Electron drift instability and secondary electron emission in Hall effect thrusters: Insights from 2D PIC simulations

3rd March 2017 Ion Propulsion and Accelerator Industrial Application (IPAIA) Bari, Italy

Laboratoire de Physique des Plasmas

V. Croes, A. Tavant, R. Lucken, T. Lafleur, A. Bourdon, P. Chabert vivien.croes@lpp.polytechnique.fr

Safran Aircraft Engines Laboratoire de Physique des Plasmas Vernon École polytechnique

Outline

I. HETs and model considerations

- a. Hall effect thruster (HET)
- b. Model specificities
- c. Simulation environment

II. Implementations and results

- a. Electron drift instability
- **b.** Anomalous electron transport
- c. Secondary electron emissions

III. Current implementations and conclusion

- a. Alternative propellants
- **b.** Dielectric walls
- c. Conclusion

BUTEC

Hall effect thruster (HET)

- Difficulties to predict performance
- Role of wall materials (SEE) ^[1,2]
- Anomalous electron transport along (Oz) ^[1]
 - Secondary electron emission (SEE) due to e⁻/walls collisions ^[2]
 - Sheath instability ^[2]
 - Electron drift instability in the azimuthal direction ^[3]
 - Gradient driven fluid instability [4]

Schematic picture of a HET

^[1] D.M. Goebel, I. Katz, *Fundamentals of electric propulsion: Ion and Hall thrusters*, Wiley (2008)
^[2] D. Sydorenko, A.I. Smolyakov, I.D. Kaganovich, Y. Raitses, *Phys. Plasmas*, **15**, 053506 (2008)
^[3] A. Ducrocq, J.C. Adam, A. Héron, G. Laval, *Phys. Plasmas*, **13**, 102111 (2014)
^[4] D. Escobar, E. Ahedo, *Phys. Plasmas*, **21**, 043505 (2014)

Hall effect thruster (HET)

- Difficulties to assess performance
- Role of wall materials (SEE): Insufficient^[1,2]
- Anomalous electron transport along (Oz)
 - Secondary Electron Emission at the walls
 - Sheath instability
 - Electron drift instability [3,4] in the azimuthal direction
 - Gradient driven fluid instability

Schematic picture of a HET

C. Boniface, L. Guarrigues, G.J.M. Hagelaar, J.P. Boeuf, D. Gawron, S. Mazouffre, *Appl. Phys. Lett.*, **89**, 161503 (2006)
 N.B. Meezan, M.A. Cappelli, *Phys. Rev.*, **E66**, 036401 (2002)
 M.K. Scharfe, N. Gascon, M.A. Cappelli, E. Fernandez, *Phys. Plasmas*, **13**, 083505 (2006)
 A.W. Smith, M.A. Cappelli, *Phys. Plasmas*, **16**, 073504 (2009)

Front picture of a HET (BHT-1500)

Perspective scheme of a HET

Role of wall materials ^[1] + azimuthal instability ^[2] = ($\mathbf{r}, \boldsymbol{\theta}$) simulations \rightarrow *Periodicity* in $\boldsymbol{\theta}$ \rightarrow *Walls* in \mathbf{r}

^[1] D.M. Goebel, I. Katz, *Fundamentals of electric propulsion: Ion and Hall thrusters*, Wiley (2008) ^[2] A. Ducrocq, J.C. Adam, A. Héron, G. Laval, *Phys. Plasmas*, **13**, 102111 (2014)

"Infinite HET" PIC/MCC model

"Infinite" radius \rightarrow Cartesian coordinate system \rightarrow "Infinite" HET

Particle-in-cell (PIC) method^[1]

Monte Carlo collision (MCC) module ^[1]

- ✓ Electrostatic \rightarrow *Poisson* equation
 - / Fixed Structured Cartesian mesh
- Equation of motion
 - Leapfrog scheme ^[1]
 - electrons are magnetized → Boris scheme ^[2]
- *Cloud-in-Cell* scheme: Linear interpolation
- Monte-Carlo collision module
- ✓ Verified by a capacitive discharge benchmark ^[3]

^[1] C.K. Birdsall, A.B. Langdon, *Plasma Physics via Computer Simulation* (IOP Publishing, Bristol, 1991)
 ^[2] J. P. Boris, in *Proceedings of the 4th Conference on Numerical Simulation of Plasmas. Naval Res. Lab.* (1970)
 ^[3] M.M. Turner, A. Derzsi, Z. Donko, D. Eremin, S.J. Kelly, T. Lafleur, T. Mussenbrock, *Phys. Plasmas*, **20** (2013)

