EXPERIMENTAL AND THEORETICAL STUDY OF
ION BEAM NEUTRALIZATION BY PLASMA

|.D. Kaganovich, A. Stepanov, J. Carlsson, E. Tokluoglu,
E.A. Startsev, K. Hara

Princeton Plasma Physics Laboratory, USA

A. Smolyakov, I. Romadanov
University of Saskatchewan, Canada
D. Sydorenko
Department of Physics, University of Alberta, Canada

"‘T" m UNIVERSITY OF G| UNIVERSITY OF
™ SASKATCHEWAN @ ALBERTA



Outline

Physics of ion beam neutralization by plasma

The two-stream instability causing a significant
enhancement of the plasma return current and
defocusing of the beam.

The two-stream instability of an intense electron beam
propagating in finite-length plasma with nonuniform
density.
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and transport in ExB devices.

Atinne nf inctahilitince
alivlio VUl l11iowtauvliii LICD



Neutralized Drift Compression for Production of High

Intensity Beam Pulses.
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NDCX-Il is a Versatile Accelerator that can Achieve
Record-High Beam Brightness (1/3)

NDCX-Il is an $11M ARRA-funded project.
Custom long- Water-filled  Oil-filled ATA

Li* ion pulse voltage ATA Blumlein transmission 7
iniect sources voltage lines o
or . ade SOUICEs Il |

Final focus
solenoid and
target chamber

ATA induction B
cells with Neutralized drife"™
pulsed compression line
2.5 T solenoids with PPPL
plasma sources




NDCX-Il iIs a Versatile Accelerator can Achieve
Record-High Beam Brightness (2/3)

 Since June 2014, LBNL, LLNL, and PPPL researchers have brought NDCX-II
to full operation

 Pulselength: 2 ns, spot size 1.4 mm, 1.2 MeV, Li*

« Now: He*, Peak currents: ~0.6 A (~40 A/cm?)

« We are now tuning to reach the design goals:

e 1ns,1mm,>50A, for volumetric heating up to 1 eV

Peter Seidli, A. Persaud?, J.J.
Barnard?, R.C. Davidson:3, A.
Friedman?, E.P. Gilson3, Grote?, P.
Hosemann, Q. Jil, I. Kaganovichs3, A.
Minori4, W.L. Waldron?, T.
Schenkell

ILBNL, 2LLNL, 3PPPL, 4UCB




lon Beam Charge Neutralization by Ferroelectric Plasma

Sources
Charge neutralization has to be near- = | | with
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Experiments on the Princeton Advanced Test Stand

] Neutralization experiment
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A high-perveance, 38 keV Ar+ ion beam was propagated through the FEPS plasma.
The effects of charge neutralization were inferred from time-resolved measurements
of the transverse beam profile.

Charge neutralization fraction of 98% was measured — transverse electrostatic
potential of the ion beam reduced from 15V to 0.3V

ES confinement of electrons in the beam is required for neutralization — the beam
was neutralized by “cold” electrons (E<0.3 eV).



Observed neutralization efficiency requires presence of very

cold electrons E

. <0.3 eV
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A. Stepanov et al, Phys. Plasmas (2016)

Selective electron trapping
'/

(3) Hottest trapped
electron escapes

(1) New cold

electron arrives ‘g.
*r—>

(2) Trapping r
potential decreases

FEPS plasma T, is likely a few eV, so
how can electrons in the beam have
E,i,<0.3 eV)?

— Selective trapping of the coldest
electrons from the plasma in the beam.



Comparison of neutralization methods

Charge neutralization %

> Hot filament intercepting the beam
(Scaled Final Focus Experiment)* 80%

> Gas neutralization: e- produced by ion impact ionization of background 83%,
neutrals (Princeton Advanced Test Stand)

96%

> Plasma plug: a localized region of plasma and short beam pulse
(Neutralized Transport Experiment)**

volum . >98%

VOoiu llepaSi“a
Test S

> Neutralization by
(Princeton Advanced tand)

* S.A. MacLaren et al, Physics of Plasmas 9, 1712 (2002)

** E. Henestroza et al, PRSTAB 7, 083501 (2004)

Review, |. Kaganovich et al Phys. Plasmas (2010),

W. Berdanier, et al. PoP (2015), A. Stepanov et al, Phys. Plasmas (2016)



Theory of Neutralization by Dense Plasma

Practical consideration: what plasma sources are needed for 100000
times simultaneous neutralized drift compression?

Developed analytical theory of degree of charge and current
neutralization for dense and tenuous plasma, including effects of
magnetic field.

d [ Bds
=
at Ez

Alternating magnetic flux generates inductive electric field, which accelerates
electrons along the beam propagation direction.

p=mV,212e V, ~Vyn,In, g =mv,2(n,/n ) 12

, |. Kaganovich et al Phys. Plasmas (2001), 10



Two-stream instability may significantly affect
beam propagation in background plasma

Left: No two-stream instability;

Right: effect of two-stream instability
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Plasma waves lead to bunching of the ion beam and accelerate plasma

electrons to beam velocity

Longitudinal beam density profileatt =12 ns (a) and t = 18 ns (b) and color
plots of beam density att =18 ns (c) and t =40 ns (d). E. Startsev et al, EPJ

Web of Conferences 59, 09003 (2013), E. Tokluoglu (2015)
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Enhanced return current density reverses the
azimuthal magnetic field

'\ |- ‘Self magnetic field of

\ ‘the ion beam
- propagating in plasma

' Top: without two-stream
“instability B~10G
" Bottom with two-stream
instability B~-100G

E. A. Startsev, et al,

z Nucl. Instrum. Methods
1A 773,80 (2014)
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Transverse Defocusing of the Beam due to Two-

Ctranam Inctahility
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Fig. Beamlet Density Contour at t = 100 ns (1 m of propagation), Bottom:
Beam Density Contour at t = 300 ns (3 m of propagation). NDCX-Il beam
parameters for apertured beam r,=1 mm.

