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Particle-based Plasma Virtual Lab

o Gas-discharges: 
o Plasma-wall transition region: - Plasma Sheath

- Divertor Region
- Dusty plasmas



Particle-based Plasma Virtual Lab

o Gas-discharges: 
o Plasma-wall transition region
o Laser-induced plasmas in liquid
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Hall Thruster PIC Models @ CNR-Nanotec_PLasMI lab

Model Year Assumptions Findings
1D(r) channel 2006 injection;

Ez;
νanomalous

SEE-instability

2D(r,z) channel 2003 νanomalous acceleration mechanism

2D(r,θ) channel 2007 injection;
Ez

r-θ correlation

3D(r,θ,z) channel 2011 - geometrical scaling
- no scaling

r-θ-z correlation

3D(x,y,z) NFplume 2014 geometrical scaling - Anomalous transport in NFP
- Electron cooling

3D(x,y,z)
Channel+NFplume

2016 geometrical scaling channel-plume coupling

3D(x,y,z) Hybrid Plume 2000 Fluid-Boltzmann electrons
PIC ions

- CX and IEDF
- Multichannel configuration



1D(r) Model
o 1D(r) / acceleration region
- Domain: from inner to outer wall
- Initial condition: neutral uniform Maxwellian plasma
- Injection condition: particle leaving axial domain are replaced by new particles

- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic size, ion mass, vacuum permittivity
- Assumption: - fixed axial electric field Ez

- anomalous collisions (azimuthal fluctuation contribution)
- Numerical parameter: - Nr=2000 (grid points)

- Np/Nr=200 (particles per cell)

∂φ
∂r

=
σ
ε0



1D(r) Results
2 different regimes have been simulated

Ez=100 V/cm Ez=300 V/cm
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1D(r) Results

Near-wall conductivity



2D(r,θ) Model
o 1D(r) / acceleration region
o 2D(r,θ) / acceleration region
- Domain: - radial from inner to outer wall;

- azimuthal: π/16
- Initial condition: neutral uniform Maxwellian plasma
- Injection condition: particle leaving axial domain are replaced by new particles

- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic size, ion mass, vacuum permittivity
- Assumption: - fixed axial electric field Ez
- Numerical parameter: - Ng=NrxNθ=800x512 (grid points)

- Np/Ng=50 (particles per cell)

∂φ
∂r

=
σ
ε0



2D(r,θ) Results
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- Azimuthal fluctuations characterized by a wavelenght lθ=3 mm.
The azimuthal modulation is not confined in the bulk region but it
reaches the lateral walls modulating even the sheaths that are no
longer mono-dimensional.
- Space charged saturation regimes are periodically detected for
very short time.
- The azimuthal fluctuation has a frequency of about 3 MHz.
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Np=107

Eq=aEzåncos(kqq-wnt)
- n=4
- a=5
- w0=2pn0 (n0=3 GHz)
- kq=28 rad-1

kicked rotor:

trapped
orbit

Levy
flight

Combination of particle trapping in eddies for long times and jumps over several sets of
eddies in a single flight leading to anomalous diffusion coming from space and time
correlations (interaction between electron dynamics and coherent structures).

Tracer particle orbit approach: stochastic web map



2D(r,z) Model
o 1D(r) / acceleration region
o 2D(r,θ) / acceleration region
o 2D(r,z) / discharge channel
- Domain: - radial from inner to outer wall;

- axial from anode to exit plane
- Initial condition: start from scratch
- Injection condition: steady-state electron current control method from exit plane

- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic size, ion mass, vacuum permittivity
- Assumption: - fixed potential (cathode) at the exit plane

- anomalous collisions (azimuthal fluctuation contribution)
- Numerical parameter: - Ng=NrxNz=1000x1600 (grid points)

- Np/Ng=50 (particles per cell)

∂φ
∂r

=
σ
ε0

Δne,inj = Δne
anode −Δni

anode − (Δni
exitplane −Δne

exitplane )



2D(r,z) Results
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All the most important features of the Hall
discharge have been reproduced with a good
agreement with measurements.

The axial distribution shows the acceleration
occurring in the last fifth part of the channel
length where the electron temperature reaches its
maximum value of Te=40 eV at z=2.2 cm.

The radial behaviour shows a very slight
asymmetry between inner and outer wall.
Inverted sheaths are detected in the acceleration
region where a strong secondary electron emission
due to the high ExB drift occurs.



2D(r,z) Results
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3D(r,θ,z) Model
o 1D(r) / acceleration region
o 2D(r,θ) / acceleration region
o 2D(r,z) / discharge channel
o 3D(r,θ,z) / discharge channel
- Domain: - radial from inner to outer wall;

- azimuthal: π/2
- axial from anode to exit plane

- Initial condition: start from scratch
- Injection condition: steady-state electron current control method from exit plane

- Field solve: Dielectric surface conductivity neglected
- electron-atom MCC module
- electron-wall SEE module
- Realistic ion mass, vacuum permittivity
- Assumption: - fixed potential (cathode) at the exit plane

- geometrical scaling
- Numerical parameter: - Ng=NrxNθxNz=100x128x160 (grid points)

- Np/Ng=50 (particles per cell)

∂φ
∂r

=
σ
ε0

Δne,inj = Δne
anode −Δni

anode − (Δni
exitplane −Δne

exitplane )



3D(r,θ,z) Geometrical Scaling

Reduction of size L keeping constant most relevant non-dimensional parameters: 

Ionization Confinementk
LnL N

eN =≈
σ

λ 1

€ 

ρL ,e

L
≈
ve
BL

= k

the discharge still keeps its plasma characteristics:

€ 

ω p >> ν eN

€ 

L >> λD

Unavoidably S/V changes !
keep under control SEE

Length L = fL*

Magnetic field B = f-1 B*

Neutral density nG =f-1 nG
*

Current ID = f-2 ID
*

ρL,e >> λD

(low collisionality)

(global quasi-neutrlity)

(unmagnetized sheath)

(unmagnetized ion)

(gradient driven instability)

(instability growth > ion convection)
€ 

∍

€ 

ρL,i >> L

€ 

L >> Lgrad

γ −1 >> τ i



3D(r,θ,z) Results



!

!

3D(r,θ,z) Results
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3D(r,θ,z) Results



3D(r,θ,z) Results



3D(x,y,z) Model
o 1D(r) / acceleration region
o 2D(r,θ) / acceleration region
o 2D(r,z) / discharge channel
o 3D(r,θ,z) / discharge channel
o 3D(x,y,z) / discharge channel + near-field plume
- Domain: - transverse x,y: 16 cm

- axial from anode to 6 cm from exit plane
- Initial condition: start from scratch
- Injection condition: steady-state electron current control method from cathode

- Field solve: complete (even in the dielectric)
- electron-atom MCC module
- ion-atom TPMC module
- electron-wall SEE module
- Realistic ion mass, vacuum permittivity
- Assumption: - fixed potential at outflow boundaries

- geometrical scaling
- Numerical parameter: - Ng=NrxNθxNz=320x320x160 (grid points)

- Np/Ng=40 (particles per cell)

∇⋅ ε∇φ[ ] = − ρ
ε0

Δne,inj = Δne
anode −Δni

anode



3D(x,y,z) Results

t=3.5 μs t=4 μs
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON PLASMA SCIENCE

Fig. 1. Visible light emission from a xenon plasma Hall thruster. The 7-µs snapshots with 4-µs exposure reveal the temporal behavior of Hall thruster ignition.
The image is interpolated for improved resolution over the 64 × 64 pixels present in each frame. Color is artificial, with intensity scaled as I0.75 to be nearly
linear while enhancing the range of the color table.
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3D(x,y,z) Results
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3D(x,y,z) Hybrid Model
o 1D(r) / acceleration region
o 2D(r,θ) / acceleration region
o 2D(r,z) / discharge channel
o 3D(r,θ,z) / discharge channel
o 3D(x,y,z) / discharge channel + near-field plume
o 3D(x,y,z) / far-field plume
- Domain: - transverse x,y: 0.5 m

- 1m from exit plane
- Initial condition: start from scratch
- Injection condition: prescribed ion current from exit plane (current distribution from discharge channel
output) 
- Field solve: quasi-neutrality ne=ni (inversion of Boltzmann relation)

- ion-atom TPMC module
- Electron: fluid-like (adiabatic relation γ=1.3)

- Numerical parameter: - Ng=NrxNθxNz=100x100x200 (grid points)
- Np/Ng=20 (macroions per cell)
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3D(x,y,z) Hybrid Results
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3D(x,y,z) Hybrid Results
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3D(x,y,z) Cluster Hybrid Results
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3D(x,y,z) Hybrid Results
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GUI for channel+NF plume Model
ü GUI for user friendly (by EnginSoft) (see demonstration at poster session)



Gas	propellant collision data

GUI for channel+NF plume Model
ü GUI for user friendly (by EnginSoft)



Electron-wall SEE	data

GUI for channel+NF plume Model
ü GUI for user friendly (by EnginSoft)



Import	Magnetic field map

GUI for channel+NF plume Model
ü GUI for user friendly (by EnginSoft)



Output	data

GUI for channel+NF plume Model
ü GUI for user friendly (by EnginSoft)



Output	data

GUI for channel+NF plume Model
ü GUI for user friendly (by EnginSoft)



Conclusions

o Importance of having a detailed representation up to a kinetic level:
deviation from Maxwellian has important macroscopic effects
(instability, wall losses and sheath, ionization rate, etc.)

o PIC-MCC easy to implement / modular / versitile / allows to reproduce in
detail plasma-boundary interaction / good scalability by HPC

o Low-dimensionality models help to understand limitations of using fixed
external parameters (that otherwise play a relevant role due to strong
correlation among the different dimensions)

o PIC-MCC is helping us to understand fundamental low T plasma
phenomena but our intuition is important for the interpretation of results


