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Basics of a Hollow Cathode
HOLLOW CATHODES are electron sources used to ionize the propellant and to neutralize the 

ion beam exhausted by ion and Hall thrusters. 

The operational lifetime, maximum power, and performance of these thrusters depend 

heavily on the capability of the cathode.

HOLLOW CATHODES are also used as plasma contactors.

HALL EFFECT THRUSTER ION THRUSTER
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Basics of a Hollow Cathode
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• Conductive refractory metal tube;

• Neutral gas (e.g. xenon, krypton) feed;

• Emitter  (or insert) made of low work function material which thermionically emits electrons;

• Heater used to increase the emitter temperature thus easing the discharge initiation;

• An orifice plate increases the internal pressure to efficiently ionize the propellant;

• A keeper electrode to start the cathode by applying a positive potential with respect to the 

inner tube. The keeper also protects the cathode interior parts from high-energy ion 

bombardment.
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Basics of a Hollow Cathode

The cathode emits electron by thermionic effect 

from the emitter surface.

Richardson-Dushman equation (modified):

(D: material specific modified R-D constant )
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After the discharge ignition, the heater is switched off and the cathode operates in “self-heating” mode: 

the emitter is heated by plasma bombardment.

• Orifice heating: cathode with small orifice and high internal pressure. The high plasma power delivered 

to the orifice walls is transferred to the insert via conduction and radiation.

• Ion heating: classic heating mechanism due to ion bombardment of the insert.

• Electron heating: high internal pressure and high discharge current. The energetic tail of the Maxwellian

electron distribution having sufficient energy to exceed the sheath potential and reach the insert surface.

Basics of a Hollow Cathode
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The dominant heating

mechanism depends on:

• Cathode geometry;

• Internal pressure;

• Discharge current.
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Cathode Model

Conceived as a flexible tool to guide cathode design 

• Reduced-order model[1]

• Plasma divided in three coupled regions: 

emitter, orifice, cathode-to-keeper gap

• Dedicated thermal model including the keeper

• Pressure model based on a 
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[1] Pedrini, D., Albertoni, R., Paganucci, F., Andrenucci, M. ,“Modeling of LaB6 Hollow Cathode Performance and Lifetime”, Acta Astronautica, 106 (2015), 170-178.

• Pressure model based on a 

Poiseuille flow and transitional 

regime in the orifice 

• Step-wise ionization included

• Lifetime estimation based on 

the emitter evaporation rate



Development of Hollow Cathodes for Electric Thrusters: Theoretical and Experimental Results 6/27

Plasma and thermal sub-models combined in an

iterative solution procedure.

Iteration variables:

• Vc: voltage drop at the emitter sheath

• Te: electron temperature in the emitter region

• Tc: emitter surface temperature

• T : orifice surface temperature

Cathode Model
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• To: orifice surface temperature

• Tk: keeper surface temperature

The effective emission length (Leff) is obtained

by applying the Steenbeck –Prigogine principle:  

(the discharge power (and hence the voltage) is

minimized for a fixed current).
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Cathode Model

Orifice

• Plasma energy balance:

• Ion balance:

Ionization rate for single electronic 

impact and for multiple impact.
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Double sheath approximation

• Plasma energy balance:

• Pressure equation (mass continuity + state equation):Unknowns:
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Cathode Model

• Current density:

• Ion balance:

• Plasma energy balance:

Emitter
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Unknowns:

• Pressure equation:

Orifice average speed 

(Poiseuille flow)
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Cathode Model

• Power balance:

Unknowns:

Thermal model
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• Power balance:

Thermal input from previous

plasma model
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Design Guiding Lines

• An orifice diameter which minimizes the power exists;

• An increase of the emitter inner diameter yields a cathode lifetime increase;

• A reduction of the orifice length yields a reduction of the operation temperatures;
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The theoretical model has been used for the development of hollow cathodes for

HET of different power. 

