{v} \wedge \vec{R} \cdot \vec{\nabla}_v f = \left(\frac{\delta f}{\delta t}\right)_c$ ELECTRON VELOCITY DISTRIBUTION $\vec{A} = -\frac{e}{m_e}\vec{E}$ $\vec{R} = -\frac{e}{m_e}\vec{B}$ $f = f(\vec{r}, \vec{v}, t)$ in phase space $\int f d^3 v = N_e$ electron density **Electric and Magnetic** $\frac{1}{N_{e}} \int_{V} \vec{v} f d^{3} v = \vec{V}_{d}$ electron mean velocity accelleration

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

ELECTRON KINETICS

Two-term approximation

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Model for DBD & RPD-ns

 $E_p(t) =$

 $E_0 = \frac{V_0}{d}$

$$E_p = \frac{V_p}{d}$$

$$E_0(t) - \tilde{R}\mu_e(t)N_e(t)E_p(t) - \frac{1}{\tilde{C}}\int_0^t \mu_e(\tau)N_e(\tau)E_p(t)d\tau$$

$$\tilde{R} = R \frac{S_D}{d} \qquad \tilde{C} = C \frac{d}{S_D}$$

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

H₂/H LEVEL SYSTEM

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

H₂/H STATE-TO-STATE KINETICS

Ground state vibrational kinetics

Ground state vibrational kinetics	Atomic level kinetics
$ \begin{array}{rcl} \mathrm{H}_{2}(\upsilon) + \mathrm{H}_{2}(\omega-1) &\rightleftharpoons &\mathrm{H}_{2}(\upsilon-1) + \mathrm{H}_{2}(\omega) \\ \mathrm{H}_{2}(\upsilon) + \mathrm{H}_{2}(\omega) &\rightleftharpoons &\mathrm{H}_{2}(\upsilon-1) + \mathrm{H}_{2}(\omega) \\ \mathrm{H}_{2}(\upsilon) + \mathrm{H} &\rightleftharpoons &\mathrm{H}_{2}(\upsilon-\Delta\upsilon) + \mathrm{H} \\ \mathrm{H}_{2}(\upsilon) + \mathrm{H}_{2} &\rightleftharpoons &\mathrm{2H} + \mathrm{H}_{2} \\ \mathrm{H}_{2}(\upsilon) + \mathrm{H}(n=1) &\rightleftharpoons &\mathrm{3H}(n=1) \\ \mathrm{H}_{2}(\upsilon) + \mathrm{H}(n=2) &\rightleftharpoons &\mathrm{3H}(n=1) \end{array} $	$ \begin{array}{rcl} \mathrm{H}(m) + \mathrm{H}(n=1) &\rightleftharpoons &\mathrm{H}(m') + \mathrm{H}(n=1) \\ \mathrm{H}(m) + \mathrm{H}(n=1) &\rightleftharpoons &\mathrm{H}^{+} + \mathrm{e}^{-} + \mathrm{H}(n=1) \\ \mathrm{H}(m) + \mathrm{e}^{-} &\rightleftharpoons &\mathrm{H}(m') + \mathrm{e}^{-} \\ \mathrm{H}(m) + \mathrm{e}^{-} &\rightleftharpoons &\mathrm{H}^{+} + 2\mathrm{e}^{-} \\ \mathrm{H}(m) &\to &\mathrm{H}(m') + h\nu \\ \mathrm{H}^{+} + \mathrm{e}^{-} &\to &\mathrm{H}(m) + h\nu \end{array} $

Electron impact induced processes $H_0(u) + e^- \rightarrow H_0(u) + e^-$

112(0) + 0	<u></u>	$112(\omega) + c$
$H_2(v) + e^-$	\rightleftharpoons	$H_2^+ + 2e^-$
$H_2(v) + e^-$	$\stackrel{\frown}{\leftarrow}$	$H^+ + H(n = 1) + 2e^-$
$H_2(v) + e^-$	\rightleftharpoons	$H_2(b, e^3 \Sigma_u^+) + e^- \rightleftharpoons H(n = 1) + H(n = 1) + e^-$
$H_2(v) + e^-$	\rightleftharpoons	$H_2(^1Y^*) + e^- \rightleftharpoons H(n = 1) + H(n = 2, 3, 4) + e^-$

Molecular ion kinetics $a^- + H^+ \rightarrow H(m')$

$e^- + H_2^+$	\rightleftharpoons	$\mathbf{H}(m') + \mathbf{H}(n=1)$
$e^- + H_2^+$	$\stackrel{\longrightarrow}{\longrightarrow}$	$H^+ + H(n = 1) + e^-$
$e^- + H_2^+$	\rightleftharpoons	$2\mathrm{H}^+ + 2\mathrm{e}^-$
$\mathrm{H}^+ + \mathrm{H}_2(v'')$	\rightleftharpoons	$\mathrm{H} + \mathrm{H}_2^+$
. 2(*)		· 2

