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 The final message of this lecture 

Neutron stars are excellent observatories to test 
fundamental properties of matter under extreme 
conditions and offer an interesting interplay 
between nuclear processes and astrophysical 
observables  



v Very general introduction to neutron stars  

v A brush-stroke on the role of hyperons in 
neutron stars  

Road Map of this Walk 




² For astronomers are very little stars “visible” as radio 

pulsars or sources of  X- and γ-rays. 
 
² For particle physicists are neutrino sources (when they 

born) and probably the only places in the Universe where 
deconfined quark matter may be abundant. 

Neutron stars are different things 
for different people 

 
² For nuclear physicists are the biggest neutron-rich nuclei 

of the Universe (A ~ 1056-1057, R ~ 10 km, M ~ 1-2 M  ). 

² For cosmologists are “almost” black holes. 

¤




Neutron stars are a type of stellar 
compact remnant that can result from 
the gravitational collapse of a massive 
star (8 M¤< M < 25 M¤) during a Type 
II, Ib or Ic supernova event. 

  But everybody agrees that   … 



²   radio pulsar at 81.5 MHz
²   pulse period P=1.337 s  

 
Most NS are observed as 
pulsars. In 1967 Jocelyn Bell & 
Anthony Hewish discover the 
first radio pulsar, soon identified 
as a rotating neutron star (1974 
Nobel Prize for Hewish but not 
for Jocelyn) 

50 years of the discovery  
of the first radio pulsar 



Nowadays more than 2000 pulsars are known 
(~ 1900 Radio PSRs (141 in binary systems), ~ 
40 X-ray PSRs & ~ 60 γ-ray PSRs) 

  

§  Period  (P, dP/dt) 

Observables 

§  Masses   

§  Luminosity   

§  Temperature   

§  Magnetic Field   

§  Gravitational Waves (NS-NS, BH-NS mergers,  

http://www.phys.ncku.edu.tw/~astrolab/mirrors/apod_e/ap090709.html 

 NS oscillation modes)  



The 1001 Astrophysical Faces of  
Neutron Stars 



 Observation of Neutron Stars  

Radio telescopes 

Arecibo (Puerto Rico): d= 305 m Green Banks (USA): d= 100 m 

Optical telescopes 

VLT (Atacama, Chile) 

Space telescopes X- and γ-ray telescopes 

Chandra Fermi 
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Nançay (France): d ~ 94 m 

HST (Hubble) 



The Fingerprint of a Pulsar 

Individual pulses are very different. 
But the average over 100 or more 
pulses is extremely stable and 
specific of each pulsar 


²  Top: 100 single pulses from 

the pulsar PSR B0950+08 
(P=0.253 s) showing the pulse-
to-pulse variability in shape 
and intensity   


² Bottom: Average profiles of 

several pulsars 

Hobbs et al., Pub Astr. Soc. Aust., 202, 28 (2011)  



Pulsar shape at different wavelength 



Pulsar Rotational Period 
The distribution of the 
rotational period of pulsars 
shows two clear peaks that 
indicate the existence of two 
types of pulsars  

§  normal pulsars with P ~ s 
§  millisecond pulsars with P ~ ms  

Globular cluster Terzan 5 

§  First millisecond pulsar discovered in   
  1982 (Arecibo) 

§  Nowadays more than 200 millisecond  
   pulsars are known 

§  PSR J1748-2446ad discovered in 2005  
   is until know the fastest one with P=1.39 
   ms (716 Hz) 
 

Normal pulsars 

Millisecond pulsars 



Why Pulsars spin so fast  ? 
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Taking Pi ~ 103 s and Rf/Ri  ~ 10-2 

one gets  Pf ~ 10-3 s 

 
If the initial iron core and the 
final neutron star are assumed to 
be rigid spheres with moment of 
inertia I=(2/5)MR2 


Conservation of the angular 
momentum and mass during 
the gravitational collapse of 
the iron core that will form 
the neutron star 



Minimum Rotational Period of a Neutron 
Star 


In Newtonian Gravity  

Pmin = 2π
R3

GM
≈ 0.55 Msun
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In General Relativity 

Pulsar cannot spin arbitrarily fast. 
The absolute minimum rotational 
period is obtained when 

Pmin = 0.96
Msun

M
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Actual record: PSR J1748-2446ad è P=1.39595482 ms 

Centrifugal Force = Gravitational Force 

Keplerian Frequency 



Pulsar glitches 

Sometimes the period P of a 
pulsar decreases suddenly. These 
variations (glitches), although 
small, are observable  

€ 

ΔΩ
Ω

≈10−9 −10−5

Small glitches are interpreted as 
starquakes è indirect proof of the 
existence of NS crust 

Big glitches and the observation of long 
relaxation times are a proof of the 
existence of superfluid matter in the NS 
interiors 



Basic Model of a Pulsar: 
Magnetic Dipole  

Pulsar are believed to be highly 
magnetized rotating neutron 
stars radiating at the expenses 
of their rotational energy 

Emag = −
2
3c3
µ
2
= Erot


µ ≡ M a g n e t i c  d i p o l e 

moment 

Pacini, Nature 216 (1967), 219 (1968) 

Gold, Nature 218 (1968), 221 (1969) 

Ostriker & Gunn, ApJ 157 (1969) 