PIC/MCC

"Infinite HET" PIC/MCC model

^[1] J.C. Adam, A. Héron, and G. Laval, *Phys. Plasmas*, **11**, 295 (2004) ^[2] J.P. Boeuf, *Front. Phys.*, **2**, 74 (2014)

"Infinite HET" PIC/MCC model

^[1] V. Vahedi, M. Surendra, *Comp. Phys. Commun.*, **87**, 179 (1995)
 ^[2] Lxcat, Cross sections extracted from Program Magboltz, v.7.1 June 2004

Simulation environment

Parameter	Value	
n ₀ [m ⁻³]	(1 to 12) ·10 ¹⁷	LPPic2D
P _n [mTorr]	30	✓ developed ex nihilo
T _e [eV]	2,6	Particlo In Coll
T _i [eV]	0,026	$\sqrt{100}$ particles/cell
E ₀ [V/m]	2·10 ⁵	✓ 255 x 1000 cells
B ₀ [G]	200	
$\Delta X = \Delta Y [m]$	2·10 ⁻⁵	High Performance Computing
∆t [s]	(1 to 4)·10 ⁻¹²	✓ max tested: 1200 CPUs
t [µs]	10	✓ MPI library
L _O [cm]	0,5	 ✓ HUPD IIDIALY ✓ HYPRE/PetSc solvers
L _R [cm]	2	 ✓ Restart function
L _z [cm]	1	

10 µs + 360 CPUs = <u>32 hours</u>

Instability highlighting ^[1]

[Film of plasma potential]

^[1] V. Croes, T. Lafleur, Z. Bonaventura, A. Bourdon, P. Chabert, *Plasma Sources Sci. Tech.* 26, 034001 (2017)

Instability characteristics

$$\frac{\text{Case}}{n_0/4} \frac{\lambda \text{ (mm)}}{2.0} \frac{f(\text{MHz})}{2.5} \frac{V_{\text{ph}} (10^3 \text{ m} \cdot \text{s}^{-1})}{5.0} \\ \frac{n_0/4}{2.0} \frac{2.5}{5.0} \frac{5.0}{5.0} \\ \frac{n_0}{1.0} \frac{1.0}{5.0} \frac{5.0}{5.0} \\ \frac{4n_0}{0.7} \frac{0.7}{10.0} \frac{5.0}{5.0} \\ \hline \frac{\text{Case}}{n_0/4} \frac{|\delta \Phi|/T_e (\%)}{25} \\ \frac{n_0}{12} \frac{17}{25} \frac{25}{5.5} \\ \frac{4n_0}{12} \frac{12}{15.5} \frac{15.5}{5.5} \\ \hline \frac{\text{Analytical values}}{2 \text{ (ase} \lambda \text{ (mm))}} \frac{f(\text{MHz})}{f(\text{MHz})} \frac{V_{\text{ph}} (10^3 \text{ m} \cdot \text{s}^{-1})}{N_{\text{ph}} (10^3 \text{ m} \cdot \text{s}^{-1})} \\ \frac{n_0}{0.8} \frac{5.8}{5.8} \frac{5.011}{5.011} \\ \frac{4n_0}{0} \frac{0.4}{11.6} \frac{15 \Phi |/T_e (\%)}{5.011} \\ \hline \frac{\text{Case}}{100} \frac{|\delta \Phi|/T_e (\%)}{100} \frac{|\delta \Phi|/T_e (\%)}{5.0} \\ \hline \end{array}$$

33

33

33

Measured Values

- /

- /- -- - .

33

33

33

5.0

5.0

5.0

5.011

5.011

5.011

Parametric study o density ($n_0 = 3.10^1$

→ Confirming kine

^[1] V. Croes, T. Lafleur, Z. Bonaventura, A. Bourdon, P. Chabert, *Plasma Sources Sci. Tech.* 26, 034001 (2017) ^[2] T. Lafleur, S.D. Baalrud, P. Chabert, *Phys. Plasmas* 23, 053503 (2016)

n₀/4

 \mathbf{n}_0

 $4n_0$

Electron drift instability

lon trapping ^[1]