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Fast discharges in hydrogen

Investigating the role cross section set on the discharge behaviors:

$$v = 0 \qquad e^- + H_2(v = 0) \rightleftharpoons e^- + H_2(v = w)$$
$$v = all \quad e^- + H_2(v) \rightleftharpoons e^- + H_2(w > v)$$

Ns repetitively pulsed discharge Interpulse delay $\Delta t=25\mu s$

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Fast discharges in hydrogen DBD

Fast discharges in hydrogen DBD

Fast discharges in hydrogen DBD

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

H₂/H STATE-TO-STATE KINETICS

G. Colonna: Vibrational kinetics of electronically excited states in H_2 Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Fast discharges in hydrogen State resolved data

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Fast discharges in hydrogen Multi pulse evolution

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H_2 Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

10^{-2} (a) & on hydrogen negative ion 10-4 x10-5 9 10-6 (f-q) H^{-} 10⁻⁸ molar fractions 6 molar fractions 10-10 $2.0 \frac{\times 10^{-3}}{}$ (f-v)(b) (f)3 $\frac{d}{dr} - \frac{d}{dr} - \frac{d}{dr}$ 1.5 1.0 0 10 15 5 20 0 relative time (ns) 0.5 0.0^L 10 15 20 5 relative time (ns)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

on electronically excited states

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

$\frac{---(f)}{---(f-v)}$

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

$\frac{---(f)}{---(f-v)}$

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

on ground state vibrational distributions 7 ns (a) 10^{-1} 10⁻³ ng VDF 4 ns 10-5 3 ns 10^{-7} 2 3 4 vibrational energy (eV)

$\frac{---(f)}{---(f-q)}$

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

on ground state vibrational distributions 7 ns (a) 10^{-1} 10-3 ns 4 ns 10-5 3 ns VDF 10⁻⁷ (b) 10⁻¹ 10-2 10 ng 10-3 f(f-q)10-4 (f-v) 10^{-5} 2 3 4 0 1 vibrational energy (eV)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

G. Colonna: Vibrational kinetics of electronically excited states in H₂ Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Dissociation by Pure Vibrational Mechanism (PVM)

- eV (electron-vibration) processes; ۲
- VV (vibration-vibration) and ۲
- VT (vibrational-translation) processes; •
- **Dissociation** from the last vibrational level. •

PVM Upper Limit dissociation rate

 $K_d^{(ulPVM)} = \frac{1}{v_{\text{max}}} k_{eV} (000 \rightarrow 001)$

including the effect of excited asymmetric mode vibrational levels

$$K_d^{(ulPVM)}(all) = \frac{1}{v_{\max}} \sum_n \frac{\varepsilon_{v_n}}{\varepsilon_{v_1}} k_{eV}(v_0 \rightarrow v_n)$$

Dissociation by Electron impact Mechanism (DEM)

6.0 dissociation (0 0 21) $(0\ 0\ 20)$ 5.0 (0 0 19) (0 0 18) (0 0 17) (0 0 16) (0 0 15) 4.0 VV up pumping (0 0 14) (0 0 13) Energy (eV) (0 0 12) (0011)3.0 $(0\ 0\ 10)$ (0 0 9) (0 0 8) 2.0 (0 0 7) $(0\ 0\ 6)$ $(0\ 0\ 5)$ (0 0 4)1.0 (0 0 3)(002)K_{eV}(000->001 0.0 VV transitions asymmetric mode 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Bari, March 1nd-3rd2017

$CO_2(0 \ 0 \ n)$

Selfconsistent results

Study case 1: P=20 torr, τ_{pulse} =40 µs, E/N=50 Td, T_{gas} =400 K, χ_{e} (t=0)=10⁻⁶, α =0.8

$ au_{\it pulse}$	$\tau_{eedf} = \left(n_{CO_2} K_{eV}^{1,0}\right)^{-1}$	$\tau_{eV} = \left(n_e K_{eV}^{1,0}\right)^{-1}$	$\tau_{VV} = \left(n_{CO_2} K_{1,0}^{0,1}\right)^{-1}$	$\tau_{VT} = \left(n_{CO_2} K_{VT}^{1,0}\right)^{-1}$
4 10 ⁻⁵ s	3.69 10 ⁻¹⁰ s	2.09 10 ⁻⁵ s	1.50 10 ⁻⁸ s	1.94 10 ⁻⁴ s

Study case 1: EEDF and VDF

G. Colonna: Vibrational kinetics of electronically excited states in H_2 Ion Propulsion and Accelerator Industrial Applications (IPAIA2017)

Conclusions

- Self-consistent chemical kinetics has been applied to model gas discharges in hydrogen and CO₂.
- The self-consistent approach put in evidence the synergy between EEDF, level distributions and composition, including superelastic collisions.
- DB of electron impact cross sections has been improved by adding transitions from excited vibrational level of $X^{1}\Sigma$ state.
- Vibrational kinetics of singlet states have been included to properly consider dissociative channels and radiative decay.
- Positive and negative ion kinetics has been improved.
- FUTURE WORK (in progress): Improvement of DBD model.