Basic Model of a Pulsar: Magnetic Dipole  

supposing: α=const, µ=|µ|=const 


µ = µ sinα cosϕêx +µ sinα sinϕêy +µ cosαêz

Ω =
dϕ
dt

= ϕ

µ = µ 2 sinα( )2 Ω4 + Ω2"# $%
µ ≈ µ 2 sinα( )2Ω4

Ω2 <<Ω4

Therefore 

Emag = −
2
3c3

µ 2 sinα( )2Ω4 = Erot

For a sphere with a 
pure dipole magnetic 
field  

µ =
1
2
BPR

3

ü  Bp:  magnetic field at the poles 
ü  R:   radius of the sphere 



Basic Model of a Pulsar: Magnetic Dipole  

Emag = −
1
6c3

R6BP
2 sinα( )2Ω4 = Erot

On the other hand Erot =
1
2
IΩ2 Erot = IΩ Ω

I = 0

One arrives to the PSR evolution differential equation  

Ω = −KΩ3 or P P = 2π( )2 K, K =
1
6c3

R6

I
BP sinα( )2

Then 



Ω = −KΩn or Pn−2 P = 2π( )n−1K, K =
1
6c3

R6

I
BP sinα( )2

More generally, one can write the PSR evolution differential 
equation as 

Differenciating it assuming K=const, one obtains 

n = Ω
Ω
Ω2 = 2−

P P
P2

braking index 

 n=3 within the magnetic dipole model  

The three quantities P, P & P have been measured for few PSRs 
. .. 

Ω(t) = Ω0

n−1( )KΩ0
n−1t +1#$ %&

1/ n−1( ) , P(t) = P0 n−1( )KΩ0
n−1t +1#$ %&

1/ n−1( )

with solution 



The Pulsar Age  

The solution of the PSR 
evolution differential equation 
can be rewritten as  

t = − 1
n−1

Ω(t)
Ω(t)

1− Ω(t)
Ω0
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or 

t = τ − (n−1)KΩ0
n−1#$ %&

−1 “True” Pulsar Age 

with 

τ = −
1
n−1

Ω(t)
Ω(t)

=
1
n−1

P(t)
P(t)

τ = −
1
2
Ω(t)
Ω(t)

=
1
2
P(t)
P(t)

Pulsar Dipole 
Age 

n=3 

if Ω(t)<<Ω0 t ≈ τ
(t=present time) 

The measure of P and P gives 
the pulsar dipole age  

. 

(valid under the assumption K=const.) 



Example: the age of the Crab Pulsar  

SN explosion: 1054 AD 
 
P=0.0330847 s, P=4.22765x10-13 s/s 
 
Braking index: n=2.515 +/- 0.005 

. 

tCrab=(2014-1054) yr = 960 yr,         τ=1238 yr (dipole age) 

Assuming the validity of the 
pulsar dipole mode, using the 
previous equation for the true 
pulsar age we can infer the 
initial spin period of the Crab 
pulsar 

P0 = P 1−
tCrab

τ( )
1/2

≅ 0.016s

n ≠ 3But 



Measured value of the braking index n 

PSR n P (s) P dot (10-15 s/s) Dipole age (yr) 
PSR B0531+21 

(Crab) 
2.512 +/- 

0.005 
0.03308 422.765 1238 

PSR B0833-45 
(Vela) 

1.4 +/- 0.2 0.08933 125.008 11000 

PSR B0540-69 2.839 +/- 
0.005 

0.1506 1536.5 1554 

PSR B0540-69 2.01 +/- 0.02 0.0505 478.924 1672 
PSR J1119-6127 2.91 +/- 0.05 0.40077 4021.782 1580 

Deviations of  braking index n from 3 probably due to:  

ü  Torque on the pulsar from outflow particles 
ü  Change with t of “constant” K, i.e., I(t), B(t), α(t) 



Pulsar evolutionary path on the P-P plane 

P P = 2π( )2 K, K =
1
6c3

R6

I
BP sinα( )2

Taking the logarithm of  

.

τ =
P
2 P


and 


we get 

log P = logP − log 2τ( )

log P = log
2π( )2 R6

6c3I
BP
2 sin2α
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.

Pulsar equivalent of the 
Hertzprung-Russell diagram 
for ordinary stars  

Magnetars 

Normal pulsars 

Millisecond pulsars 

Pulsar distribution  
in the  

P-P plane 

log P = log
2π( )2 R6

6c3I
BP
2 sin2α
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Extremely high compared to … 

€ 

0.3− 0.5G
Earth 

€ 

103 −104G
Magnet Sun spots 

€ 

105G

€ 

4.5x105G

Largest continuous 
field in lab. (USA) 

€ 

2.8x107G

Largest  magnetic 
pulse in lab. (Russia) 

Magnetic Field of a Pulsar 

Type of Pulsar Surface magnetic field 

Millisecond  108 – 109 G  
Normal 1012 G 

Magnetar  1014 – 1015 G 

Magnetars 

Magnetars 

Normal pulsars 

Millisecond pulsars 



Where the NS magnetic field comes from ? 


² C o n s e r v a t i o n o f t h e 

magnetic flux during the 
gravitational collapse of the 
iron core 
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φi = φ f ⇒ Bf = Bi
Ri

Rf
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For a progenitor star with Bi ~ 102 G  
& Ri ~ 106 km we have  Bf ~ 1012 G  


² Spontaneous transition to a 

ferromagnetic state due to 
the nuclear interaction 


² Electric currents flowing in the highly conductive NS interior 

A satisfactory answer does not exist yet. Several 
possibilities have been considered:  



Spin-polarized Isospin Asymmetric Nuclear Matter  

²  Densities & Asymmetries  


²  Magnetic Susceptibility  

ρn = ρn↑+ ρn↓, ρp = ρp↑+ ρp↓

Sn =
ρn↑ − ρn↓
ρn

, Sp =
ρp↑ − ρp↓

ρp

ρ = ρn + ρp, β =
ρn − ρp

ρ


ü    


ü    


ü    

  

1
χ ij

=
ρ

µiρiµ jρ j

∂2 (E / A)
∂Si∂Sj

Stability againts spin  
fluctuations if χ > 0  



Year Autor/Model Ferromagnetic 
Transition ? 

