

Stato e prospettive dell'esperimento NA62

F. Ambrosino, T. Capussela, M. Corvino, P. Massarotti, <u>M. Mirra</u>, M. Napolitano, G. Saracino

Riunione Gruppo 1, Napoli 19/12/2016

Outline

$\succ K^+ \rightarrow \pi^+ v \overline{v}$

- > NA62: strategia ed apparato sperimentale
- ≻ NA62 nel run 2016
- > Attività napoletana in NA62
- > Conclusioni

Rare decays: motivation

A Journey to the Very Short Distance Scales:

1676 - 2046

The 100 TeV scale will only be accessible with rare decay studies up to > 2035

19/12/2016 M. Mirra

7

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay in SM

• FCNC loop processes: s→d coupling and highest CKM suppression

- Very clean theoretically:
 - > SD contribution dominate $A_q \sim \frac{M_q^2}{M_W^2} V_{qs}^* V_{qd}$
 - → Hadronic matrix element related to the precisely measured BR $(K^+ \rightarrow \pi^0 e^+ \nu_e)$
- BR proportional to $|V_{ts} * V_{td}|^2$
- SM prediction [A.J. Buras et al, 2015, arXiv:1503.02693]

BR(
$$K^+ \rightarrow \pi^+ v \bar{v}$$
) = (9.11 ± 0.72)×10⁻¹¹

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ beyond SM

Possibility to distinguish among different models

- Models with a CKM-like structure of flavour interactions (e.g. MFV)
- Models with new flavour and CP-violating interactions in which either left or right handed currents fully dominate (e.g. Z or Z' FCNC scenarios)
- Models like Randall-Sundrum

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay: experimental status

In 2008, combine E787 (1995-8 runs) & E949 (12-weeks run in 2001) results

Expected bkg 2.6 events, prob. all 7 obs. evts are bkg is $\sim 10^{-3}$

Outline

$> K^+ \rightarrow \pi^+ v \overline{v}$

> NA62: strategia ed apparato sperimentale

- ≻ NA62 nel run 2016
- > Attività napoletana in NA62
- > Conclusioni

NA62 at CERN SPS

19/12/2016 M. Mirra

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay: signal and background

NA62 Main Goal:			
10% precision BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement	Decay backgrounds		
	Mode		BR
Technique:	$\mu^+ v(\gamma)$	$K_{\mu 2}$	63.5%
75 Gev/c K decay in flight	$\pi^+\pi^0(\gamma)$	$K_{2\pi}$	20.7%
Signal:	$\pi^+\pi^+\pi^-$	$K_{3\pi}$	5.6%
$BR_{SM} \sim (9.11 \pm 0.72) \times 10^{-11}$	$\pi^0 e^+ v$	K _{e3}	5.1%
<i>K</i> ⁺ track in <i>K</i> ⁺	$\pi^0 \mu^+ u$	$K_{\mu 3}$	3.3%
π^+ track out	$\pi^+\pi^-e^+ u$	$K_{e4}(+-)$	4.1×10^{-5}
No other particles in final state	$\pi^0\pi^0 e^+ v$	$K_{e4}(00)$	2.2×10^{-5}
Requirements:	$\pi^+\pi^-\mu^+ u$	$K_{\mu 4}$	1.4×10^{-5}
 ~100 SM events 	$e^+v(\gamma)$	K_{e2}	1.5×10^{-5}
• $10^{13} K^+$ decays (signal acceptance ~10%)	Other backgrounds		
 background rejection ~10¹² 	Upstream interactions		

background known to ~10%

NA62 experimental strategy

Most discriminating variable: $m_{miss}^2 = (P_K - P_\pi)^2$

Experimental principles:

- ✓ Precise kinematic reconstruction: 2 signal regions in m_{miss}^2
- ✓ Low π momentum (15< p_{π} <35 GeV/c) to allow enough «missing» energy to be detected by hermetic γ veto detectors (mainly for $K_{2\pi}$ and semileptonic modes with π^{0})
- ✓ PID: K upstream, $e/\mu/\pi$ downstream
- ✓ Beam inelastic event suppression
- ✓ Sub-ns timing

Expected 45 SM signal events / year with < 10 background

NA62 setup

Total length 270m

Primary SPS proton beam:

- *p* = 400 GeV protons
- Proton on target 1.1×10^{12} /s
- Protom beam interacts with a beryllium target

High-intensity, unseparated secondary beam • p = 75 GeV/c• $\Delta p/p \sim 1\%$ Total rate 750 MHz $\checkmark 525 \text{ MHz } \pi$ $\Rightarrow 170 \text{ MHz } p$ $\Rightarrow 45 \text{ MHz } K$

