Modeling magnetized plasma jets in electric propulsion

M. Merino, E. Ahedo

Equipo de Propulsión Espacial y Plasmas (EP2), Universidad Carlos III de Madrid, Leganés, Spain

> *IPAIA 2017, Bari, Italy March 1–3 2017*

> > uc3m

Contents

- \triangleright Introduction to Magnetic Nozzles (MNs)
	- Helicon Plasma Thrusters (HPT)
	- □ Electron-Cyclotron Resonance thrusters (ECRT)
- \triangleright 2D two-fluid model of a MN
	- □ Near-region expansion and thrust generation
	- Far-region expansion and plasma detachment
	- Induced magnetic field effects
- 3D MN for contactless thrust vector control (TVC)
	- Fully-magnetized limit
	- □ TVC performance
- \triangleright Advances on other MN topics
	- □ Propagation of waves into MN region in HPT and ECRT
	- Kinetic electron model in a MN (and in an unmagnetized jet)
	- Time-evolution of EVDF in a MN

Introduction: Magnetic nozzles

The magnetic nozzle

- A magnetic nozzle (MN) is a convergent-divergent magnetic field created by an axisymmetric set of coils or permanent magnets, to expand a hot plasma into a high velocity plume
	- Channel and accelerate a plasma jet like a de Laval nozzle
	- □ Generate magnetic thrust by converting thermal energy into directed kinetic energy

▶ Advantages:

- \Box Contactless operation \rightarrow no erosion, lower plasma losses
- Adaptable and throttleable by changing field shape and strength in-flight

Key operational principles

- \triangleright Electrons must be well magnetized to follow magnetic tubes □ Ions, however, need not be magnetized for MN operation
- \triangleright Electron expansion sets up an electric field that opens ion trajectories and accelerates them downstream
	- This mechanism converts electron thermal energy into ion kinetic energy
- \triangleright Other mechanisms for ion acceleration exist: Influence of the type of internal energy in the process (electron/ion, isotropic/ anisotropic, …) \Box Different plasma sources \rightarrow different MN physics

Key operational principles

- \triangleright The azimuthal electric currents that exist in the plasma interact with the magnetic field applied by the coils to create magnetic thrust by the action-reaction principle
- \triangleright The plasma must detach from the closed magnetic lines downstream to form a free plasma plume
- \triangleright Other physics that can play a role in the expansion:
	- \Box Electron thermodynamics (e.g., cooling rate) in the collisionless plasma
	- **D** Plasma-induced magnetic field in high β (dense) plasmas
	- □ Ion and/or electron energy ratio and anisotropy
	- Turbulence, instabilities.
- \triangleright A model is needed to understand the main physics and scaling laws behind plasma acceleration, confinement, thrust generation, and detachment.

Helicon Plasma Thruster (HPT)

 \triangleright Both the HPT and the ECRT are electrodeless RF plasma thrusters with MN

HPT05 prototype of SENER/EP2

- \triangleright The Helicon Plasma Thruster (HPT) consists of a cylindrical chamber plus an antenna, coils/permanent magnets, and a gas injector. Typical operation is at a few MHz, and $B = 200 - 2000$ G
	- □ High plasma densities can be achieved (up to $10^{19} 10^{20}$ m⁻³)
	- **D** Prototypes exist in the 50 W 50 kW range, but still have low thrust efficiency: $\eta_T < 0.2$

Electron cyclotron resonance thruster (ECRT)

 \triangleright Similar to HPT in architecture, but resonant power absorption is the main heating mechanism. Typical operation is at a few GHz, and 900 G.

ECRA (ONERA). Currently being developed further under MIINOTOR H2020 project with participation from EP2

- The ECRT of ONERA runs at 50-100 W. Up-scaling is contemplated in the MINOTOR H2020 project.
	- Promising thrust efficiencies of 16% were reported in early tests at very low power

Two-dimensional, two-fluid MN model

Key assumptions of basic model

Two-fluid, two-dimensional DIMAGNO plasma model:

- Plasma composed of **cold ions and hot Maxwellian electrons** □ Representative of HPT and ECRT plasma regimes
- \triangleright Known plasma properties at the magnetic throat (i.e. inlet)
- Steady state: $\partial/\partial t = 0$; axisymmetric: $\partial/\partial \theta = 0$ expansion
- **Collisionless** plasma: λ_{mfp}/R , $\nu/\Omega_e \ll 1$ (*)
- \triangleright Quasineutral plasma: $\lambda_D/R \ll 1 \rightarrow n_e = n_i = n$
- Electron inertia neglected: $m_e/m_i \ll 1$ (*)
- **Full electron magnetization**: $\ell_e/R \ll 1$
	- \Box Ion magnetization number can be any order: Ω_i/(c_sR) = 0(1)
- \triangleright Negligible induced magnetic field, $\beta = \mu_0 n T_e / B^2 \ll 1$ (*)
- \triangleright Simple closure relation for electrons: isothermal or polytropic $T_e \propto n^{\gamma-1}$ (*)

