Development of Hollow Cathodes for Electric Thrusters: Theoretical and Experimental Results

F. Paganucci, D. Pedrini, G. Becatti

- University of Pisa, Pisa, Italy
- SITAEL S.p.A., Pisa, Italy
- Jet Propulsion Laboratory, Pasadena, CA, USA

SITAEL

APAIA 2017 Bari, Italy, March 2017

Basics of a Hollow Cathode

HOLLOW CATHODES are electron sources used to ionize the propellant and to neutralize the ion beam exhausted by ion and Hall thrusters.

The operational **lifetime**, maximum **power**, and **performance** of these thrusters depend heavily on the capability of the cathode.

HOLLOW CATHODES are also used as plasma contactors.

Development of Hollow Cathodes for Electric Thrusters: Theoretical and Experimental Results

- Conductive refractory metal tube;
- Neutral gas (e.g. xenon, krypton) feed;
- Emitter (or insert) made of low work function material which thermionically emits electrons;
- Heater used to increase the emitter temperature thus easing the discharge initiation;
- An orifice plate increases the internal pressure to efficiently ionize the propellant;

• A **keeper** electrode to start the cathode by applying a positive potential with respect to the inner tube. The keeper also protects the cathode interior parts from high-energy ion bombardment.

Basics of a Hollow Cathode

The cathode emits electron by **thermionic effect** from the emitter surface.

Richardson-Dushman equation (modified):

$$j = DT^2 e^{-\frac{e\varphi_0}{kT}}$$

(D: material specific modified R-D constant)

Type of emission	Cathode emitter type	Description	Work function
Oxide semiconductors	BaO	Superficial monoatomic layer of BaO over a nickel substrate	1.5 eV
Bulk material	Tantalum (Ta)		4.1 eV
	Tungsten (W)	Thermionic emission from pure material	4.55 eV
	LaB ₆	index al	2.4 – 2.66 eV
Chemically activated metallic surfaces	<i>Dispenser cavity</i> reservoir	Porous tungsten emitter over a reservoir of BaCO ₃ or BaO	1.8 – 2.0 eV
	Dispenser impregnated	penser impregnated Porous tungsten matrix impregnated with BaCO ₃ :CaCO ₃ :Al ₂ O ₃ (4:1:1 in S-type cathodes)	
	Thoriated tungsten	Tungsten with ThO ₂ (thoria), 0.5-1.5 %	2.6 eV

IPAIA 2017

Bari, Italy

March 1-3. 2017

Basics of a Hollow Cathode

After the discharge ignition, the heater is switched off and the cathode operates in "self-heating" mode: the emitter is heated by plasma bombardment.

• Orifice heating: cathode with small orifice and high internal pressure. The high plasma power delivered to the orifice walls is transferred to the insert via conduction and radiation.

• Ion heating: classic heating mechanism due to ion bombardment of the insert.

• **Electron heating**: high internal pressure and high discharge current. The energetic tail of the Maxwellian electron distribution having sufficient energy to exceed the sheath potential and reach the insert surface.

Conceived as a flexible tool to guide cathode design Tube

- **Reduced-order** model^[1]
- **Plasma** divided in **three coupled regions**: emitter, orifice, cathode-to-keeper gap
- Dedicated thermal model including the keeper
- Pressure model based on a
 Poiseuille flow and transitional regime in the orifice
- Step-wise ionization included
- Lifetime estimation based on the emitter evaporation rate

Bari, Italy

March 1-3. 2017

Keeper

Emitter

[1] Pedrini, D., Albertoni, R., Paganucci, F., Andrenucci, M., "Modeling of LaB₆ Hollow Cathode Performance and Lifetime", Acta Astronautica, 106 (2015), 170-178.

IPAIA 2017

SITAEL

Plasma and thermal sub-models combined in an iterative solution procedure.