Detectors commissioned up to nominal intensity in 2015

Outline

$> K^+ \rightarrow \pi^+ v \overline{v}$

> NA62: strategia ed apparato sperimentale

➢ NA62 nel run 2016

> Attività napoletana in NA62

> Conclusioni

Where NA62 is now

- 2014: detector commissioning
- 2015: trigger commissioning, beam line commissioning up to the nominal intensity, detector performance studies
- 2016: high level software trigger commissioning, full commissioning of the beam tracker

Running consistently at about 40% of nominal intensity:

- Limited by beam "Structures"
- Data taking for PNN + RARE/EXOTICS simultaneously
- Three full GTK working (no noise, 30/30 chips) since September 15

With improved extraction and incremental improvements to the efficiency we can reach our target of 10¹³ K decays before LS2

One track selection

- Downstream particle selection
 - Loop on each of the straw track: not vertex with any other track
 - ✓ Good positive track, within detectors' geometrical acceptance
 - ✓ Momentum of track between 15 and 35 GeV/c
 - ✓ Track matching with CHOD candidates, LKr and MUV1,2 cluster and a RICH ring

- Upstream particle selection
 - ✓ K in KTAG in time with the CHOD time
 - ✓ Spectrometer –Gigatracker track matching
 - ✓ Cut on Z of the reconstructed vertex between 105 and 165 m

Track matching in 2016 data

3 stations of Silicon pixel detectors (300 x 300 μ m²), operating in the evacuated beam pipe inside an achromat. Active area \approx 60 (X) * 27 (Y) mm²; overall rate 750 MHz, in the beam centre 140 kHz/pixel

GTK Kaon tracks sample: for each $K_{3\pi}$, all GTK triplets (in time with KTAG) compatible with a beam particle; kaon candidate selected using $K_{3\pi}$ downstream

GTK Pileup tracks sample: same as above using triplet from out-of-time hits wrt KTAG.

19/12/2016 M. Mirra

Photon rejection

10⁵ 104 Dedicated $K^+ \rightarrow \pi^+ \pi^0$ selection 10³ Missing mass peak resolution: 1×10^{-3} 10² 10 0.01 0.07 0.02 0.03 0.04 0.05 0.06 m^2_{miss} (GeV²/c⁴) 7 LAV, LKr, SAC and IRC in veto $\pi^+\pi^0$ photon rejection 2 $(6\pm 2) \ge 10^{-7}$ 0.012 0.022 0.024 0.018 0.02 0.014 0.016 m^2_{miss} (GeV²/c⁴)

19/12/2016 M. Mirra

PID with calorimetric information

Cut and count method using samples of muons and pions (purity of samples to be evaluated). Info used:

- MUV3
- Total energy (LKr+MUV1+MUV2) and Total energy / P
- Energy sharing among calo: ratio of the energies in MUV1,2 wrt total energy
- Shape of the energy depositions in LKr, MUV1,2

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ selection preliminary study

Not a blind analysis in one run with 5×10⁹ kaon decays (rough estimation)

Outline

$> K^+ \longrightarrow \pi^+ v \overline{v}$

NA62: strategia ed apparato sperimentale
 NA62 nel run 2016

> Attività napoletana in NA62

> Conclusioni

CHANTI postcard

- Rivelatore 100% napoletano fin dalla proposta e dal progetto.
- Sei anelli di guardia per vetare le interazioni inelastiche dei K sul GTK
- Barre di scintillatori a sezioni triangolare letti tramite fibre WLS e SiPM, montate in modo da avere un piano X e uno Y per ogni stazione

Barra di scintillatore

Layout dei layer X/Y

Stazione cablata

Elettronica di FE

19/12/2016 M. Mirra

CHANTI in NA62

Run 2014 - Completata la costruzione e installato con test sull'elettronica

Run 2015 - Valutazione delle performance del rivelatore sul fascio (risoluzione temporale, efficienza di rivelazione, risoluzione spaziale, veto accidentale introdotto)
Run 2016 - Stabilmente in presa dati

F.Ambrosino et al., *CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN*, Journal of Instrumentation, Volume 11, P03029, March 2016, http://dx.doi.org/10.1088/1748-0221/11/03/P03029