(*) These assumptions have been (partially) dropped in recent works

Basic model formulation

 The basic DIMAGNO model consists of the continuity and momentum equations of ions and electrons

$$
\nabla \cdot (n\boldsymbol{u}_i) = 0,
$$

\n
$$
\nabla \cdot (n\boldsymbol{u}_e) = 0,
$$

\n
$$
m_i n (\boldsymbol{u}_i \cdot \nabla) \boldsymbol{u}_i = -en \nabla \phi + en \boldsymbol{u}_i \times \boldsymbol{B},
$$

\n
$$
0 = -\nabla p_e + en \nabla \phi - en \boldsymbol{u}_e \times \boldsymbol{B},
$$

\n
$$
\frac{T_e}{T_0} = \left(\frac{n}{n_0}\right)^{\gamma - 1}
$$

 \triangleright Magnetic streamfunction for solenoidal longitudinal B field

 $\nabla \psi = rB\mathbf{1}_{\perp}$

$$
\partial \psi / \partial z = -rB_r, \quad \partial \psi / \partial r = rB_z,
$$

 \triangleright Electrons and ions admit streamfunctions too: ψ_i , ψ_e

Electron model properties

\triangleright Electron equations reduce to algebraic conservation laws

$$
u_{\perp e} = 0
$$

\n
$$
nu_{\parallel e}/B = G_e (\psi),
$$

\n
$$
h_e(n) - e\phi = H_e(\psi).
$$

\n
$$
u_{\theta e} = -\frac{E_{\perp}}{B} - \frac{1}{enB} \frac{\partial p_e}{\partial \mathbf{1}_{\perp}} \equiv -\frac{r}{e} \frac{dH_e}{d\psi},
$$

$$
h_e(n) = T_{e0} \ln n, \quad \text{for } \gamma_e = 1,
$$

$$
h_e(n) = T_e \frac{\gamma}{\gamma - 1}, \quad \text{for } \gamma > 1.
$$

- Electron and magnetic tubes coincide
- G_e and H_e known from initial conditions
- **The azimuthal current** $j_{\theta e} = enu_{\theta e}$ on each magnetic/electron tube is the $E \times B$ and diamagnetic drifts
- $u_{\theta e}/r$ constant on each tube (isorotation)

Ion model properties

 \triangleright lon continuity and momentum equations lead to:

$$
u_{ri}\frac{\partial \ln n}{\partial r} + u_{zi}\frac{\partial \ln n}{\partial z} + \frac{\partial u_{ri}}{\partial r} + \frac{\partial u_{zi}}{\partial z} = -\frac{u_{ri}}{r},
$$

\n
$$
u_{ri}\frac{\partial u_{ri}}{\partial r} + u_{zi}\frac{\partial u_{ri}}{\partial z} + c_s^2 \frac{\partial \ln n}{\partial r} = -(u_{\theta e} - u_{\theta i})\Omega_i \cos \alpha + \frac{u_{\theta i}^2}{r},
$$

\n
$$
u_{ri}\frac{\partial u_{zi}}{\partial r} + u_{zi}\frac{\partial u_{zi}}{\partial z} + c_s^2 \frac{\partial \ln n}{\partial z} = (u_{\theta e} - u_{\theta i})\Omega_i \sin \alpha,
$$

 \triangleright Ion mechanical energy and canonical angular momentum about the axis are conserved on ion tubes

$$
\frac{1}{2}m_i u_i^2 + e\phi = H_i(\psi_i)
$$

$$
rm_i u_{\theta i} + e\psi = D_i(\psi_i)
$$

- \triangleright The supersonic ion equations constitute an hyperbolic system that can be integrated efficiently with the method of characteristics
- \triangleright Ion tubes \neq magnetic tubes: separation occurs, depending on ion magnetization

Near-region expansion

 \triangleright For isothermal case:

- $-e\phi \propto \ln n \to \infty$ at $|\vec{r}| \to \infty$ which is nonphysical
- \triangleright For polytropic case:

$$
-e\phi(\infty,0)=\frac{\gamma}{\gamma-1}T_0,
$$

$$
u_i(\infty, 0) = c_{s0}\sqrt{M_0^2 + \frac{2}{\gamma - 1}},
$$

Thrust generation

$$
\nabla \cdot (m_i n u_i u_i + p_e \overline{I}) = j \times B.
$$

 Increment of axial plasma momentum is due to magnetic axial force. A globallydiamagnetic azimuthal electric current is necessary for positive thrust. At $B = const$ sections:

$$
F(B) = F_0 + \int_{\mathcal{V}(\mathcal{B})} d\mathcal{V}(-j_\theta) B_r,
$$

with F_0 the axial momentum gained inside the source upstream

 \triangleright Most magnetic thrust is generated early in the expansion, where most of the magnetic thrust force density concentrates.

