

Hall Thruster Virtual Lab

Francesco Taccogna Pierpaolo Minelli Francesco Michetti, Antonio Taurisano, Elio De Marinis

P.Las.M.I. Lab @ CNR-Nanotec

EnginSoft SPA

Bari

(Italy)

e-mail: <u>francesco.taccogna@cnr.it</u>

Plasma charged particles

Source coupling

- V(t): Poisson's equation

- I(t): Faraday's law

- P(t): Ampere's law

- Gas-discharges:
- DC
- RF-CCP
- RF-ICP
- DBD
- APMD

- Gas-discharges:
- DC - RF-CCP
- RF-ICP
- DBD
- APMD

- Gas-discharges:
- **Plasma-wall transition region:** Plasma Sheath
 - Divertor Region
 - Dusty plasmas

- Gas-discharges:
- Plasma-wall transition region
- Laser-induced plasmas in liquid

HT VIRTUAL LAB

Hall Thruster PIC Models @ CNR-Nanotec_PLasMI lab

Model	Year	Assumptions	Findings
1D(r) channel	2006	injection; E _z ; v _{anomalous}	SEE-instability
2D(r,z) channel	2003	$\nu_{anomalous}$	acceleration mechanism
2D(r,θ) channel	2007	injection; E _z	r- θ correlation
$3D(r,\theta,z)$ channel	2011	- geometrical scaling - no scaling	r-θ-z correlation
3D(x,y,z) NFplume	2014	geometrical scaling	Anomalous transport in NFPElectron cooling
3D(x,y,z) Channel+NFplume	2016	geometrical scaling	channel-plume coupling
3D(x,y,z) Hybrid Plume	2000	Fluid-Boltzmann electrons PIC ions	CX and IEDFMultichannel configuration

1D(r) Model

o 1D(r) / acceleration region

- Domain: from inner to outer wall
- Initial condition: neutral uniform Maxwellian plasma
- Injection condition: particle leaving axial domain are replaced by new particles
- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic size, ion mass, vacuum permittivity
- Assumption: fixed axial electric field E_{z}
 - anomalous collisions (azimuthal fluctuation contribution)
- Numerical parameter: N_r =2000 (grid points)
 - $N_p/N_r=200$ (particles per cell)

1D(r) Results

2 different regimes have been simulated

1D(r) Results

$2D(r,\theta)$ Model

o 1D(r) / acceleration region

$o 2D(r,\theta) / acceleration region$

- Domain: radial from inner to outer wall;
 - azimuthal: $\pi/16$
- Initial condition: neutral uniform Maxwellian plasma
- Injection condition: particle leaving axial domain are replaced by new particles
- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic size, ion mass, vacuum permittivity
- Assumption: fixed axial electric field Ez
- Numerical parameter: $N_g = N_r x N_{\theta} = 800x512$ (grid points) $N_p / N_g = 50$ (particles per cell)

- Azimuthal fluctuations characterized by a wavelenght λ_{θ} =3 mm. The azimuthal modulation is not confined in the bulk region but it reaches the lateral walls modulating even the sheaths that are no longer mono-dimensional.

- Space charged saturation regimes are periodically detected for very short time.

- The azimuthal fluctuation has a frequency of about 3 MHz.

Tracer particle orbit approach: stochastic web map

Combination of particle trapping in eddies for long times and jumps over several sets of eddies in a single flight leading to anomalous diffusion coming from space and time correlations (interaction between electron dynamics and coherent structures).

2D(r,z) Model

o 1D(r) / acceleration region o 2D(r,θ) / acceleration region o 2D(r,z) / discharge channel

- Domain: radial from inner to outer wall; - axial from anode to exit plane
- Initial condition: start from scratch
- Injection condition: steady-state electron current control method from exit plane

 $\Delta n_{e,ini} = \Delta n_e^{anode} - \Delta n_i^{anode} - (\Delta n_i^{exitplane} - \Delta n_e^{exitplane})$

- Field solve: Dielectric surface conductivity neglected

- electron-atom MCC module
- electron-wall SEE module
- Realistic size, ion mass, vacuum permittivity
- Assumption: fixed potential (cathode) at the exit plane
 anomalous collisions (azimuthal fluctuation contribution)
- Numerical parameter: $N_g = N_r x N_z = 1000 \times 1600$ (grid points)
 - $-N_p^{\circ}/N_g=50$ (particles per cell)

2D(r,z) Results

All the most important features of the Hall discharge have been reproduced with a good agreement with measurements.

The axial distribution shows the acceleration occurring in the last fifth part of the channel length where the electron temperature reaches its maximum value of Te=40 eV at z=2.2 cm.