1969 Brownell, Callaway, Rice 
(hard sphere gas) 

Yes, kF>2.3 fm-1 

1969 Clark & Chao No  

1970 Ostgard Yes, kF>4.1 fm-1 
 

1972 Pandharipande et al., 
(variational) 

No 

1975 Backman, Kallaman, Haensel 
(BHF) 

No 

1984 Vidaurre (Skyrme) Yes, kF>1.7-2.0 fm-1 
 

1991 S. Marcos et al., (DBHF) No 

2001 Fantoni et at. (AFDMC) No 

2002/2005 I.V., et al. (BHF) No 

2005/2006 I.V. et al., (Skyrme,Gogny) Yes, kF>2-3.4 fm-1 

2007-2011 F. Sammarruca (DBHF) No 

Ferromagnetic Transition 


²  Calculations based on 

phenomenolog ica l 
interact ions (e .g . , 
S k y r m e , G o g n y ) 
predict the transition 
to occur at (1-4)ρ0 


²  Calculations based on 

realistic NN & NNN 
forces (e.g., Monte 
Carlo, BHF, DBHF, 
LOCV) exclude such a 
transition  

Considered by many authors with contradictory results: 



Neutron Star Structure:  
General Relativity  or Newtonian Gravity ? 


S u r f a c e g r a v i t a t i o n a l 
potential tell us how much 
compact an object is  

€ 

2GM
c 2R


è Relativistic effects are 
very important in Neutron 
Stars and General Relativity 
must be used to describe their 
structure 

€ 

~ 10−10

€ 

~ 10−5

€ 

~ 10−4 −10−3

€ 

~ 0.2 − 0.4

€ 

1




In 1939 Tolman, Oppenheimer & 
Volkoff obtain the equations that 
describe the structure of a static star 
with spherical symmetry in General 
Relativity (Chandrasekhar & von 
Neumann obtained them in 1934 but 
they did not published their work) 

dP
dr

= −G m(r)ε(r)
r2

1+ P(r)
c2ε(r)
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dm
dr

= 4πr2ε(r)

boundary conditions 

€ 

P(0) = Po , m(0) = 0

€ 

P(R) = 0, m(R) = M

Tolman, Phys. Rev. 55, 364 (1939) 

Oppenheimer & Volkoff, Phys. Rev. 55, 374 (1939) 

Free neutron gas 
Mmax = 0.7 M¤ 

The Tolman-Oppenheimer-Volkoff  Equations 



Stability solutions of the TOV equations 
²    The solutions of the TOV eqs. represent static equilibrium configurations  

²    Stability is required with respect to small perturbations  

dMG

dρc
> 0, or dMG

dr
< 0



 

The only ingredient needed 
to solve the TOV equations 
is the (poorly known) EoS 
(i.e., p(ε)) of dense matter 

The role of the Equation of State  

Interactions 

“stiff” EoS 

“stiff” EoS 

“soft” EoS 

“soft” EoS 

EoS 

Matter 
 constituents 

TOV 



General Features of a “realistic”  
neutron star matter EoS 

Any “realistic” neutron star matter EoS must satisfy:  

² Saturation Properties of Symmetric Matter 

² Nuclear Symmetry Energy 

² Nuclear Incompressibility 

² Causal Condition 

Esym must be “well behaved” at high densities  

n0 = 0.16− 0.18 fm
−3, E

A
"
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0

= −16±1 MeV

Esym n0( ) = 28−32 MeV

K0 = 240± 20 MeV

cS
2 =

dP
dρ

≤ c2



Constraints of the Nuclear EoS from HIC 

1

10

100

1 1.5 2 2.5 3 3.5 4 4.5 5

neutron matter

Akmal
av14uvII
NL3
DD
Fermi Gas
Exp.+Asy_soft
Exp.+Asy_stiff

P
 (M

eV
/fm

3)

ρ/ρ
0

v  Collective flow constraints confirms the softening of the EoS at high 
densities 

v  Constraints from kaon production are consistent with the flow 
constraints and bridge gap to GMR constraints  

v  Symmetry energy dominates the uncertainty in the neutron matter EoS 

 

P. Danielewicz et al., Science  298, 1592 (2002)  



Astrophysical determination of the Nuclear EoS 

F. Ozel & D. Psaltis, PRD 80,  103003 (2009)  
F. Ozel, G. Baym & T. Guver, PRD 82, 101301(R) (2010) 

²  Piecewise polytropic EoS  
above ρ0 from mass-radius 
relation of 3 type-I X-ray 
bursts      

ρi−1 < ρ ≤ ρi, ε =αiρ +βiρ
Γi , P = Γi −1( )βiρΓi

v  SLy below ρ0   

v  Piecewise poytropic above ρ0   



Astrophysical determination of the Nuclear EoS 

A. W. Steiner, J. M. Lattimer & E. F. Brown, ApJ 722, 33 (2010) 

²  Nuclear parameters determined in a Bayesian data analysis of:    

v  3 type-I X-ray burst 

v  3 transient low mass X-ray binaries 

v  Cooling of 1 isolated NS,  
     RX J1856-3754 
 

Parameters in the range expected  from          
nuclear systematics & lab. experiments     



Theoretical Approaches to the Nuclear EoS 

Phenomenological approaches Microscopic ab-initio approaches 

Based on effective density-
dependent interactions with 
p a r a m e t e r s a d j u s t e d t o 
reproduce nuclear observables 
and compact star properties 

Based on two- & three-body 
realistic interactions. The EoS 
is obtained by “solving” the 
compl i ca t ed many-body 
problem  

v  Variational: APS, CBF,  FHNC, LOVC 

v  Monte-Carlo: VMC, DMC, GFMC,  
           AFDMC 

v  Diagrammatic: BBG (BHF), SCGF 

v  RG methods: Vlow k & SRG from  
                             χEFT potentials  

v  DBHF 
 
 

v  Liquid drop type: BPS, BBP, LS, OFN 

v  Thomas-Fermi: Shen 

v  HF: NV, Sk, BSk, PAL, RMF, RHF, QMC         
d       

v  Statistical models: HWN, RG, HS  

 