Iteration variables:

- *V_c*: voltage drop at the emitter sheath
- *T_e*: electron temperature in the emitter region
- *T_c*: emitter surface temperature
- *T_o*: orifice surface temperature
- *T_k*: keeper surface temperature

The effective emission length (L_{eff}) is obtained by applying the Steenbeck –Prigogine principle: (*the discharge power (and hence the voltage) is minimized for a fixed current).*


```
Bari, Italy
March 1-3, 2017
```


Bari, Italy

March 1-3, 2017

• Current density:

$$j = \frac{I_d}{A_{eff}} = j_i + j_{em} - j_{er}$$

• Ion balance:

- $\dot{n}_{ion} + \dot{n}_{in} = \dot{n}_{out}$
- Plasma energy balance:

$$f(V_{ds}) \longrightarrow P_{i,o} + P_{R} + P_{em} = P_{i} + P_{er} + P_{conv}$$

• Pressure equation:

$$V_{c}$$

$$(n+n_{0})k_{B}T_{c}\left(1+\alpha\frac{T_{e}}{T_{c}}\right) = \sqrt{m\frac{16\mu}{\pi r^{4}(1+8Kn)}}R_{g}T_{o}L + p_{o}^{2} + \frac{1}{2}\frac{p_{o}}{R_{g}T_{o}}\frac{\bar{u}_{o}^{2}(1+K_{L})}{\sqrt{n}}$$

$$N_{0}$$
Orifice average speed

IPAIA 2017

Orifice average speed (Poiseuille flow)

IPAIA 2017

Bari, Italy March 1-3, 2017

Design Guiding Lines

- An orifice diameter which minimizes the power exists;
- An increase of the emitter inner diameter yields a cathode lifetime increase;
- A reduction of the orifice length yields a reduction of the operation temperatures;

The theoretical model has been used for the development of hollow cathodes for HET of different power.

Tests carried out on the cathodes have allowed the model to be validated.

Cathodes developed at Sitael

Name	HC1	HC3	HC20	HC60
Emitter	LaB ₆ / BaO-W	LaB ₆	LaB ₆	LaB ₆
Current range	0.3 – 1 A	1 – 3 A	8 – 20 A	30 – 60 A
Mass flow rate (Xe)	0.08 – 0.5 mg/s	0.08 – 1 mg/s	1 – 4 mg/s	2 – 6 mg/s
Reference HET	HT100	HT100/HT400	HT5k	HT20k

IPAIA 2017

Bari, Italy March 1-3, 2017

Hollow cathode for the 100 W-class Hall thrusters

Discharge current	0.3 – 1 A	
Mass flow rate	0.08 – 0.5 mg/s	
Heater power	< 25 W	
Cathode mass (w/o harnesses)	< 30 g	
Expected lifetime	> 4000 h	

More than **200 hours** of continuous operation More than **30 ignitions**

1 A keeper current, 0.1 mg/s Xe

Bari, Italy

March 1-3. 2017

Cathode tested with and without a heater

- **Diode** mode with the keeper
- Diode mode with anode plate
- Triode mode with keeper and anode

Ignition parameter	With heater	Heaterless
Keeper voltage	300 V	700 V
Mass flow rate, Xe	0.5 mg/s	1 mg/s
Heater power	< 25 W	N.A.

1 A keeper current, 0.9 A anode current, 1 mg/s Xe

IPAIA 2017

🕘 SITAEL

IPAIA 2017

14/27

Hollow cathode for 100-400 W Hall thrusters

Discharge current	1 – 3 A	
Mass flow rate	0.08 – 1 mg/s	
Heater power	< 50 W	
Cathode mass (w/o harnesses)	< 100 g	
Expected lifetime	> 10000 h	

More than **120 hours** of continuous operation More than **60 ignitions**

HC3 operating with the HT100D Hall thruster (Xe)

Bari, Italy

March 1-3. 2017

Cathode tested with and without a heater

- With **keeper** only
- With anode plate
- With Sitael HT100D 100 W Hall thruster

Ignition parameter	With heater	Heaterless
Keeper voltage	300 V	950 V
Mass flow rate, Xe	0.4 mg/s	1 – 2 mg/s
Heater power	< 50 W	N.A.