Tests carried out on the cathodes have allowed the model to be validated.
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Cathodes developed at Sitael

Name HC1 HC3 HC20 HC60 

Emitter LaB6 / BaO-W LaB6 LaB6 LaB6

Current range 0.3 – 1 A 1 – 3 A 8 – 20 A 30 – 60 A

Mass flow rate (Xe) 0.08 – 0.5 mg/s 0.08 – 1 mg/s 1 – 4 mg/s 2 – 6 mg/s

Reference HET HT100 HT100/HT400 HT5k HT20k 

Bari, Italy

March 1-3, 2017
IPAIA 2017



Development of Hollow Cathodes for Electric Thrusters: Theoretical and Experimental Results 12/27

HC1

Cathode tested with and without a heater

• Diode mode with the keeper

• Diode mode with anode plate

• Triode mode with keeper and anode

Hollow cathode for the 100 W-class Hall thrusters

Discharge current 0.3 – 1 A

Mass flow rate 0.08 – 0.5 mg/s

Heater power < 25 W 

Cathode mass (w/o harnesses) < 30 g

Expected lifetime > 4000 h

More than 200 hours of continuous operation

Ignition parameter With heater Heaterless

Keeper voltage 300 V 700 V

Mass flow rate, Xe 0.5 mg/s 1 mg/s
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1 A keeper current, 0.9 A anode current, 1 mg/s Xe1 A keeper current, 0.1 mg/s Xe

More than 200 hours of continuous operation

More than 30 ignitions
Heater power < 25 W N.A.
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Discharge voltage comparison with the 

model results

Electrical characteristics in diode mode 

with the keeper, xenon propellant
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HC3

Cathode tested with and without a heater

• With keeper only

• With anode plate

• With Sitael HT100D 100 W Hall thruster

Hollow cathode for 100-400 W Hall thrusters

Discharge current 1 – 3 A

Mass flow rate 0.08 – 1 mg/s

Heater power < 50 W

Cathode mass (w/o harnesses) < 100 g

Expected lifetime > 10000 h

More than 120 hours of continuous operation

Ignition parameter With heater Heaterless

Keeper voltage 300 V 950 V

Mass flow rate, Xe 0.4 mg/s 1 – 2 mg/s
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More than 120 hours of continuous operation

More than 60 ignitions

1.5 A keeper current, 1 mg/s Xe
HC3 operating with the HT100D Hall thruster (Xe)

Mass flow rate, Xe 0.4 mg/s 1 – 2 mg/s

Heater power < 50 W N.A.
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HC3

Cathode Pressure
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Heaterless cathode, tested with Xe and Kr

• With keeper only

• With anode plate

• With Sitael HT5k 5 kW Hall thruster

Ignition parameters

• 800 V keeper voltage

• 5 mg/s mass flow rate

18/27

HC20

Hollow cathode for the 5 kW-class Hall thrusters

Discharge current 8 – 20 A

Mass flow rate 1 – 4 mg/s

Cathode mass (w/o harnesses) < 300 g

Expected lifetime > 10000 h
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About 1000 hours of continuous operation

More than 100 cold ignitions

HC20 operating with the HT5k Hall thruster (Xe/Kr)
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HC20
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HC60

Hollow cathode for the 20 kW-class Hall thrusters

Discharge current 30 – 60 A

Mass flow rate 2 – 6 mg/s 

Heater power < 250 W

Cathode mass (w/o harnesses) 450 g

Cathode dimensions

Expected lifetime > 10000 h
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Setup of HC60 before the characterization tests

About 20 hours of continuous operation

About 10 ignitions

HC60 during the initial heating phase

Ignition parameter With heater Heaterless

Keeper voltage 450 – 500 V 800 – 950  V

Mass flow rate, Xe/Kr 5 mg/s 12 mg/s

Heater power < 250 W --
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HC60

HC60 during the characterization test (10 A 

keeper current, 38 A anode current, 3 mg/s Xe)
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HC60 coupled with the thruster HT20k (xenon)

Discharge voltage comparison with the 
model results at 5 mg/s Xe, floating 

keeper

keeper current, 38 A anode current, 3 mg/s Xe)
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Further Developments

Development of emitter with a lower work function

(as the calcium aluminate compound 12CaO-7Al2O3, in

electride form, with a measured work function of 0.76 eV)
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Further Developments

Operation with alternative propellant (iodine)

Xenon Iodine

Atomic mass [u] 131,3 126,9

First ionization potential [eV] 12,1 10,5

Storage Supercrit./Cryo. Solid

Storage density [g/cm3] 1,6-3,0 4,9

Cost [$/kg] (2016) 2200 83
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Development of multichannel cathodes for kAs currents (MPDT)   

Cost [$/kg] (2016) 2200 83

Reactivity No Material dependent
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