E. Tokluoglu and I. Kaganovich, Phys. Plasmas 22, 040701 (2015)



Electron Beam is Generated by lon-Electron Two Stream
Instability and Propagates Ahead of the lon Beam
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Electron Beam is Generated by lon-Electron Two Stream
Instability and Propagates Ahead of the lon Beam

Electric field
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Outline

 The two-stream instability of an intense electron beam
nraonaaogating in finite-lenath nlasma with nonuunifaorm
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density. Acceleration of bulk electrons due to two-
stream instability.
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Simulations by D. Sydorenko
snapshot 0043, t = 421.81307 ns
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snapshot 0001, t= 19.97859ns
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The global mode is excited with the same frequency

Note that the frequency of the global
mode excited by the beam is the same
everywhere in the system.

The calculated spectrum
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Revisiting Pierce Instability: Bandwidth Structure of
Growth Rate of Two-Stream Instability of an Electron Beam
Propagating in a Bounded Plasma

 The two-stream instability of an intense electron beam
propagating in finite-length plasma is revisited.

e Itis shown that the growth rate in such a system is
much smaller than that of infinite plasma or finite size
plasma with periodic boundary conditions.
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, |. Kaganovich et al Phys. Plasmas (2016) 21



Pierce Model (1944)

Electron beam is injected into ion background of equal
density to the electron beam.

Electrodes with fixed potential set potential at boundaries.
Instability develops if ffi’pr /v, >
This limits the current propagation through the gap.
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|. Kaganovich, D. Sydorenko

Electron beam is injected into electron and ion
background of equal density.

Electrodes with fixed potential set potential at
boundaries.

Instability is very different from textbook calculation
for periodic b. c.

| 1/3
We.o (Mo Men)
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Multi-Dimensional Kinetic
Simulations of Instabilities
and Transport in ExB Devices

J. Carlsson, I.D. Kaganovich, A.V. Khrabrov, Y. Raitses

Princeton Plasma Physics Laboratory, NJ

A. Smolyakov, I. Romadanov
University of Saskatchewan, Canada
D. Sydorenko
University of Alberta, Canada

g% UNIVERSITY OF B vy o
™ SASKATCHEWAN G

ALBERTA

=~ PRINCETON
PLASMA PHYSICS
LABORATORY

25



EVDF (rel.un.)
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PARTICLE-IN-CELL CODES CAN RESOLVE COMPLEX
MICRO PHYSICS AND COMPLEX GEOMETRY

An electrostatic parallel, implicit, 1D PIC code EDIPIC.
3D LSP code also includes electromagnetic and electrostatic modules.

We implemented anisotropic electron-atom scattering, ionization, and

excitation as well as electron-ion and electron-electron collisions, electron
induced emission, external circuit.

New Electrostatic PETSc Solvers (original solver did not converge).

0 0.1 0.2

0
wy (eV)
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Electric field (kV/cm)

VERIFICATION AND VALIDATION OF CODES (1/3)

E. A. Den Hartog, D. A. Doughty, and J. E. Lawler, "Laser optogalvanic and
fluorescence studies of the cathode region of a glow discharge”, Phys. Rev.
A 38, 2471 (1988).
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Anomalous transport in Penning-type EXB configuration
Y. Raitses PPPL |EPC 2015, 307

Device creates hot electrons in the center
and cold on a periphery. mel | Rl RF-plasma
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* Anomaly of electron cross-field transport, v_ / v, ~ 10-100



Anomalous transport in 2D is very robust and is
much larger than collisional transports and in 1D.

Density profile (left) is peaked in the center, similarly to experimentally observed.
Current streamlines on top of potential contours (middle) and electron-pressure
contours (right) at 2 ps.
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Spiral structure of current streamlines indicate that current is driven
by slow, narrow but long perturbations similarly to ETG in tokamaks.

Current is driven by density gradient not electric field, similarly to
experimentally observed!
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Anomalous transport in 2D is very robust, Hall
parameter is about 40 and is similar to
experimental value.

Hall parameter in simulations (left) and experimental data (right).

B=100G, P=0.2mTorr. | .
50 1 | 1 1 0
: : : : 70 [ ] 0
5 : : &0 O
40 T .—-'//.H‘h\“"--,,,‘___“ .................... ................... ................. i
: T R -
| N R
: 30 oo e S \\\ ........... i g - N ] # Low pressure
3 : : N = = s = _—
HE.. : : ; : = 30 + h . High pressure
3 20 T — — o _ 20 4
: : : : 10
10k e R S S i
: : : : ]
0 2 4 6 8 10 12
. , . . Distance from the axis, cm
8.0 0.1 0.2 0.3 0.4 0.5
r (cm)

Variation of Hall parameter with parameters:
Magnetic field quadrupled to 400 Gauss: 46
Zero gas pressure: 20

Beam radius quintupled to 500 nm: 59

Number of particles quadrupled to 100 per cell per species: 34 o



Continuous mode excitation from Simon Hoh to
low hybrid
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A. Smolyakov, et al PPCF (2016),

|. Ramadanov, et al Phys. Plasmas (2016)
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CONCLUSIONS

We have customized LSP, called PPPL-LSP, by adding state-of-the
art collision models and implemented a direct electrostatic field
solver (to avoid unphysical behavior due to large field residuals).

PPPL-LSP had been successfully validated for a glow discharge
and benchmarked against the EDIPIC code.

PPPL-LSP is routinely ran on hundreds of processor cores.

PIC simulations of Penning discharge show spoke formation and
anomalous transport similar to experimental data.

3D simulations of Hall thruster are underway.
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