

Laboratori Nazionali del Sud-LNS

MODELING THE ELECTROMAGNETIC FIELD IN ANISOTROPIC INHOMOGENEOUS MAGNETIZED PLASMA OF ECR ION SOURCES

<u>G. Torrisi</u>⁽¹⁾, D. Mascali⁽¹⁾, A. Galatà⁽²⁾, G. Castro⁽¹⁾, L. Celona⁽¹⁾, L. Neri⁽¹⁾, G. Sorbello^(1,3), S. Gammino⁽¹⁾

INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania, Italy INFN – LNL Viale dell'Università, 2 35020 Legnaro (Padova) Italy Università degli Studi di Catania, DIIEI, Viale Andrea Doria 6, 95125 Catania, Italy

Basics on Electron Cyclotron Resonance Ion Source (ECRIS)

Solenoids for Axial confinement

Hexapole for radial confinement

Extraction system

"B_minimum" Magnetic Field structure

ECR Plasma $n_e \sim 10^{12} \text{ cm}^{-3}$ $T_e \sim \text{ tens keV}$ $\tau_{ion} \sim \text{ms}$ **ECR Surface** $B_{ECR} = \omega_{RF} m_e/e$

Gas injection system

Incident microwaves few kW at tens GHz

Overcoming the actual limit of ECRIS

INTRINSIC Density limitation

ECRIS STD MODEL

$$I \propto n_e \langle q \rangle \propto n_e n_e \propto \omega_{RF}^2$$

Brute force cannot be anymore used because of technological reasons (magnets, hot electrons generations, plasma overheating, cooling, ...)

- 1. High Frequency Generators to increase the plasma density;
- 2. High Magnetic Fields to make longer the ions confining time;

Overcoming the "brute force" empirical approach based onGeller's scaling laws $I \propto f_{RF}^2$ $q \propto \log B^{3/2}$

towards a "**Microwave Absorption Optimization-oriented**" design in order to Developing **the next generation Ion Sources**

Experimental results show that...

The extracted current is doubled after a frequency shift of 5 MHz

Frequency Tuning effect

The frequency tuning affects globally electrons and ions dynamics, changing not only the heating rapidity but also <u>the **plasma spatial structure**</u>

[L. Celona, et al. Observations of the frequency tuning effect in the 14 GHz CAPRICE ion source. Rev. Sci. Instrum., Feb. 2008]

Frames of the extracted beam for different frequencies

Evolution of the beam shape with the frequency.

Integrated RF modeling and particle dynamic

<u>Our goal is to obtain quantitatively accurate, predictive understanding of wave</u> processes important for heating plasma

"Stationary" PIC strategy Diagram

Iterative self consistent approach

"Stationary" PIC strategy Diagram

Basic equations of wave propagation in "cold" plasma

Maxwell'equationsConstitutive relations $\vec{\nabla} \times \vec{E}(\vec{r}) = -i\omega\vec{B}(\vec{r})$ $\vec{J} = \overline{\vec{\sigma}} \cdot \vec{E}$ $\vec{\nabla} \times \vec{H}(\vec{r}) = i\omega\varepsilon_0\vec{E}(\vec{r}) + \vec{J}(\vec{r}) = i\omega\overline{\vec{\varepsilon}} \cdot \vec{E}(\vec{r}) = i\omega \cdot \vec{D}(\vec{r})$ $\vec{D} = \frac{\vec{J}}{i\omega} + \varepsilon_0\vec{E} = \left(\frac{\vec{\sigma}}{i\omega} + \varepsilon_0\right)\vec{E} = \overline{\vec{\varepsilon}} \cdot \vec{E}$ $\vec{\nabla} \cdot \vec{D}(\vec{r}) = \rho(\vec{r})$ $\vec{\varepsilon} = \varepsilon_0 \left(\overline{\vec{I}} - i\frac{\vec{\sigma}}{\omega\varepsilon_0}\right)$

DERIVATION OF CONDUCTIVITY TENSOR σ

3D cold plasma modeling: plasma as a dispersive medium with collisions

- Random thermal motion neglected

 $(\mathbf{v}_{\omega} \gg \mathbf{v}_{th})$

$$m\frac{\partial \vec{v}}{\partial t} = \left(q\vec{E} + \vec{v} \times \vec{B}_{0}\right) - \omega_{eff}n\vec{v}$$

collision frequency ω_{eff} accounts for the **collision friction**, models the **wave damping** and resolves the **singularity** of some elements of tensor

Non-uniform "local" dielectric tensor

Non-symmetric 3D magnetostatic field

$$\begin{cases} B_x = B_1 xz + 2S_{ex} xy \\ B_y = -B_1 yz + S_{ex} (x^2 - y^2) \\ B_z = B_0 + B_1 z^2 \end{cases}$$

Assuming a non uniform magnetostatic field the dielectric tensor is:

 $A_{i}(x, y, z, B_{0}, n_{e}, \omega_{eff}) = C_{i}(x, y, z, B_{0}, n_{e}, \omega_{eff}) = D_{i}(x, y, z, B_{0}, n_{e}, \omega_{eff}) = \Delta(x, y, z, B_{0}, n_{e}, \omega_{eff})$

Off-diagonal Elements due to 3D Magnetic field

International Workshop on Ion Propulsion and Accelerator Industrial Application

11/23

Real Ion Source Setup

Laboratori Nazionali del Sud-LNS

Simulation Setup in COMSOL

Simulation parameter

PARAMETER	VALUE
Cavity length	450 mm
Cavity radius	65 mm
Frequency	8 GHz
Waveguide width	28.5 mm
Waveguide height	12.6 mm
RF Power	100 W

Inputs for tensor

•14

Mesh procedure

The mesh is very fine on the ECR surface and relatively coarser away from the resonance zone.

"Standard" vs "Adaptive" MESH

17

"Standard" vs "Adaptive" MESH

International Workshop on Ion Propulsion and Accelerator Industrial Application

Numerical results: Snapshots of the Electric field on a slice

3-D wave fields in the xz: VACUUM chamber and launching structure RF field

3-D wave fields in the xz : **PLASMA FILLED chamber** and **RF launching structure**

Electromagnetic power loss density [W/m3]

$$P_{diss} = \vec{J} \cdot \vec{E} = \left(\overline{\vec{\sigma}} \cdot \vec{E}\right) \cdot \vec{E}$$

Power deposition : the 55 % of the total input Power is absorbed by the plasma

[<u>G. Torrisi</u>, D. Mascali, G. Sorbello, L. Neri, L. Celona, G. Castro, T. Isernia, and S. Gammino, "Full-wave FEM simulations of electromagnetic waves in strongly magnetized non-homogeneous plasma", *Journal of Electromagnetic Waves and Application* 28(9), 1085-1099 (2014)]

Electromagnetic Analysis of the Plasma Chamber of an ECR-based Charge Breeder

Cut view of the SPES-CB

SPES charge breeder Acceptance test

Experimental validation of numerical modeling of EM wave propagation in the anisotropic magnetized plasma of ion sources

"Stationary" PIC strategy Diagram

"Stationary" PIC strategy Diagram

Self-consistent simulations

3D density distribution [a.u] at different energy ranges (a.u. in log scale) resulting by the "PARTICLE MOVER" first step

Integrated density: distribution in a 2D transversal view (a.u. in linear scale)

1D profiles of the electron density [a.u] according to the different energetic domains

Exploring plasma structure in Atomki-Debrecen

[<u>S. Biri</u>, R. Rácz, J. Pálinkás "Studies of the ECR plasma in the visible light range" talk @ECRIS '08"]

"Visible light (VL) photos transform information mainly on the cold electron component of the plasma. <u>Cold electrons are confined in the central plasma part</u>. X-ray (XR) photos show the spatial distribution of ions. These ions and <u>the warm</u> <u>electrons are well confined by the magnetic field lines structure</u> showing strong asymuthal and radial inhomogenity"

PERSPECTIVES

THE NUMERICAL CODE

"Hot" plasma approximation

The nonlocal interaction between spatially separated parts of the materials, leading to what is called SPATIAL DISPERSION

$$D_{i}(\omega, \vec{k}) = \varepsilon_{ij}(\omega, \vec{k})E_{j}(\omega, \vec{k})$$
$$D_{i}(\vec{r}, t) = \int_{-\infty}^{t} \int d\vec{r} \varepsilon_{ij}(t - t', \vec{r} - \vec{r})E_{j}(\vec{r}, t')$$

'Spatial dispersion' or 'nonlocality' manifests itself in the functional dependence of the medium parameter on the wave vector **k**, ϵ (ω , **k**)

Ongoing development: Wavelet analysis

Continuous Wavelet Transform (CWT)

for analysing **Full wave wavefield** data in the **spatial domain** to determine the **wavenumber spectrum**

Wavelet of E_z : $W{E_z}$ in cavity with plasma along

the *z*-axis

Laboratori Nazionali del Sud-LNS

Thank you!

<u>G. Torrisi</u>⁽¹⁾, D. Mascali⁽¹⁾, A. Galatà⁽²⁾, G. Castro⁽¹⁾, L. Celona⁽¹⁾, L. Neri⁽¹⁾, G. Sorbello^(1,3), S. Gammino⁽¹⁾

INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania, Italy INFN – LNL Viale dell'Università, 2 35020 Legnaro (Padova) Italy Università degli Studi di Catania, DIIEI, Viale Andrea Doria 6, 95125 Catania, Italy