1.5 A keeper current, 1 mg/s Xe

Bari, Italy

March 1-3, 2017

SITAEL

Hollow cathode for the 5 kW-class Hall thrusters

Discharge current	8 – 20 A	
Mass flow rate	1 – 4 mg/s	
Cathode mass (w/o harnesses)	< 300 g	
Expected lifetime	> 10000 h	

Bari, Italy

March 1-3. 2017

About **1000 hours** of continuous operation More than **100 cold ignitions**

Heaterless cathode, tested with Xe and Kr

- With **keeper** only
- With anode plate
- With Sitael **HT5k** 5 kW Hall thruster Ignition parameters
- **800 V** keeper voltage
- 5 mg/s mass flow rate

HC20 operating with the HT5k Hall thruster (Xe/Kr)

Electrical Characteristics – Diode and Triode Mode with Anode Plate 20 35 Model 30 Experiment >Discharge Voltage, V 15 Discharge Voltage, 25 Model Experiment 20 10 15 10 5 5 0 5 0 10 15 20 5 10 15 20 25 0

Discharge voltage comparison with the model results at **2 mg/s Xe**, floating keeper

Discharge Current, A

Discharge voltage comparison with the model results at **2 mg/s Kr**, 2 A keeper current

Discharge Current, A

Hollow cathode for the 20 kW-class Hall thrusters

Discharge current	30 – 60 A	
Mass flow rate	2 – 6 mg/s	
Heater power	< 250 W	
Cathode mass (w/o harnesses)	450 g	
Cathode dimensions	ϕ 80 x 220 mm	
Expected lifetime	> 10000 h	

About **20 hours** of continuous operation About **10 ignitions**

Setup of HC60 before the characterization tests

Bari, Italy

March 1-3, 2017

HC60 during the initial heating phase

Ignition parameter	With heater	Heaterless
Keeper voltage	450 – 500 V	800–950 V
Mass flow rate, Xe/Kr	5 mg/s	12 mg/s
Heater power	< 250 W	

SITAEL

Development of Hollow Cathodes for Electric Thrusters: Theoretical and Experimental Results

IPAIA 2017

20 Discharge Voltage, V 15 Δ 10 Model Experiment 5 0**–** 20 30 40 50 60 70 80 Anode Current, A

HC60

Bari, Italy

March 1-3, 2017

Discharge voltage comparison with the model results at **5 mg/s Xe**, floating keeper

HC60 during the characterization test (10 A keeper current, 38 A anode current, 3 mg/s Xe)

HC60 coupled with the thruster HT20k (xenon)

Further Developments

Development of emitter with a lower work function

(as the calcium aluminate compound 12CaO-7Al₂O₃, in electride form, with a measured work function of 0.76 eV)

Electron

Further Developments

Operation with alternative propellant (iodine)

	Xenon	lodine
Atomic mass [u]	131,3	126,9
First ionization potential [eV]	12,1	10,5
Storage	Supercrit./Cryo.	Solid
Storage density [g/cm ³]	1,6-3,0	4,9
Cost [\$/kg] (2016)	2200	83
Reactivity	No	Material dependent

Development of multichannel cathodes for kAs currents (MPDT)

IPAIA 2017

Bari, Italy March 1-3, 2017

- D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, *"Experimental Characterization of a Lanthanum Hexaboride Hollow Cathode for Five-Kilowatt-Class Hall Thrusters"*, Journal of Propulsion and Power, Vol. 32, No. 6 (2016), pp. 1557-1561.
- R. Albertoni, F. Paganucci, M. Andrenucci, " *A phenomenological performance model for applied-field MPD thrusters*", Acta Astronautica, Vol 107, Feb-March 2015, pages 177-186, doi:10.1016/j.actaastro.2014.11.017.
- D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, *"Modeling of a LaB6 hollow cathode performance and lifetime"*, Acta Astronautica, Vol 106, Jan-Feb 2015, pages 170-178.
- D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, *"Theoretical Model of a Lanthanum Hexaboride Hollow Cathode"*, IEEE Transactions on Plasma Science, Vol. 43 PP 209-217, No. 99. ISSN 0093-3813, DOI: 10.1109/TPS.2014.2367815, Nov. 20 2014, IEEE Nuclear and Plasma Sciences Society. IEEE.
- R. Albertoni, F. Paganucci, P. Rossetti, M. Andrenucci, *"Experimental Study of a Hundred-Kilowatt-Class Applied-Field Magnetoplasmadynamic Thruster"*, Journal of Propulsion and Power, Vol 29, No. 5, (2013) pp. 1138-1145, ISSN: 0748-4658.
- R. Albertoni, D. Pedrini, F. Paganucci, M. Andrenucci, *"A Reduced-Order Model for Thermionic Hollow Cathodes"*, IEEE Transactions on Plasma Science, Vol. 41, No. 7, pp. 1731-1745, July 2013.

- D. Pedrini, F. Cannelli, C. Ducci, T. Misuri, F. Paganucci, M. Andrenucci, *"Hollow Cathodes Development at Sitael"*, Space Propulsion 2016, *SP2016_3124925*, 2-6 May 2016, Rome, Italy.
- D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, *"Development of a LaB6 Cathode for High-Power Hall Thrusters"*, IEPC-2015-47/ISTS-2015-b-47, 34th International Electric Propulsion Conference, July 4-10, 2015, Hyogo-Kobe, Japan.
- R. Albertoni, D. Pedrini, F. Paganucci, M. Andrenucci, *"Experimental Characterization of a LaB6 Hollow Cathode for Low-Power Hall Effect Thrusters"*, SP2014_2969372, Space Propulsion 2014, 19-22 May 2014, Cologne, Germany.
- D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, "Development of a LaB6 Cathode for High-Power Hall Thrusters", IAC-14,C4,4,7,x25234, 65th International Astronautical Congress, 29 September – 3 October 2014, Toronto, Canada.
- D. Pedrini, R. Albertoni, F. Paganucci, M. Andrenucci, "Modeling of LaB6 Hollow Cathode Performance and Lifetime", IAC-13.C4.4.7, 64th International Astronautical Congress, Beijing, China, September 23-27, 2013.
- R. Albertoni, M. Andrenucci, D. Pedrini, F. Paganucci, "*Preliminary Characterization of a LaB6 Hollow Cathode for Low-Power Hall Effect Thrusters*", IEPC-2013-137, 33rd International Electric Propulsion Conference, The George Washington University, USA, October 6-10, 2013.
- M. De Tata, R. Albertoni, P. Rossetti, F. Paganucci, M. Andrenucci, M. Cherkasova, V. Obukhov, V. Riaby, "100-hr Endurance Test on a Tungsten Multi-rod Hollow Cathode for MPD Thrusters", IEPC-2011-108, 32nd International Electric Propulsion Conference, Wiesbaden, Germany, Sept. 11-15 2011.
- R. Albertoni, M. De Tata, P. Rossetti, F. Paganucci, M. Andrenucci, M. Cherkasova, V. Obukhov, *"Experimental study of a Multichannel Hollow Cathode for High Power MPD Thrusters"*, AIAA Paper 2011-6075, 47th Joint Propulsion Conference & Exhibit, ISSN 0146-3705, San Diego, USA, July 31-Aug. 3, 2011.
- R. Albertoni, M. De Tata, P. Rossetti, F. Paganucci, M. Andrenucci, *"Numerical Model for 100-kW Class Hollow Cathodes Part II"*, SP2010_1841659, Space Propulsion 2010, San Sebastian, Spain, May 3-6, 2010.
- P. Rossetti, M. Signori, F. Paganucci, M. Andrenucci, *"Hollow Cathode Study at Alta-Centrospazio"*, IEPC-2005-277, 29th International Electric Propulsion Conference, Princeton (NJ), Oct. 31 Nov. 4, 2005.