The radial behaviour shows a very slight asymmetry between inner and outer wall. Inverted sheaths are detected in the acceleration region where a strong secondary electron emission due to the high ExB drift occurs.

2D(r,z) Results

$3D(r,\theta,z)$ Model

o 1D(r) / acceleration region $o 2D(r,\theta) / acceleration region$ o 2D(r,z) / discharge channel

o 3D(r,θ,z) / discharge channel

- Domain: radial from inner to outer wall;
 - azimuthal: $\pi/2$
 - axial from anode to exit plane
- Initial condition: start from scratch
- Injection condition: steady-state electron current control method from exit plane

 $\Delta n_{e,ini} = \Delta n_e^{anode} - \Delta n_i^{anode} - (\Delta n_i^{exitplane} - \Delta n_e^{exitplane})$

- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic ion mass, vacuum permittivity
- Assumption: fixed potential (cathode) at the exit plane
 - geometrical scaling
- Numerical parameter: $N_g = N_r x N_{\theta} x N_z = 100x128x160$ (grid points) $N_p / N_g = 50$ (particles per cell)

3D(r,θ,z) Geometrical Scaling

Reduction of size *L* keeping constant most relevant non-dimensional parameters:

 \ni the discharge still keeps its plasma characteristics:

Length	L = fL*	
Magnetic field	$B = f^{-1} B^*$	
Neutral density	$n_G = f^{-1} n_G^*$	
Current	$I_{\rm D} = f^{-2} I_{\rm D}^{*}$	

1.01729

2

2.5

1.43459

azimuthal angle θ (rad)

3D(x,y,z) Model

o 1D(r) / acceleration region $o 2D(r,\theta) / acceleration region$ o 2D(r,z) / discharge channel $o 3D(r, \theta, z) / discharge channel$ o 3D(x,y,z) / discharge channel + near-field plume

- Domain: transverse x,y: 16 cm
 - axial from anode to 6 cm from exit plane
- Initial condition: start from scratch
- Injection condition: steady-state electron current control method from cathode

- Field solve: complete (even in the dielectric)

- electron-atom MCC module
- ion-atom TPMC module
- electron-wall SEE module
- Realistic ion mass, vacuum permittivity
- Assumption: fixed potential at outflow boundaries
 - geometrical scaling
- Numerical parameter: $N_g = N_r x N_{\theta} x N_z = 320x320x160$ (grid points)

 $-N_p^{\circ}/N_g=40$ (particles per cell)

 $\nabla \cdot \left[\varepsilon \nabla \phi \right] = 0$

3D(x,y,z) Results

C. L. Ellison, Y. Raitses, and N. J. Fisch, IEEE TPS 2011

Thruster start-up reveals a bright ionization period.

3D(x,y,z) Results

3D(x,y,z) Hybrid Model

o 1D(r) / acceleration region

 $o 2D(r,\theta) / acceleration region$

o 2D(r,z) / discharge channel

o 3D(r,θ,z) / discharge channel

o 3D(x,y,z) / discharge channel + near-field plume

o 3D(x,y,z) / far-field plume

- Domain: - transverse x,y: 0.5 m

- 1m from exit plane

- Initial condition: start from scratch

- Injection condition: prescribed ion current from exit plane (current distribution from discharge channel output)

- Field solve: quasi-neutrality $n_e = n_i$ (inversion of Boltzmann relation)

$$\phi(x, y, z) = \phi_0 - \frac{kT_{e,0}}{q(\gamma - 1)} \left[1 - \left(\frac{n_e(x, y, z)}{n_{e,0}} \right)^{\gamma - 1} \right]$$

- ion-atom TPMC module

- Electron: fluid-like (adiabatic relation γ =1.3)

$$T_e(x, y, z) = T_{e,0} \left(\frac{n_e(x, y, z)}{n_{e,0}} \right)^{\gamma - 1}$$

- Numerical parameter: - $N_g = N_r x N_{\theta} x N_z = 100 x 100 x 200$ (grid points) - $N_p / N_g = 20$ (macroions per cell)

3D(x,y,z) Cluster Hybrid Results

3D(x,y,z) Cluster Hybrid Results

✓ GUI for user friendly (by EnginSoft) (see demonstration at poster session)

Conclusions

 Importance of having a detailed representation up to a kinetic level: deviation from Maxwellian has important macroscopic effects (instability, wall losses and sheath, ionization rate, etc.)

o PIC-MCC easy to implement / modular / versitile / allows to reproduce in detail plasma-boundary interaction / good scalability by HPC

o Low-dimensionality models help to understand limitations of using fixed external parameters (that otherwise play a relevant role due to strong correlation among the different dimensions)

o PIC-MCC is helping us to understand fundamental low T plasma phenomena but our intuition is important for the interpretation of results