Beam background responsibility

Summary of $\pi v v$ analysis

- * Full analysis on 2015 data: D. Brymann, J. Fu, A. Conovaloff
- **×** Full analysis on 2016 data: R. Marchevsky, G.R., D. Brymann, B. Velghe
- GTK Straw matching (coordinated by M. Perrin-Terrin): Z.Kucerova, B. Velghe, J. Swallow, D. Moise
- * PID with calorimeters: R. Aliberti, M. Zamkovsky
- × PID with RICH: R. Volpe, S. Duk, J. Engelfried
- * Photon rejection: T. Spadaro, L. Peruzzo, G.R., B. Velghe
- * Beam background: M. Mirra
- × Trigger efficiency: D. Soldi
- ✗ ... many items to be covered yet

Names are preliminary

14/12/2016

Giuseppe Ruggiero - Physics Analysis Meeting

9

19/12/2016 M. Mirra

Sample of inelastic interactions

Using pions, instead of kaons, in order to study inelastic interactions. Sample definition:

- ✓ Single track event in STRAW: one track(positive charge) in geometrical acceptance of downstream detectors
- $\checkmark\,$ One CHOD candidate matching in time and space the track
- ✓ GTK track in time forming a good vertex (CDA cut) with the downstream track
- ✓ KTAG condition in veto
- $\checkmark\,$ No MUV3 candidate in time with CHOD and space matching with the track
- ✓ Cut on E/P of the π^+ candidate

19/12/2016 M. Mirra

Inelastic detection efficiency

Subtracting the number of pion decays evaluated with pol0 fit in the fiducial volume, the detection efficiency is ~90%.

This is probably mainly due to geometrical acceptance (efficiency, checked on muons in 2016, is >99% single view. The inelastic detection does not include LAV (covering a complementary geometrical region with respect to the CHANTI)

Moreover no GTK information are used (ToT and multiplicity of hits in GTK3)

CHANTI accidental veto

Sample definition:

- ✓ One track(positive charge) in geometrical acceptance of downstream detectors
- $\checkmark\,$ One CHOD candidate matching in time and space the track
- $\checkmark\,$ GTK track in time forming a good vertex (CDA cut) with the downstream track
- ✓ KTAG condition to identify kaon
- ✓ Cut on E/P of the π^+ candidate

 $K^+ \rightarrow \pi^+ \pi^0$ sample

No MUV3 candidate in time with CHOD and space matching with the track

Cut on the missing mass

 $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$

$K^+ \rightarrow \mu^+ \nu_\mu$ sample

MUV3 candidate in time with CHOD and space matching with the track

Cut on the missing mass

$$m_{miss}^2 = \left(P_{K^+} - P_{\mu^+}\right)^2$$

19/12/2016 M. Mirra

CHANTI accidental veto

Fraction of events rejected by CHANTI vs. time window around event time

Large angle vetoes efficiency

Large angles vetoes (LAV) $8.5 < \theta < 50$ mrad

12 stazioni a intervalli di ~10m lungo la linea di fascio

Ogni stazione ha 4-5 anelli di blocchi al vetro-piombo

Napoli ha partecipato alla costruzione a LNF e l'istallazione al CERN dei LAV

Efficienza

- Metodo: selezione di un campione di K⁺ → π⁺π⁰ richiedendo 1 traccia e un γ nel LKr, in modo da predire la posizione dell'altro γ nel LAV
- Eventi efficienti: c'è almeno un blocco acceso in corrispondenza del γ atteso nel LAV entro 5ns dal tempo di riferimento

19/12/2016 M. Mirra

Outline

- $> K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- > NA62: strategia ed apparato sperimentale
- ≻ NA62 nel run 2016
- > Attività napoletana in NA62
- ➤ Conclusioni

Conclusions

• Run (2015-2018): focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- With 2016 data O(SM) sensitivity for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$, in 2017/18 10% BR measurement
- Trigger bandwidth for other physics is limited.
- Several measurements at nominal SES~10⁻¹²: $K^+ \to \pi^+ A', \pi^0 \to inv$
- A few measurements do not require extreme SES: " $K^+ \rightarrow l^+ \nu_H \dots$
- In general, limited sensitivities for most rare/forbidden decays (SES~10⁻¹⁰ to ~10⁻¹¹, similar to NA48/2 and BNL-E865).
- A proof of principle for a broad rare/forbidden decay programme.