^[1] V. Croes, T. Lafleur, Z. Bonaventura, A. Bourdon, P. Chabert, *Plasma Sources Sci. Tech.* **26**, 034001 (2017) ^[2] T. Lafleur, S.D. Baalrud, P. Chabert, *Phys. Plasmas* **23**, 053502 (2016)

Anomalous electron transport

Mobility definitions

^[1] T. Lafleur, S.D. Baalrud, P. Chabert, *Phys. Plasmas*, **23**, 053502 (2016)

Anomalous electron transport

Anomalous electron cross-field mobility ^[1,2]

^[1] V. Croes, T. Lafleur, Z. Bonaventura, A. Bourdon, P. Chabert, *Plasma Sources Sci. Tech.* **26**, 034001 (2017) ^[2] T. Lafleur, S.D. Baalrud, P. Chabert, *Phys. Plasmas* **23**, 053503 (2016)

Anomalous electron transport

Friction Force at saturation, \mathbf{R}_{ei} ^[1]

Effective mobility at saturation, $\mu_{\text{eff}}^{\text{sat [1]}}$

$$\mu_{eff} = \frac{\frac{q}{m\nu_m}}{1 + \frac{\omega_{ce}^2}{\nu_m^2}} \left[1 - \frac{\omega_{ce}}{\nu_m} \frac{\langle n_e E_y \rangle}{n_e E_z} \right] \qquad \longrightarrow \qquad \mu_{\text{eff}}^{sat} = \frac{\frac{1}{m_e \nu_m}}{1 + \frac{\omega_{ce}^2}{\nu_m^2}} \left[|q| + \frac{\omega_{ce}}{\nu_m} \frac{|\mathbf{R}_{ei}|}{n_e E_0} \right]$$

Case	Measured Values		Analytical Values			
(m ² V ⁻¹ s ⁻¹)	μ _{pic}	$\mu_{ m eff}$	${\pmb \mu}_{eff}^{sat}$	µ _{classical}		
n ₀ /4	6.0	5.9	4.23	0.19		
n ₀	5.8	5.6	4.23	0.19		
4n ₀	6.1	6.0	4.23	0.19		
plasma density: $\mathbf{n}_0 = 3 \cdot 10^{17} \mathrm{m}^{-3}$						

Available models in LPPic2D

✓ Constant re-emission rate
 ✓ Linear re-emission rate ^[1,2,3]
 ✓ J.R.M. Vaughan ^[4]

$$\begin{split} \gamma &= \gamma_0 \\ \gamma &= f(\epsilon_e) \\ \gamma &= f(\epsilon_e, \theta_e) \end{split}$$

^[1] A. Héron, J.C. Adam, *Phys. Plasmas* **20**, 082313 (2013)
 ^[2] A.N. Smirnov, Y. Raitses, N.J. Fisch, *IEEE Trans. Plasma Sci.* **34** 132 (2006)
 ^[3] S. Barral, K. Makowski, Z. Peradznski, N. Gascon, M. Dudeck, *Phys. Plasmas* **10** 4137 (2003)
 ^[4] J.R.M. Vaughan, *IEEE Trans./Electron Devices*, 36:1963-1967 (1989)

Constant re-emission rate

 \checkmark Used as verification with plasma drop equation ^[1]

$$\Delta \Phi_s = \frac{k_B T_{e_{//}}}{e} \cdot ln \left[(1 - \bar{\sigma}) \sqrt{\frac{m_i}{2\pi m_e}} \right]$$

Parameter Measured Values		Analytical Values			
σ_{constant}	$\mathbf{T}_{\mathrm{e//}}\left(\mathrm{eV} ight)$	$\Delta \phi_{\text{tot}}$ (V)	Δ $φ$ _{p-s} (V)	$\Delta \phi_{s} \left(V ight)$	$\Delta \phi_{\text{tot}}$ (V)
0.5	2.5	12	1.25	11.5	12.75
0.92	42	125	21	116	137
0.99	40	60	20	26.9	46.9

^[1]S. Barral, K. Makowski, Z. Peradznski, N. Gascon, M. Dudeck, *Phys. Plasmas* **10** 4137 (2003)

Linear model: Identification of 3 Regimes

 \Box Parametric study along ϵ^*

□ Space Charge Limited/Saturation regimes (SCL) ^[1,2]

□ Relaxation Sheath Oscillations (RSO) ^[1]

^[1] D. Sydorenko, I.D. Kaganovich, Y. Raitses, A.I. Smolyakov, *Phys. Rev. Let.* **103** 145004 (2009) ^[2] S. Barral, K. Makowski, Z. Peradznski, N. Gascon, M. Dudeck, *Phys. Plasmas* **10** 4137 (2003)