I apologize for all 
those approaches  

I have missed 
 



Upper limit of the Maximum Mass 

Mmax depends mainly on the behaviour of EoS, P(ε), at 
high densities. Any realistic EoS must satisfy two 
conditions: 

€ 

dP
dρ

≤ c 2§   Causality: §   Stability: 
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dP
dρ

> 0

If the  EoS is known up to ρr, these conditions imply: 

Mmax ≤ 3M
5x1014g / cm3

ρr
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If rotation is taken into account Mmax can increase up to 20%: 

Mmax ≤ 3.89M
5x1014g / cm3

ρr
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Estimation of Neutron Star Mass & Radius 

ü  a sphere of uniform density  

ü  made only of neutrons  

ü  in addition to the nuclear force                            
    neutrons feel also the gravity  

Imagine that a neutron star is: 

Idea: use  Bethe-Weizsäker semi-empirical  mass formula 
including the gravitational force  

B(Z,A) = avA− asA
2/3 − acoul

Z 2

A1/3
− asim

(Z − N )2

A
+δapA

−1/2



Only Neutrons (Z=0) + Gravitational Energy (sphere 
with M=Nmn & R) 

B(Z = 0,A = N ) = avN − asN

2/3 − asimN +δapN
−1/2 + 3

5
G(Nmn )

2

R

Since N > N2/3 & N-1/2   

B(Z = 0,A = N ) ≈ av − asim( )N + 3
5
Gmn

2

r0
N 5/3

€ 

R = r0N
1/ 3 =1.15 ×10−15N1/ 3m

The  minimum number of  neutrons needed to bound 
gravitationally is obtained imposing  

 
B > 0 





av − asim( )N + 3
5
Gmn

2

r0
N 5/3 > 0⇒ N >

5
3
asim − av( )r0
Gmn

2

#
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&
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(

3/2
The B > 0 tell us that: 

Using the values: 
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av =16MeV ,

€ 

asim = 30MeV ,
  

€ 

G = 6.707 ×10−39c c 4

GeV 2
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) ,

€ 

mn = 0.939GeV
c 2

We finally arrive to:  

Which gives an average density of:  

€ 

N ~ 1056 −1057 M ~1 M

€ 

R ~ 10km

€ 

ρ ~ 1014 −1015 g /cm3

¤



A neutron star  
is a kind of GIANT 

ATOMIC NUCLEUS 
in which particles are 
gravitationally bound  

N ~1056 −1057

M ~1 M

€ 

R ~ 10km

€ 

ρ ~ 1014 −1015 g /cm3

¤



 Radius: ~ 700.000 km 
 Mass: 1.989x1030 kg 

Radius ~ 10 km 
Mass ~ 1.989x1030 kg 

A neutron star  
has a mass similar to that 

of the Sun, but with a 
radius about  

70.000 smaller !!! 




How to Measure Neutron Star Masses 

Kepler’s 3rd law  

G(M1 +M2 )
a3

=
2π
P
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f (M1,M2, i) ≡
M2 sin i( )3

M1 +M2( )2
=
Pv3

2πG
mass function 

§  5 Keplerian parameters can  
     normally be determined:  
 

   P, a sin i, ε, T0 & ω	


§  3 unknowns: M1, M2, i  

Use Doppler variations in spin 
period to measure orbital velocity 
changes along the line-of-sight 



Measure of at least 2 post-
Keplerian parameters 

High precision NS mass 
determination 

ω = 3T⊗
2/3 Pb
2π
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1−ε

Mp +Mc( )
2/3

γ = T⊗
2/3 Pb
2π
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ε
Mc Mp + 2Mc( )
Mp +Mc( )

4/3

r = T⊗Mc

s = sin i = T⊗
−1/3 Pb

2π
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−2/3

x
Mp +Mc( )

2/3

Mc

Pb = −
192π
5

T⊗
5/3 Pb
2π
"
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'
−5/3

f (ε)
MpMc

Mp +Mc( )
1/3

Periastron precession 

Time dilation and grav. redshift 

Shapiro delay “range” 

Shapiro delay “shape” 

Orbit decay due to GW emission 

In few cases small deviations from Keplerian orbit due to 
GR effects can be detected 



An example: the mass of the Hulse-Taylor pulsar 
(PSR J1913+16) 



Measured Neutron Star Masses (up to ~ 2006-2008) 

up to ~ 2006-2008 any valid 
EoS should predict 

Mmax EoS[ ] >1.4−1.5M ¤

(Lattimer & Prakash 2007) 

N.B. I will comment on more recent measurements latter when talking about the “hyperon problem” 



Limits on the Neutron Star Radius 

The radius of a neutron star with mass M cannot be 
arbitrarily small 

€ 

R >
2GM
c 2

 General Relativity: 
a Neutron Star is not a  

Black Hole 

€ 

R >
9
4
GM
c 2

 Finite Pressure:  
Neutron Star matter cannot  
be arbitrarily compressed  

€ 

R > 2.9GM
c 2

 Causality:  
speed of sound must  

be smaller than c 



 How to measure Neutron Star Radii 

A possible way to measure it is to use the thermal emission of 
low mass X-ray binaries: 

Radii are very difficult to measure because NS: 

²  are very small (~ 10 km) 
²  are far from us (e.g., the closest NS, RX J1856.5-3754, is at ~ 400 ly)  

NS radius can be obtained from 

²  Flux measurement +Stefan-Boltzmann’s law   
²  Temperature (Black body fit+atmosphere model) 
²  Distance estimation (difficult) 
²  Gravitational redshift z (detection of absorption lines) 

R∞ =
FD2

σ SBT
4 → RNS =

R∞
1+ z

= R∞ 1− 2GM
RNSc

2



Recent Estimations of Neutron Star Radii 
The recent analysis of the thermal spectrum from 5 quiescent 
LMXB in globular clusters is still controversial 

R = 9.1−1.5
+1.3km

R =12.0±1.4km

Steiner  et al. (2013, 2014) Guillot et al. (2013, 2014) 

R = 9.4±1.2km 2014 analysis 

 2013 analysis 



Limits of the Mass & Radius of a 
Neutron Star 



 Thermal Evolution of Neutron Stars 

D. G. Yakovlev & C. J. Pethick, A&A 42, 169 (2004)  

Information, complementary to that from mass & 
radius, can be also obtained from the measurement 
of the temperature (luminosity) of neutron stars  



dEth

dt
=Cv

dT
dt

= −Lγ − Lν +H

Crust cools by  
conduction Core  cools by 

 neutrino emission 

Surface photon  emission 
dominates at  t > 106 yrs 

Two cooling regimes 

Slow 
Low NS mass 


Fast 
High NS mass 


 Neutron Star Cooling in a Nutshell  


ü  Cv:  specific heat  
ü  Lγ:  photon luminosity 
ü  Lν:  neutrino luminosity 
ü  H:   “heating” 

slow cooling 

fast cooling 



Neutron Star Cooling & Symmetry Energy 

§    Fast: e.g., Direct URCA  

§    Slow: e.g., Modified URCA  

kFn

kFp
kFe

Direct URCA cannot occur 
 unless xp> 11%-15% 

Larger Symmetry Energy è Larger xp è Earlier onset of Direct URCA 

slow cooling 

fast cooling 

µn −µp = 4(1− 2xp )S2 (ρ) = µl −µυl ⇒
xp

1− 2xp
=

4S2 (ρ)
c(3π 2ρ)1/3

n→ p+ l +ν l
l + p→ n+ν l

N + n→ N + p+ l +ν l
N + l + p→ N + n+ν l



Neutrino Emission 

Anything beyond just neutrons & protons results in an enhancement 
of the neutrino emission 



Anatomy of a Neutron Star 

Equilibrium composition  
determined by  

ü  Charge neutrality 

ü  Equilibrium with respect to 
 weak interacting processes 

€ 

qiρi = 0
i
∑

€ 

b1→ b2 + l + ν l
b2 + l→ b1 + ν l

€ 

µi = biµn − qi µe −µν e( ), µi =
∂ε
∂ρ i



Crust of a Neutron Star 

Surface Interior 



Crust-core Transition & Symmetry Energy 
in

te
rio

r 
su

rf
ac

e 

Both governed by EoS  
at ρ < r0 (particularly by  
S2(ρ) & its derivatives) 


Neutron Star Heavy nucleus 

ê


Crust & Neutron Skin 
made out of  neutron 
rich matter at similar 
densities 

                                          

   	
20 40 60   80 100 120 140 

Proton fraction xt Density ρt Pressure Pt 

L (MeV) L (MeV) L (MeV) 

No Clear Correlation 

Inverse correlation between dR and ρt  
(Horowitz & Piekarewicz) 

  

€ 

P ρ,β( ) =
ρ2

3ρ0
Lβ 2 + K 0+Ksymβ

2( ) ρ − ρ03ρ0
+

% 

& 
' 

( 

) 
* 



External Core of a Neutron Star 

The external core of a neutron star is  
mainly a fluid of neutron-rich matter in 
equilibrium with respect to weak 
interaction processes ( β-stable matter) 

€ 

n→ p + e− + ν e −

p + e− → n + ν e −

€ 

µp = µn −µe − + µν
e−



Internal Core of a Neutron Star 

Since:

² The value of the central density 
is very high: ρc ��� ~ (4-8)ρ0 

 

   (ρ0 = 0.17 fm-3 = 2.8 x 1014 g/cm3) 

² Nucleon chemical potential increases 
rapidly with the density  ρ 

The presence of exotic degrees of freedom is 
expected in the Neutron Star interior 

( π, K- condensates, hyperons, quarks,…) 



What is a hyperon ? 

²  A hyperon  is a baryon made of   
one , two or three strange quarks 

Hyperon Quarks I(JP) Mass (MeV) 

Λ	
 uds 0(1/2+) 1115 
Σ+	
 uus 1(1/2+) 1189 
Σ0	
 uds 1(1/2+) 1193 
Σ-	
 dds 1(1/2+) 1197 
Ξ0	
 uss 1/2(1/2+) 1315 
Ξ-	
 dss 1/2(1/2+) 1321 
Ω-	
 sss 0(3/2+) 1672 



Hyperons in NS considered by many authors since the pioneering 
work of Ambartsumyan & Saakyan (1960) 

²  Relativistic Mean Field Models: Glendenning 1985; Knorren et al. 1995; 
Shaffner-Bielich & Mishustin 1996, Bonano & Sedrakian 2012, … 

  
²  Non-realtivistic potential model: Balberg & Gal 1997 
 
²  Quark-meson coupling model: Pal et al. 1999, … 
 
²  Chiral Effective Lagrangians: Hanauske et al., 2000 
 
²  Density dependent hadron field models: Hofmann, Keil & Lenske 2001 

Phenomenological approaches 

Microscopic approaches 
²  Brueckner-Hartree-Fock theory: Baldo et al. 2000; I. V. et al. 2000,  
     Schulze et al. 2006, I.V. et al. 2011, Burgio et al. 2011, Schulze & Rijken 2011 
 
²  DBHF: Sammarruca (2009), Katayama & Saito (2014)  

²  Vlow k: Djapo, Schaefer &  Wambach, 2010 

²  Quantum Monte Carlo: Lonardoni et al., (2014) 

Sorry if I missed 
 somebody 

Hyperons in Neutron Stars 



Hyperons are expected to appear in the core of neutron stars at ρ ~ 
(2-3)ρ0 when µN is large enough to make the conversion of N into Y 
energetically favorable. 

€ 

n + n→ n + Λ

p + e− → Λ + ν e −

n + n→ p + Σ−

n + e− → Σ− + ν e −

µ
Σ−
= µn +µe−

−µν
e−

µΛ = µn



Effect of Hyperons in the EoS and Mass of  
Neutron Stars 

“stiff” EoS 

“stiff” EoS 

“soft” EoS 

“soft” EoS 

Relieve of  Fermi pressure due to the 
appearance of hyperons è

 EoS softer è reduction of the mass 



Hyperons in NS 
(up to ~ 2006-2008) 

(Lattimer & Prakash 2007) 
(Schulze, Polls, Ramos & IV 2006) 

Phenomenological: 
 Mmax  compatible with 1.4-1.5 M¤



Microscopic : Mmax < 1.4-1.5 M¤

(Glendenning 1991) 



Recent measurements of high masses    life of hyperons (and theoretitians) 
more difficult 

§  PSR J164-2230 (Demorest et al. 2010) 

 

M =1.928± 0.017M
 

¤


ü  binary system (P=8.68 d)

ü  low eccentricity (ε=1.3 x 10-6) 

ü  companion mass: 

ü  pulsar mass:  



~ 0.5M
¤

M = 2.01± 0.04M¤

ü  binary system (P=2.46 h) 

ü  very low eccentricity  

ü  companion mass: 

ü  pulsar mass:  



0.172± 0.003M
¤

§  PSR J0348+0432 (Antoniadis et al. 2013) 



Formation of Binary Systems 

Figure by P.C.C. Freire 



Measured Neutron Star Masses (2017)  

Observation of ~ 2 M   neutron stars 

Dense matter EoS stiff enough is 
required such that  

Mmax EoS[ ] > 2M
¤

Can hyperons, or strangeness in 
general, still be present in the interior 
of neutron stars in view of this 
constraint ? 

updated from Lattimer 2013 

¤

Demorest et al. 

Antoniadis et al. 

A natural question arises:  



The Hyperon Puzzle 

“Hyperons è “soft (or too soft) EoS” not compatible 
(mainly in microscopic approaches) with measured (high) 
masses. However, the presence of hyperons in the NS 
interior seems to be unavoidable.”    

ü  can YN & YY interactions still solve it ? 

ü  or perhaps hyperonic three-body forces ? 

ü  what about quark matter ?  



Solution I: YY vector meson repulsion  

General Feature:  
Exchange of scalar mesons generates 
attraction (softening), but the exchange 
of vector mesons generates repulsion 
(stiffening)       

Add vector mesons with hidden strangeness (φ) coupled to 
hyperons yielding a strong repulsive contribution at  

high densities 

Dexhamer & Schramm (2008), Bednarek et al, (2012), Weissenborn et al., (2012) 
Oertel et al. (2014), Maslov et al. (2015)   

(explored in the context of RMF models)  



	

ü  σ2, σ3, σ4  terms 
ü  ρ2, ω2, ω4 terms 
ü  “hidden strangeness” mesons: σ*, φ	


	

              (σ*2, φ2)	


ü  gYV couplings: from SU(6) to SU(3) 
 
           vary z=g8/g1 & α=F/(F+D)  
ü  gYS couplings adjusted by fitting UB

(N) 

 
    (UΛ

(N)=-30, UΣ
(N)=+30, UΞ

(N)=-28 MeV)  

ü  RMF with scaled hadron masses (universal)  
     & coupling constants (not universal) 

ü  Model flexible enough to satisfy constraints 
from HIC & astrophysical data 

ü  Hyperon puzzle partially solved if a reduction 
of φ meson mass is included 

Weissenborn  et al. (2012) Maslov et al. (2015) 

Mmax compatible  
with  2M¤




Although these and other similar models are able to 
reconcile the presence of hyperons in the NS interior 
with the existence of 2M   NS, one must be cautious !! 

²  These models contain several free 
parameters which most of the times 
are arbitrarily chosen being the only 
jutification our stil l “scarce” 
knowledge of the YY interaction. 

¤

Hence:  

In absence of sufficient experimental 
data on multi-strange hypernuclei 
and YY scattering the validity of 
these models is still questionable. 

D. Chatterjee & I. V. (2015)  



 Solution II: can Hyperonic TBF solve this puzzle ? 

NNN Force 

Natural solution based on:  Importance of NNN force in Nuclear Physics 
(Considered by several authors: Chalk, Gal, Usmani, Bodmer, Takatsuka, Loiseau, Nogami, Bahaduri, IV)  

NNY, NYY &  YYY  Forces 

Energy density 

Pr
es

su
re

 

NN, NY & YY 

NN, NY,  YY 
NNN, NNY, NYY & YYY 

Can hyperonic TBF provide 
enough repulsion at high 
densities to reach 2M  ?   

¤

? 



The results are contradictory 
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I. V. et al. (2011)  

BHF with NN+YN+phenomenological 
YTBF. Different strength of YTBF 
including the case of universal TBF 

1.27 <Mmax <1.6M¤

Yamamoto et al. (2015)  

BHF wi th NN+YN+universa l 
repulsive TBF (mult ipomeron 
exchange mecanism) 

Mmax > 2M
¤



It should be mentioned also  the recent Quantum Monte Carlo calculation 
by Lonardoni et al. (2015) 

v  First Quantum Monte Carlo 
calculation on neutron+Λ matter 

v  Strong dependence of Λ onset 
on Λnn force  

v  Some of the parametrizations of 
the Λnn force give maximum 
masses compatible with 2M  but 
the onset of Λ is above the 
maximum density considered 
(~0.56 fm-3). So in fact, no Λs 
are present  in NS interior 

¤



and the recent DBHF calculation of hyperonic matter by Katayama & 
Saito (2014) 

Ø  DBHF includes some TBF 
effects in a natural way 

Ø  Mmax compatible with 2M   
Ø  But the construction of YN is a 

bit obscure in this work 

¤



Take Away Message 

²  It is still an open question whether hyperonic TBFs can, by 
themselves, solve completely the hyperon puzzle or not. 

 
²  It seems, however, that even if they are not the full 

solution, most probably they can contribute to it in an 
important way. 



Solution III: Quark Matter Core  

Ozel et al., (2010), Weissenborn et al., (2011), Klaehn et al., (2011),  Bonano & 
Sedrakian (2012),  Lastowiecki et al., (2012), Zdunik & Haensel (2012) 

To yield                        Quark Matter should have:  Mmax > 2M¤

§  significant overall quark repulsion             stiff EoS   

§  strong attraction in a channel            strong color superconductivity  

General Feature:  

Some authors have suggested an early phase transition to 
deconfined quark matter as solution to the hyperon puzzle. 
Massive neutron stars could actually be hybrid stars with a stiff 
quark matter core.  



A recent work by D. Blaschke & D. Alvarez-Castillo (2015)  

Earlier phase transition to QM 
with sufficient stiffening at 
high densities to solve: 
hyperon puzzle, masquerade 
problem & reconfinement 
puzzle 

Compositeness of baryons 
(by excluded volume and/or 
quark Pauli blocking) on the 
hadronic side + confinement 
and stiffening effects on the 
quark matter:   



  What quark flavors are expected in a   
Neutron Stars ? 

Flavor Mass Charge [e] 
u ~ 5 MeV 2/3 
d ~ 10 MeV  -1/3 
s ~ 200 MeV  -1/3 
c ~ 1.3 GeV 2/3 
b ~ 4.3 GeV  -1/3 
t ~ 175 GeV  2/3 



Suppose: 

v Threshold density for the c quark (similar for b & t)  

 but 

ü  u, d, s non-interacting 
ü mu=md=ms=0 

i.e., ideal ultra-relativistic  
Fermi gas (*) 

s→ c+ e− +νe ⇒ µs = µc +µe +µνe

ü  u, d, s in β-equilibrium 
ü Qtot==0 

nB = nu = nd = ns
ne = nνe = 0

 then 

µs = EFs
= c π 2ns( )

1/3
= c π 2nB( )

1/3
≥mc =1.3 GeV

⇒ nB ≥ 29 fm−3 ~180n0
Only u,d,s quarks are expected in Neutron Stars   



The Equation of State for Hybrid Stars 
²  Hadronic phase :         

RMF Models          
Microscopic BHF 

²  Quark phase :            

EOS based on the MIT bag       
model for hadrons.            
[Farhi, Jaffe, Phys. Rev.      
D46(1992)] 

²  Mixed phase :        

Gibbs construction for a          
multicomponent system       
with two conserved       
“charges”.  [Glendenning,       
Phys. Rev. D46 (1992)] 



Hybrid  Star Composition 

NM shell 

crust

Pure quark 
matter 

core Mixed hadron-quark phase 

GM3+Bag model                   
ms=150 MeV, B=13.6.6Mev/fm3 

Crust 



The Strange Matter Hypothesis 
Bodmer (1971), Terezawa (1979) & Witten (1984) 

Three-flavour  u,d,s  quark  matter  in  equilibrium  with 
respect to the weak interactions, could be the true ground 
state of strongly interacting mater, rather than 56Fe                 	


  Stability of nuclei with respect to u,d quark matter 
 
The success of traditional nuclear physics provides a clear 
indication that quarks in the atomic nuclei are confined 
within neutrons and protons 
    
 
                 E/A|ud >E(56Fe)/56 ~ 930 MeV          

E/A|SQM < E(56Fe)/56 ~ 930 MeV 



E/A 
(MeV)

nn0

930.4

u,d,s

u,d

Fe

Schematically  



Ø    If the SQM hypothesis is true, why nuclei  
     do not decay into SQM droplets (strangelets) ? 
	

Ø    One should explain the existence of atomic 

nuclei in Nature	




Stability of Nuclei with respect to SQM 
Ø   Direct decay of 56Fe to a SQM droplet 

€ 

56Fe→56 (SQM) ~  5 6  s i m u l t a n e o u s 
strangeness changing weak 
process 

€ 

u→ s+ e+ + ν e

€ 

d + u→ s+ u

€ 

⇒

The probability for the direct decay is P ~ (GF
2)56 ~ 0 

and the mean-life time of 56Fe with respect to the 
direct decay to a drop of SQM is  


                                          τ >> age of the Universe  



Ø   Step by step decay of 56Fe to a SQM droplet 

  

€ 

56Fe→ XΛ
56 →YΛΛ

56 →…→56 (SQM)

€ 

56Fe→ FeΛ
56

€ 

56Fe→ MnΛ
56

These processes are not energetically 
possible since 

€ 

Q = M(56Fe) −M(XΛ
56) < 0

Thus, according with the Bodmer-Terezawa-Witten 
hypothesis, nuclei are metastable states of strong 

interacting matter with a mean-life time 
 
                     τ >> age of the Universe  



Two families of Neutron Stars 

Hadron Stars (HS) 

Quark Stars (QS) 

Ø   Nucleonic Stars 
Ø   Hyperonic Stars 

Ø   Hybrid Stars 
Ø   Strange Stars 



Mass-radius relation 

²  Strange Stars are self-bound bodies i.e., bound by the 
strong interactions

² Hadronic or Hybrid Stars are bound by gravity.	


bare SS 

NS, HybS 

R 

M 

M ∼ 1/R3 


M ∼ R3 



Currently theoretical descriptions of quark matter at 
high density rely on phenomenological models which 
are constrained using the few available experimental 
information on high density baryonic matter from 
heavy-ion collisions. 

But also in this case we must pay attention 



Is there also a Δ isobar puzzle ? 
The recent work by Drago et al. (2014) calculation have studied the role 
of the Δ isobar in neutron star matter 

v  Constraints from L indicate an early 
appearance of Δ isobars in neutron 
stars matter at ~ 2-3 ρ0 (same range 
as hyperons) 

v  Appearance of Δ isobars  modify the 
composition & structure of hadronic 
stars  

v  Mmax is dramatically afected by the 
presence of  Δ isobars  

If Δ potential is close to that indicated by π-, 
e-nucleus or photoabsortion nuclear 
reactions  then EoS is too soft      Δ puzzle 
similar to the hyperon one    



Hyperon Stars at Birth  



 Proto-Neutron Stars  

(Janka, Langanke, Marek, Martinez-Pinedo & Muller 2006) 


§  Thermal effects 




§  Neutrino trapping  



T ≅ 30− 40 MeV
S / A ≅1− 2

New effects on PNS matter: 

µν ≠ 0

Ye =
ρe + ρνe
ρB

≈ 0.4

Yµ =
ρµ + ρνµ
ρB

≈ 0



 Proto-Neutron Stars: Composition  
§  Neutrino free §  Neutrino trapped µν ≠ 0µν = 0

(Burgio & Schulze 2011) (Burgio & Schulze  2011) 

ü  Large proton fraction 
ü  Small number of muons  
 
ü  Onset of Σ-(Λ) shifted to higher (lower) density 
ü  Hyperon fraction lower in ν-trapped matter 

Neutrino trapped 

ê
ê





 Proto-Neutron Stars: EoS  

(Burgio & Schulze 2011) 

²  ν-trapping + temperature 
        softer EoS 

§  Nucleonic matter 

§  Hyperonic matter 

²  ν-trapping + temperature 
        stiffer EoS  

²  More hyperon softening  
        in ν-untrapped matter  

       (larger hyperon fraction)  



 Proto-Neutron Stars: Structure 

  ν-trapping + T:
         reduction of Mmax  

§  Nucleonic matter 

§  Hyperonic matter 

ν-trapping + T: 
        increase of Mmax  

delayed formation  
of a low mass BH 

(Burgio & Schulze  2011) 

(IV  et al. 2003) 

N,Y,l,ν	


N,Y,l	
 go
 to

 B
H

  



Hyperons & Neutron Star 
Cooling 



Hyperonic DURCA processes possible  
as soon as hyperons appear  

    (nucleonic DURCA requires xp > 11-15 %)       ê
ê

 Additional 
Fast Cooling 

Processes 

Λ→ p+ l +ν l
Σ− → n+ l +ν l
Σ− →Λ + l +ν l
Σ− → Σ0 + l +ν l
Ξ− →Λ + l +ν l
Ξ− → Σ0 + l +ν l
Ξ0 →Σ+ + l +ν l
Ξ− →Ξ0 + l +ν l

Process R 

0.0394 
0.0125 
0.2055 

0.6052 

0.0175 

0.0282 

0.0564 

0.2218 

(Schaab, Shaffner-Bielich & Balberg  1998) 

R: relative emissitivy w.r.t. nucleonic DURCA  

only N 

N+Y 

+ partner reactions generating neutrinos, 
    Hyperonic MURCA, …  



Pairing Gap               suppression of Cv & ε by    ~ e(−Δ/kBT )

(Zhou, Schulze, Pan & Draayer 2005) 

§  1S0, 3SD1 ΣN & 1S0 ΛN gap §   1S0 ΛΛ gap 

§   1S0 ΣΣ gap 

(IV & Tolós  2004)

(Balberg & Barnea 1998) (Wang & Shen 2010) 

NSC97e 



Hyperons & the R-mode 
instability of Neutron Stars 



The r-mode Instability  

  Instabilities prevent NS  
to reach ΩKepler 

r-mode Instability : toroidal mode  
                                    of oscillation  
ü  restoring force: Coriolis  

ü  emission of GW in hot & rapidly  
    rotating NS (CFS mechanism)  

•   GW  makes the mode unstable 
•   Viscosity stabilizes the mode 

1
τ (Ω,T )

= −
1

τGW (Ω)
+

1
τViscosity (Ω,T )

A∝ A0e
−iω (Ω)−t/τ (Ω,T )

ΩKepler :  Absolute Upper Limit  
             of Rot.  Freq.  

Ω
c/Ω

K
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r r-mode unstable 

due to GW emission 
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Hyperon Bulk Viscosity ξY 
(Lindblom et al. 2002, Haensel et al 2002, van Dalen et al. 2002, Chatterjee et al. 2008, Gusakov 

et al. 2008, Shina et al. 2009, Jha et al. 2010,…)  

(Haensel, Levenfish & Yakovlev  2002) Sources of ξY: 

Reaction Rates & ξY  reduced by 
Hyperon Superfluidity  

Y → B+ l +ν l
B '+Y → B '+B+ l +ν l

N + N↔ N +Y
N +Y↔Y +Y

N +Y↔ N +Y
N +Ξ↔Y +Y
Y +Y↔Y +Y

non-leptonic  
weak 

reactions  

      Direct & Modified 
        URCA  

strong reactions 



 Critical Angular Velocity of Neutron Stars  

€ 

1
τ Ω,T( )

= −
1

τGW Ω( )
+

1
τξ Ω,T( )

+
1

τη T( )
 

A∝ Aoe
−iω (Ω)t−t/τ (Ω)

 
§  r-mode amplitude: 

1
τ Ωc,T( )

= 0

 

r-mode instability region è

€ 

Ω <Ωc

 unstable  Ω >Ωc

 

stable  

(I.V. & C. Albertus  in preparation) 

As expected: 
smaller r-mode instability region 

due to hyperons   BHF: NN (Av18)+NY (NSC89) 
 

      (M=1.27M¤)  



This short talk is just a brush-stroke on the 
physics of neutron stars. Three excellent 
monographs on this topic for interested 
readers are: 
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 The final message of this talk 

Neutron stars are excellent observatories to test 
fundamental properties of matter under extreme 
conditions and offer an interesting interplay 
between nuclear processes and astrophysical 
observables  



 
§  You for your time & attention 

§  The organizers for their invitation  
      

 