Ion separation and plasma detachment

- \triangleright lons are weakly magnetized in most of the MN.
- \triangleright Magnetic force on ions is then insufficient to deflect their trajectories to match magnetic lines, and the perpendicular electric field takes this task initially

$$
m_i n\left(\mathbf{u}_i\cdot\nabla\right)\mathbf{u}_i=-en\nabla\phi+en\mathbf{u}_i\times\mathbf{B},
$$

- \triangleright As ions gain momentum, the electric field becomes insufficient too for full deflection (except at the plasma edge, where the quasineutrality assumption enforces a perfect match)
- \triangleright As a result, ions separate inward from the magnetic field inside the plume
- \triangleright Separation continues leads to the formation of longitudinal electric currents downstream.

Plasma detachment

- \triangleright Ion separation increases dramatically after turning point of plasma jet \rightarrow plasma detachment due to ion inertia
- \triangleright When ions are hypersonic, the i-tubes become near-conical.
- \triangleright Very small amount of plasma momentum turns back toward the thruster.
- \triangleright A higher ion magnetization leads to a later onset of detachment and therefore more divergence losses: heavy propellants and moderate magnetic fields are preferred

Plume divergence

- \triangleright A good detachment process is a requirement for high plume divergence efficiency, i.e. low jet power losses in the radial direction
- \triangleright Plume divergence efficiency function at $B = \text{const}$ sections is defined as

$$
\eta_{plume}(B) = \frac{\int_{\mathcal{S}(B)} dA n u_{zi}^3}{\int_{\mathcal{S}(B)} dA n u_i^2 u_{zi}}.
$$

 \triangleright MN operation improves for □ Low ion magnetization □ Low MN divergence rate

Effect of plasma-induced *B* **field**

25

20

15

10

5

 Ω

25

 Ω

 β_a/β_{a0}

 $j_{\theta}B_{a0}R_0$

 n_0T_{e0}

 10

- \triangleright The diamagnetic nature of the hot plasma pushes against the applied magnetic field
- \triangleright Induced field B_p can be computed iteratively. B_p tends to open and weaken magnetic nozzle
- \triangleright Even if the plasma is low- β initially, the local β grows rapidly and the induced B becomes important
- \triangleright Separatrices may form downstream, setting a neat boundary to de magnetic influence of the MN

Modeling magnetized plasma jets in electric propulsion Mario Merino and Eduardo Ahedo

10

 \mathbf{I}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 $10²$

10

 $\mathbf{1}$

 10^{-1}

20

3D MN for contactless thrust vector control

Thrust vector control

- \triangleright Thrust vector control (TVC) is a necessity in electric propulsion (compensation of misalignments and drift of center of mass)
- Deflections of about 5 deg are desirable for station keeping; more deflection for enhanced mission flexibility
- \triangleright Current solution: mount the thruster on a gimballed mechanism, and steer the whole device (heavy, cumbersome, expensive)

Thrust vector control with 3D MN

- \triangleright Several ($N \geq 3$) coils tilted an angle α are intertwined to create a vector magnetic nozzle (VECMAN) [Patent P201331790]
- \triangleright The current through each coil is independently controlled to generate a non-symmetric, variable magnetic field
	- The magnetic centerline can be directed in any direction inside the N -polygon of the figure (with negative currents, even outside of it)
- \triangleright Centerline deflections of >10 deg are easily achievable
- \triangleright Construction using a spool and simultaneous winding, or locking together three coils with a small offset
- \triangleright First tests in EP2 lab planned for 2017-2018

Fully-magnetized 3D plasma model

- Fully-magnetized limit of DIMAGNO model makes it possible to compute 3D deflection in a simple way
	- \Box We assume the ion and electron gyrofrequencies $\Omega_i, \Omega_e \rightarrow \infty$
	- This precludes any ion separation in the model
- Continuity and momentum equations boil down to **4 conservation** laws **along the magnetic streamlines**:

$$
\nabla \cdot (n\boldsymbol{u}_i) = 0; \quad \nabla \cdot (n\boldsymbol{u}_e) = 0,
$$

\n
$$
m_i (\boldsymbol{u}_i \cdot \nabla) \boldsymbol{u}_i = -e \nabla \phi + e \boldsymbol{u}_i \times \boldsymbol{B},
$$

\n
$$
0 = -T_e \nabla \ln n + e \nabla \phi - e \boldsymbol{u}_e \times \boldsymbol{B},
$$

$$
nu_i/B = G_i
$$

\n
$$
H_i = \frac{1}{2}m_iu_i^2 + e\phi,
$$

\n
$$
nu_e/B = G_e
$$

\n
$$
H_e = T_e \ln n - e\phi.
$$

TVC performance of a 3D MN

- \triangleright Representative case with thruster solenoid + 3DMN made of 3 coils
- \triangleright Magnetic thrust is deflected by up to 10 deg when coil angle is $\alpha = 15$ deg
- ▶ Larger deflections are possible with negative currents in one coil

Advances on other MN topics

Propagation of RF into MN region

- \triangleright In HPT and ECRT, ionization and heating is done with RF waves
- Waves propagating downstream into MN region could be a source of power losses
- \triangleright A full-wave Yee scheme, Fourier transformed in t and θ , combined with a cold plasma dielectric tensor model is used to study wave propagation and (collisional) absorption

Kinetic electron model

- \triangleright Plasma beam is nearly collisionless \rightarrow no local thermodynamic equilibrium \rightarrow no justification for isentropic/adiabatic behavior
- \triangleright A kinetic electron model is required to understand collisionless electron cooling observed experimentally
- \triangleright Kinetic model of paraxial convergent-divergent MN with collisionless, magnetized ions and electrons has been developed
- \triangleright Particles conserve their total energy and their magnetic moment:

$$
E_{\alpha} = \frac{m_{\alpha}}{2} (w_{\alpha\parallel}^2 + w_{\alpha\perp}^2) + q_{\alpha}\phi, \qquad \mu_{\alpha} = \frac{m_{\alpha}w_{\alpha\perp}^2}{2B}
$$

 \triangleright Effective potential for axial motion:

$$
U_{eff} = q_{\alpha} \phi(z) + \mu_{\alpha} B(z)
$$

PhD thesis of Jaume Navarro

Kinetic electron cooling

- \triangleright Individual electrons are reflected back when they reach $E_{\parallel} = U_{eff}$ (electron turning manifold)
- \triangleright In MN divergent side, there are local extren empty regions in the EVDF
- \triangleright Three regions of phase space:
	- Free electrons
	- Reflected electrons
	- □ Doubly-trapped electrons

b

a

Modeling magnetized plasma jets in electric propulsion Mario Merino and Eduardo Ahedo

c

Kinetic electron cooling

 \triangleright Interesting comparison with potential fall in Debye sheath:

$$
\frac{e\phi_{sh}}{T_e} \approx A \cdot \ln \frac{m_i}{m_e} - B
$$

with A, B constants

- Main differences in a MN with respect to a sheath:
	- \Box It develops in an infinite region not in a very thin region
	- \Box It is fully quasineutral
	- The doubly-trapped population is undefined but essential at a time.
	- □ The asymptotic behavior at infinity presents some issues
- \triangleright Question remains: how are doubly-trapped electron regions populated?
	- Transient set-up of the plume
	- □ Occasional collisions

Time evolution of EVDF

- \triangleright To answer the question of how doubly-trapped regions are populated, a first effort consisting in studying the transient set up of the plume is being carried out at EP2
	- **O** Similar kinetic formulation, but keeping $\partial/\partial t$ in Vlasov equation (far more computationally intensive)

Kinetic model of unmagnetized plasma plume

- \triangleright In an unmagnetized plasma plume, electron motion is strongly 2D
- \triangleright However, radial electron motion is confined and has a short characteristic time:
	- **Q** An adiabatic invariant J_r (action integral in r orbits) can be found that plays a similar role to μ in magnetized plumes
- \triangleright Three conserved quantitites: Energy E, angular momentum about the axis p_{θ} , and J_r (to order ε^2 when averaged)

More complex, but some analogies with magnetized case

Under study in the ESA-ADS project MODEXVAL

Thank you! Questions?

mario.merino@uc3m.es http://mariomerino.uc3m.es

This work has received funding from the Spanish R+D National Research Plan, under project number ESP2016-75887-P

P

Modeling magnetized plasma jets in electric propulsion magnetized *plasma jets in electric propulsion*
Mario Merino and Eduardo Ahedo