Space Charge Limited regime^[1,2]

^[1] D. Sydorenko, I.D. Kaganovich, Y. Raitses, A.I. Smolyakov, *Phys. Rev. Let.* **103** 145004 (2009) ^[2] S. Barral, K. Makowski, Z. Peradznski, N. Gascon, M. Dudeck, *Phys. Plasmas* **10** 4137 (2003)

Regime II: Relaxation Sheath Oscillations ^[1]

 \Rightarrow Theoretic model in development

^[1] D. Sydorenko, I.D. Kaganovich, Y. Raitses, A.I. Smolyakov, *Phys. Rev. Let.* **103** 145004 (2009)

Effect on the instability

 \Rightarrow No impact on electron drift instability characteristics

Effect on the anomalous transport

Effect on the anomalous transport

Measured Values					Analytical Values		
Regime	μ _{pic} (m²V ⁻¹ s ⁻¹)	µ _{eff} (m²V⁻¹s⁻¹)	µ _{classical} (m²V⁻¹s⁻¹)	<t<sub>e> (eV)</t<sub>	µ _{eff} ^{sat} (m²V⁻¹s⁻¹)	µ _{classical} (m²V⁻¹s⁻¹)	
I	5.6	4.1	0.2	40	3.4	0.20	
П	5.8	4.6	0.2	44	3.6	0.21	
111	5.6	5.4	0.2	48	3.7	0.22	
no SEE	5.8	5.6	0.2	50	4.2	0.22	

RSO highlighting

[Film in Regime II]

Modeling emissions from BN walls

Alternative propellants

First results

- Recent implementation:
 - ✓ LPPic2D's capacity to change gas easily
 - ✓ Efficient use of *Ix-cat* database ^[1]
 - ✓ Ar, Xe, Kr, He
- □ Allowed verification using CCP Helium benchmark ^[2]
- □ First results seems to confirm kinetic theory ^[3]
 - ✓ Instability characteristics
 - $\checkmark\,$ Role of collisions seems auxiliary

^[1] Lxcat, Cross sections extracted from Program Magboltz, v.7.1 (June 2004)
 ^[2] M.M. Turner, A. Derzsi, Z. Donko, D. Eremin, S.J. Kelly, T. Lafleur, T. Mussenbrock, *Phys. Plasmas*, **20** (2013)
 ^[3] T. Lafleur, S.D. Baalrud, P. Chabert, *Phys. Plasmas* **23**, 053503 (2016)

Dielectric walls

Model implementations

Conclusion

- □ What is observed?
 - ✓ Electron drift instability
 - Enhanced electron mobility
- □ Anomalous mobility agrees well with the correlation term
 - ✓ Can be expressed as a friction force, R_{ei}
 - ✓ Analytical expression at saturation, μ_{eff}^{sat}
- □ Secondary electron emission
 - ✓ SCL and RSO regimes
 - ✓ Lowers electron temperature
 - ✓ Entangled effect on anomalous transport
 - ✓ Mechanisms ?
- □ Alternative propellants & dielectric walls
 - ✓ Seems to confirm kinetic theory
 - Effects on anomalous transport ?

Acknowledgements

Financed by

Safran Aircraft Engines **Association Nationale** Safran Group de la Recherche et Technologie

Laboratoire de Physique des Plasmas

Thank you!

Questions?

vivien.croes@lpp.polytechnique.fr

Verification (Helium capacitive benchmarks^[3])

^[3] M.M.Turner, A.Derzsi, Z.Donko, D.Eremin, S.J.Kelly, T.Lafleur, T.Mussenbrock, Phys. Plasmas, **20** (January 2013)

Particle-In-Cell algorithm^[1]

3

Vertical boundary influence

Alternative propellants

Effects on the instability

Measured Values							
Propellant	λ (mm)	<i>f</i> (MHz)	V _{ph} (10 ³ m⋅s ⁻¹)	 δn_e /n _e (%)	 δΦ /T _e (%)		
Хе							
Ar							
fAr							
fKr							
Analytical values							
Propellant	λ (mm)	<i>f</i> (MHz)	V _{ph} (10 ³ m⋅s ⁻¹)	δn _e /n _e (%)	 δΦ /T _e (%)		
Хе							
Ar							
fAr							
fKr							