Run (2021-2024): programme is under discussion. [Presented at the "Physics Beyond Colliders" workshop, CERN, Sep 2016]

- Existing apparatus, different trigger logic: no capital investment.
- Rare/forbidden K^+ and π^0 decays at SES~10⁻¹²:
 - ✓ *K*⁺physics: $K^+ \to \pi^+ l^+ l^-$, $K^+ \to \pi^+ \gamma \gamma$, $K^+ \to l^+ \nu \gamma$, ...
 - $\checkmark \pi^0$ physics: $\pi^0 \rightarrow e^+e^-, \pi^0 \rightarrow e^+e^-e^+e^-, \pi^0 \rightarrow 3\gamma, \pi^0 \rightarrow 4\gamma...$
 - ✓ Searches for LFV/LNV: $K^+ \rightarrow \pi^- l^+ l^+$, $K^+ \rightarrow \pi^+ \mu e$, $\pi^0 \rightarrow \mu e$...
- Dump mode: hidden sector searches (long-lived HNL, DP).
- Possibly further $K^+ \to \pi^+ \nu \overline{\nu}$ data collection.
- Possibly K_L rare decays (SES~10⁻¹¹), including $K_L \to \pi^0 \nu \overline{\nu}$ [CPV].

Spares

A broad kaon/pion physics programme

3-charge tracks events

- LFV and Majorana neutrino search from 21 final states
- Search for dark higgs from 31 final states
- Short-lived dark photos searched from 21 final states

2-charge tracks events

- One lepton: searches for long-lived heavy neutral leptons from target production and/or decays from beam particles
- Two leptons: search for long-lived dark photons from target production and/or decays from beam particles.

1-charge track events

- Peak searches in $K^+ \rightarrow \pi^+ X$, $\mu^+ Y$ with X a dark pion or a $\chi \chi$ pair and Y a heavy neutral lepton
- Studies of rare π^0 decays

0-charge tracks events

• Searches for neutral resonances and axions

Physics at NA62 in run 3

A rich field to be explored with minimal/no upgrades to the present setup

1. Present setup for K⁺ beam + dedicated triggers: complete LFV/LNV high-sensitivity studies based on K⁺/ π^0 :

 $K^+ \rightarrow \pi^+ \mu^\pm e^\mp$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- e^+ e^+$, $K^+ \rightarrow \pi^- \mu^+ \mu^+$ (+ radiative modes) $\pi^0 \rightarrow \mu e$, 3γ , 4γ , ee, eeee

2. Year-long run in "beam-dump" mode, new program of NP searches for MeV-GeV mass hidden-sector candidates: Dark photons, Heavy neutral leptons, Axions/ALP's, etc.

NA62 perfectly suited for hidden sector

High-intensity 400-GeV proton beam \rightarrow boost charm/beauty, other meson production 10¹⁸ POT / nominal year: 10¹² POT/sec on spill, 3.5-s/16.8 s, 100 days/year, 60% run efficiency 10¹⁵ D_(s), 10¹⁴ K, 10¹⁸ $\pi^{0}/\eta/\eta'/\Phi/\rho/\omega$ with ratios 6.4/0.68/0.07/0.03/0.94/0.95 (& B mesons, too)

Search for visible decays of long lived A'

Assume 2x10¹⁸ 400-GeV POT:

search for displaced, dilepton decays of dark photons, A' \rightarrow ee, $\mu\mu$ include trigger/acceptance/selection efficiency assume zero-background, evaluate expected 90%-CL exclusion plot

Search for visible decays of HNL

Assume 2 1018 400-GeV POT:

search for displaced, leptonic decays HNL $\rightarrow \pi e, \pi \mu$ include trigger/acceptance/selection efficiency assume zero-background, evaluate expected 90%-CL exclusion plot

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay in SM

FCNC loop processes: s→d coupling and highest CKM suppression

CHANTI time distribution

CHANTI candidate time (with respect to the CHOD) with control trigger and one STRAW track for one burst:

lice py of CHANTICandidateVsRefTime KaonDecar slice_py_of_CHANTICandidateVsRefTime Entries 22038 137227 Entries 10^{3} 33.64 Mean Mean 24 44.5 RMS RMS 40.33 10 10² 10 100 -100-50 0 50 -100 -50 n 50 100 200 Time (ns) Time (ns) ×10² 400 CHANTICandidateVsRefTime_py Entries 2.226966e+007 Mean 350 2.12 RMS 7.532 χ^2 / ndf 1.572e+004 / 25 **CHANTI** candidate time Prob 300 0 3.882e+005 ± 2.067e+002 Constant Mean 0.1468 ± 0.0003 (with respect to the CHOD) Sigma 0.6856 ± 0.0003 250 with control trigger and one 200 STRAW track for all the 150 bursts 100 50 0 15 20 -10 15

19/12/2016 M. Mirra

Stato e prospettive dell'esperimento NA62 37

CHANTI candidate time (with respect to the

CHOD) with a kaon decay for one burst: