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The magnetic nozzle

 A magnetic nozzle (MN) is a convergent-divergent magnetic field 
created by an axisymmetric set of coils or permanent magnets, to 
expand a hot plasma into a high velocity plume

 Channel and accelerate a plasma jet like a de Laval nozzle

 Generate magnetic thrust by converting thermal energy into 
directed kinetic energy

 Advantages:

 Contactless operation  no erosion, lower plasma losses

 Adaptable and throttleable by changing field shape and 
strength in-flight
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Key operational principles

 Electrons must be well magnetized to follow magnetic tubes

 Ions, however, need not be magnetized for MN operation

 Electron expansion sets up an electric field that opens ion trajectories 
and accelerates them downstream

 This mechanism converts electron thermal energy into ion kinetic 
energy

 Other mechanisms for ion acceleration exist: Influence of the type of 
internal energy in the process (electron/ion, isotropic/ anisotropic, …)     

 Different plasma sources   different MN physics
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Key operational principles

 The azimuthal electric currents that exist in the plasma interact 
with the magnetic field applied by the coils to create magnetic 
thrust by the action-reaction principle

 The plasma must detach from the closed magnetic lines 
downstream to form a free plasma plume

 Other physics that can play a role in the expansion:

 Electron thermodynamics (e.g., cooling rate) in the 
collisionless plasma

 Plasma-induced magnetic field in high 𝛽 (dense) plasmas

 Ion and/or electron energy ratio and anisotropy

 Turbulence, instabilities.

 A model is needed to understand the main physics and scaling 
laws behind plasma acceleration, confinement, thrust generation, 
and detachment.
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Helicon Plasma Thruster (HPT)

 Both the HPT and the ECRT are electrodeless RF plasma thrusters 
with MN

 The Helicon Plasma Thruster (HPT) consists of a cylindrical 
chamber plus an antenna, coils/permanent magnets, and a gas 
injector. Typical operation is at a few MHz, and 𝐵 = 200 − 2000 G

 High plasma densities can be achieved (up to 1019 − 1020 m−3)

 Prototypes exist in the 50 W – 50 kW range, but still have low 
thrust efficiency: 𝜂𝑇 < 0.2

7
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Electron cyclotron resonance thruster (ECRT)

 Similar to HPT in architecture, but resonant power absorption is 
the main heating mechanism. Typical operation is at a few GHz, 
and 900 G.

 The ECRT of ONERA runs at 50-100 W. Up-scaling is contemplated 
in the MINOTOR H2020 project.

 Promising thrust efficiencies of 16% were reported in early 
tests at very low power
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Key assumptions of basic model

Two-fluid, two-dimensional DIMAGNO plasma model:

 Plasma composed of cold ions and hot Maxwellian electrons

 Representative of HPT and ECRT plasma regimes

 Known plasma properties at the magnetic throat (i.e. inlet)

 Steady state: Τ𝜕 𝜕𝑡 = 0; axisymmetric: Τ𝜕 𝜕𝜃 = 0 expansion

 Collisionless plasma: Τ𝜆𝑚𝑓𝑝 𝑅 , Τ𝜈 Ω𝑒 ≪ 1 (*)

 Quasineutral plasma: Τ𝜆𝐷 𝑅 ≪ 1 𝑛𝑒 = 𝑛𝑖 = 𝑛

 Electron inertia neglected: Τ𝑚𝑒 𝑚𝑖 ≪ 1 (*)

 Full electron magnetization: Τℓ𝑒 𝑅 ≪ 1

 Ion magnetization number can be any order: Ω𝑖/(𝑐𝑠𝑅) = 𝑂(1)

 Negligible induced magnetic field, 𝛽 = Τ𝜇0𝑛𝑇𝑒 𝐵2 ≪ 1 (*)

 Simple closure relation for electrons: 
isothermal or polytropic 𝑇𝑒 ∝ 𝑛𝛾−1 (*)

(*) These assumptions have been (partially) dropped in recent works
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Basic model formulation

 The basic DIMAGNO model consists of the continuity and 
momentum equations of ions and electrons

 Magnetic streamfunction for 
solenoidal longitudinal B field

 Electrons and ions admit 
streamfunctions too: 𝜓𝑖 , 𝜓𝑒
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Electron model properties

 Electron equations reduce to algebraic conservation laws

 Electron and magnetic tubes coincide

 𝐺𝑒 and 𝐻𝑒 known from initial conditions

 The azimuthal current 𝑗𝜃𝑒 = 𝑒𝑛𝑢𝜃𝑒
on each magnetic/electron tube
is the 𝐸 × 𝐵 and diamagnetic drifts

 𝑢𝜃𝑒/𝑟 constant on each tube (isorotation)
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Ion model properties

 Ion continuity and momentum equations lead to:

 Ion mechanical energy and canonical angular 
momentum about the axis are conserved 
on ion tubes

1

2
𝑚𝑖𝑢𝑖

2 + 𝑒𝜙 = 𝐻𝑖 𝜓𝑖

𝑟𝑚𝑖𝑢𝜃𝑖 + 𝑒𝜓 = 𝐷𝑖 𝜓𝑖

 The supersonic ion equations constitute an hyperbolic system that 
can be integrated efficiently with the method of characteristics

 Ion tubes ≠ magnetic tubes: separation occurs, depending on ion 
magnetization

13
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Near-region expansion

 For isothermal case:   

 −𝑒𝜙∝ ln 𝑛 → ∞ at | Ԧ𝑟| → ∞

 which is nonphysical

 For non-isothermal: 
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𝛾=1  (isothermal)

Relative beam
focusing

 For isothermal case:   

−𝑒𝜙∝ ln 𝑛 → ∞ at | Ԧ𝑟| → ∞

which is nonphysical

 For polytropic case: 
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Thrust generation

 Plasma momentum equation (sum of ion 
plus electron momentum equations):

 Increment of axial plasma momentum is 
due to magnetic axial force. A globally-
diamagnetic azimuthal electric current is 
necessary for positive thrust. At 𝐵 = const
sections:

with 𝐹0 the axial momentum 
gained inside the source upstream

 Most magnetic thrust is generated early in 
the expansion, where most of the magnetic 
thrust force density concentrates.

Coil 

current

Plasma 

currents
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Magnetic tubes

Ion tubes

Ion separation and plasma detachment

 Ions are weakly magnetized in most of the MN. 

 Magnetic force on ions is then insufficient to deflect their 
trajectories to match magnetic lines, and the perpendicular 
electric field takes this task initially

 As ions gain momentum, the electric field becomes insufficient 
too for full deflection (except at the plasma edge, where the 
quasineutrality assumption enforces a perfect match)

 As a result, ions separate inward 
from the magnetic field inside the 
plume

 Separation continues leads to the 
formation of longitudinal electric 
currents downstream.
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Plasma detachment

 Ion separation increases dramatically after turning point of plasma 
jet  plasma detachment due to ion inertia

 When ions are hypersonic, the i-tubes become near-conical. 

 Very small amount of plasma momentum turns back toward the 
thruster.

 A higher ion magnetization leads to a later onset of detachment 
and therefore more divergence losses: heavy propellants and 
moderate magnetic fields are preferred
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Plume divergence

 A good detachment process is a requirement for high plume 
divergence efficiency, i.e. low jet power losses in the radial 
direction 

 Plume divergence efficiency function at 𝑩 = const sections is 
defined as

 MN operation improves for

 Low ion magnetization

 Low MN divergence rate 
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Effect of plasma-induced 𝑩 field
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 The diamagnetic nature of the hot plasma pushes 
against the applied magnetic field

 Induced field 𝐵𝑝 can be computed iteratively. 𝐵𝑝
tends to open and weaken magnetic nozzle

 Even if the plasma is low-𝛽 initially, the local 𝛽 grows 
rapidly and the induced 𝐵 becomes important

 Separatrices may form downstream, setting a neat 
boundary to de magnetic influence of the MN
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Thrust vector control

 Thrust vector control (TVC) is a necessity in electric propulsion 
(compensation of misalignments and drift of center of mass)

 Deflections of about 5 deg are desirable for station keeping; more 
deflection for enhanced mission flexibility

 Current solution: mount the thruster on a gimballed mechanism, 
and steer the whole device (heavy, cumbersome, expensive)

(Images by 
RUAG Space)
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Thrust vector control with 3D MN

 Several (𝑁 ≥ 3) coils tilted an angle 𝛼 are intertwined to create a 
vector magnetic nozzle (VECMAN) [Patent P201331790]

 The current through each coil is independently controlled to 
generate a non-symmetric, variable magnetic field

 The magnetic centerline can be directed in any direction 
inside the 𝑁-polygon of the figure (with negative currents, 
even outside of it)

 Centerline deflections 
of >10 deg are easily 
achievable

 Construction using a spool
and simultaneous winding,
or locking together three
coils with a small offset

 First tests in EP2 lab 
planned for 2017-2018

𝑁 = 3
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Fully-magnetized 3D plasma model

 Fully-magnetized limit of DIMAGNO model makes it possible to 
compute 3D deflection in a simple way

 We assume the ion and electron gyrofrequencies Ω𝑖 , Ω𝑒 → ∞

 This precludes any ion separation in the model

 Continuity and momentum equations boil down to 4 
conservation laws along the magnetic streamlines:
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TVC performance of a 3D MN

24

 Representative case with
thruster solenoid + 3DMN
made of 3 coils

 Magnetic thrust is 
deflected by up to 
10 deg when coil angle
is 𝛼 = 15 deg

 Larger deflections are
possible with negative
currents in one coil

O
A

B
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Propagation of RF into MN region

26

 In HPT and ECRT, ionization and heating is done with RF waves

 Waves propagating downstream into MN region could be a 
source of power losses

 A full-wave Yee scheme, Fourier transformed in 𝑡 and 𝜃, combined 
with a cold plasma dielectric tensor model is used to study wave 
propagation and (collisional) absorption

PhD thesis
of Bin Tian
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Kinetic electron model

 Plasma beam is nearly collisionless  no local thermodynamic 
equilibrium  no justification for isentropic/adiabatic behavior

 A kinetic electron model is required to understand collisionless 
electron cooling observed experimentally

 Kinetic model of paraxial convergent-divergent MN with 
collisionless, magnetized ions and electrons has been developed 

 Particles conserve their total energy and their magnetic moment:

 Effective potential for axial motion: 

𝑈𝑒𝑓𝑓 = 𝑞𝛼𝜙 𝑧 + 𝜇𝛼𝐵 𝑧

27
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Kinetic electron cooling

 Individual electrons are reflected back when they reach  
𝐸∥ = 𝑈𝑒𝑓𝑓

(electron turning manifold)

 In MN divergent side, there are local extrema of that potential 
empty regions in the EVDF

 Three regions of phase space:

 Free electrons

 Reflected electrons

 Doubly-trapped electrons

Ea>Eb>Ec

𝑤
∥
= 0

The existence of empty 
regions is related to cooling
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Kinetic electron cooling

 Interesting comparison with potential fall in Debye sheath:
𝑒𝜙𝑠ℎ

𝑇𝑒
≈ A·ln

𝑚𝑖

𝑚𝑒
− 𝐵

with 𝐴, 𝐵 constants

 Main differences in a MN with respect to a sheath:

 It develops in an infinite region not in a very thin region

 It is fully quasineutral

 The doubly-trapped population 
is undefined but
essential at a time.

 The asymptotic behavior at 
infinity presents some issues

 Question remains: how are 
doubly-trapped electron regions
populated?

 Transient set-up of the plume

 Occasional collisions

29
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Time evolution of EVDF

 To answer the question of how doubly-trapped regions are 
populated, a first effort consisting in studying the transient set up 
of the plume is being carried out at EP2

 Similar kinetic formulation, but keeping 𝜕/𝜕𝑡 in Vlasov 
equation (far more computationally intensive)

30

Doubly-trapped region 
is partially populated 
during start-up

Thanks to Gonzalo 
Sánchez and Jiewei Zhou
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Kinetic model of unmagnetized plasma plume

 In an unmagnetized plasma plume, electron motion is strongly 2D

 However, radial electron motion is confined and has a short 
characteristic time:

 An adiabatic invariant 𝐽𝑟 (action integral in 𝑟 orbits) can be 
found that plays a similar role to 𝜇 in magnetized plumes

 Three conserved quantitites: Energy 𝐸, angular momentum about 
the axis 𝑝𝜃, and 𝐽𝑟 (to order 𝜀2 when averaged) 

 More complex, but some analogies with magnetized case

31
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http://mariomerino.uc3m.es 
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