Basic nuclear interactions and their link to nuclear processes in the cosmos and on earth

Theoretical historical introduction

Vittorio Somà CEA Saclay, France

Rewriting nuclear physics textbooks Pisa, 25 July 2017

Basic facts about nuclei

• 254 stable isotopes, ~3000 synthesised in the lab

○ Heaviest synthesised element Z=118

• Neutron **drip-line** known up to Z=8 (16 neutrons)

• Over-stable magic nuclei (2, 8, 20, 28, 50, 82, ...)

Basic questions about nuclei

254 stable isotopes, ~3000 synthesised in the lab
How many bound nuclei exist? (~6000-7000?)

○ Heaviest synthesised element Z=118

• **Heaviest possible** element? Enhanced stability near Z=120?

Light/mid-mass elements
 produced in stellar fusion

• How have heavy elements been produced?

• Neutron **drip-line** known up to Z=8 (16 neutrons)

• Where is the neutron drip-line beyond Z=8?

• Over-stable magic nuclei (2, 8, 20, 28, 50, 82, ...)

• Are **magic numbers** the same for unstable nuclei?

Diversity of nuclear phenomena

angular momentum

Historical preamble

Nuclear theory begins

Outline

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

2010's First lattice QCD calculations of NN potential & multi-baryon systems

Today

Liquid drop model & semi-empirical mass formula

• Picture the nucleus as a (suspended) drop of (incompressible) liquid with surface tension

 \odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment

 \odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment

• Which degrees of freedom?

- \circ Quantised collective modes?
- \circ Protons and neutrons (= nucleons)? \rightarrow usually the natural choice
- What about quarks and gluons? (Full QCD treatment?)

 \odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment

• Which degrees of freedom?

- \circ Quantised collective modes?
- \circ Protons and neutrons (= nucleons)? \rightarrow usually the natural choice
- What about quarks and gluons? (Full QCD treatment?)

• Provided we work with nucleons, we need interactions between them

QCD: nuclear interactions as residual forces between bound states of quarks/gluons
Otherwise, how can we model them?

- \odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment
- Which degrees of freedom?
 - \circ Quantised collective modes?
 - \circ Protons and neutrons (= nucleons)? \rightarrow usually the natural choice
 - What about quarks and gluons? (Full QCD treatment?)
- Provided we work with nucleons, we need interactions between them
 - QCD: nuclear interactions as residual forces between bound states of quarks/gluons
 - Otherwise, how can we model them?

• Provided we have nucleon forces, we need to solve a complicated quantum mechanical problem

• Many nucleons, but not enough to exploit statistical mechanics

• Relativistic treatment? $\frac{\vec{p}}{m} \approx \frac{200 \text{ MeV}}{1000 \text{ MeV}} \implies \left(\frac{v}{c}\right)^2 < 0.1 \implies \text{nucleon dynamics non relativistic}$

- \odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment
- Which degrees of freedom?
 - \circ Quantised collective modes?
 - \circ Protons and neutrons (= nucleons)? \rightarrow usually the natural choice
 - What about quarks and gluons? (Full QCD treatment?)
- Provided we work with nucleons, we need interactions between them
 QCD: nuclear interactions as residual forces between bound states of quarks/gluons
 Otherwise, how can we model them?
- Provided we have nucleon forces, we need to solve a complicated quantum mechanical problem
 Many nucleons, but not enough to exploit statistical mechanics

• Relativistic treatment? $\frac{\vec{p}}{m} \approx \frac{200 \text{ MeV}}{1000 \text{ MeV}} \implies \left(\frac{v}{c}\right)^2 < 0.1 \implies \text{nucleon dynamics non relativistic}$ Typical strategy

1. Derive/build/model basic interactions between nucleons

2. Solve non-relativistic many-body Schrödinger equation

Structure vs reaction

Structure vs reaction

- → Are structure properties easily obtainable from the reaction process?
- → When we make approximations, are they at the same level for structure and reactions?

Ab initio (= "from scratch") approach

 $H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$

• Which properties we aim at and which level of accuracy are we seeking?

- Applicability throughout the nuclear chart? → Universal/global vs local description
- Predictive power? → Estimate of theoretical error

Independent particle model & mean field

• If particles of a many-body system don't interact, then $H = \sum_{i}^{A} h_{i}$ (= 1-body only), and $H|\Psi_{k}^{A}\rangle = E_{k}^{A}|\Psi_{k}^{A}\rangle \longrightarrow h_{i}|\phi_{k}^{i}|\varphi_{k}\rangle \rightleftharpoons h_{i}\varphi_{k}(r_{i}) \Rightarrow h_{i}\varphi_{k}(r_{i}) = \varepsilon_{k}\varphi_{k}(r_{i})$

 \rightarrow From an *A*-body problem to *A* one-body problems

$$H|\psi^A\rangle = E|\psi^A\rangle$$
$$E = \sum_k^A \varepsilon_k d_k$$

Friday, 17 July, 15

Independent particle model & mean field

• If particles of a many-body system don't interact, then $H = \sum_{i}^{A} h_{i}$ (= 1-body only), and $H|\Psi_{k}^{A}\rangle = E_{k}^{A}|\Psi_{k}^{A}\rangle \longrightarrow h_{i}|\phi_{k}^{i}|\varphi_{k}\rangle \rightleftharpoons h_{i}\varphi_{k}^{i}\langle\varphi_{k}\rangle \Longrightarrow h_{i}\varphi_{k}(r_{i}) = \varepsilon_{k}\varphi_{k}(r_{i})$

 \rightarrow From an *A*-body problem to *A* one-body problems

• Independent particles: nucleons move inside a (one-body) potential $Well_A^A \stackrel{=}{\to} E |\psi^A\rangle$

- Does an independent-particle picture make any sense at all?
 - \rightarrow Inter-particle distance in nuclei ~ 2 fm
 - \rightarrow Range of nuclear interaction ~ 2 fm

Turns out that it does
✓ Fermi statistics helps out
✓ Large mean free path λ

[Rios & Somà 2012; Lopez et al. 2014]

 $E = \sum_{k} \varepsilon_k d_k$

Independent particle model & mean field

Coulomb shifts proton potentials

energy levels according to Pauli principle

(Non-interacting) shell model

• What creates regular patterns?

- Nucleon shells? (cf. electrons in the atom)
- \circ Yet, no obvious common potential

(Non-interacting) shell model

• What creates regular patterns?

- Nucleon shells? (cf. electrons in the atom)
- Yet, no obvious common potential

(Interacting) shell model

● Independent-particle shell model OK for closed shells/magic numbers
 ● In general, a correlated wave function is needed... but H = H_{IP-SM} + H_{res} too costly to diagonalise
 □ Idea: exploit "shells" and their energy separation

(Interacting) shell model

● Independent-particle shell model OK for closed shells/magic numbers
 ● In general, a correlated wave function is needed... but H = H_{IP-SM} + H_{res} too costly to diagonalise
 □ Idea: exploit "shells" and their energy separation

- **Ab initio**: use projection techniques to go from full to restricted Hilbert space
 - ✓ Universal and systematic → predictive power
 - **✗** Requires sophisticated many-body techniques → "fully ab initio" only very recently

 \circ **Phenomenologically**: (re)fit parameters of $H^{\rm eff}$ to data

✓ Successful in reproducing fine spectroscopy → very good accuracy

 \checkmark *H*^{eff} depends on exp. data locally \rightarrow validity of extrapolations not guaranteed

(Interacting) shell model

- Problem: as *A* increases, dimensions of relevant valence spaces increase
- Computational aspects of the method rather challenging
 - Progress in algorithms + computational resources have pushed the limits of applicability
 - \circ First calculations (1960's): matrix dimensions 10² → today: matrix dimensions 10⁹-10¹⁰

Solution State And Solution

- \circ 10¹⁴ nonzero matrix elements \rightarrow 800 TB
- Progress relies on "Moore's law"

Applicability: A < 80-100

Energy density functionals

 \Rightarrow Idea: work with a simplified many-body wave-function $|\phi_k^A \rangle$

$$H|\Psi_{k}^{A}\rangle = E_{k}^{A}|\Psi_{k}^{A}\rangle$$
 $H_{\text{eff}}|\phi_{k}^{A}\rangle = E_{k}^{A}|\phi_{k}^{A}\rangle$
Correlations incorporated in H_{eff} Simplest possible: independent particles

• **Original** approach: Hamiltonian-based

○ Hartree-Fock theory → mean-field potential built self-consistently from a *NN* interaction

• **Modern** approach: energy as a functional of (one-body) densities (+ currents)

• First density-dependent Hamiltonian, then more general functional of one-body density

• For both, parameters are fitted to data

Energy density functionals

 \Rightarrow Idea: work with a simplified many-body wave-function $|\phi_k^A
angle$

$$H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle$$
 $H_{\text{eff}}|\phi_k^A\rangle = E_k^A|\phi_k^A\rangle$
Correlations incorporated in H_{eff} Simplest possible: independent particles

• **Original** approach: Hamiltonian-based

 \circ Hartree-Fock theory \rightarrow mean-field potential built self-consistently from a *NN* interaction

• Modern approach: energy as a functional of (one-body) densities (+ currents)

• First density-dependent Hamiltonian, then more general functional of one-body density

• For both, parameters are fitted to data

• Relies on symmetry breaking and restoration

Physical solution must have good symmetries → one must restore them in the end

Wave function has lost some of the symmetries of the Hamiltonian, but energy is closer (w.r.t. symmetry-conserved case) to the exact one !

✓ Symmetry-broken HF calculations provide fair description and have low computational cost
 ✗ Restoring symmetries needed for refined results but may become very costly

Energy density functionals

Several implementations developed over the years
 Non-relativistic: Skyrme (1972+) and Gogny (1975+)
 Relativistic: (1986+)

✓ Favourable scaling → only method applicable to all nuclei

- ✓ Can tackle efficiently nuclear matter
- **✗** Lack of systematic character

✗ Validity of extrapolations not guaranteed

[Erler et al. 2012]

Historical recap #1

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

1949 Non-interacting shell model

1960's Valence-space interaction (= interacting shell model)

1970's Energy density functionals

Today

Basic structure of NN interaction

Basic structure of NN interaction

• Hamiltonian for the 2-nucleon system $H = T + V_{NN} + V_{em}$ • Most general form $V_{NN} = V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2, \sigma_1, \sigma_2, \tau_1, \tau_2)$ positions J isospins isospins

• Symmetry-constrained form

• Continuous symmetries (translation in time/space, rotation in space+spin, Galilean invariance)

• Discrete symmetries (parity, time reversal, baryon+lepton number conservation)

• Isospin:

 $\begin{array}{c} charge \ symmetry \\ p \leftrightarrow n \implies pp \leftrightarrow nn \\ (\rightarrow \text{ spectra of mirror nuclei}) \end{array}$

charge independence pp ↔ pn ↔ nn (→ pp vs. np scattering lengths)

$$V_{NN} = V_1(\boldsymbol{r}, \boldsymbol{p}, \sigma_1, \sigma_2) + V_{\tau}(\boldsymbol{r}, \boldsymbol{p}, \sigma_1, \sigma_2) \tau_1 \cdot \tau_2$$

 $\boldsymbol{p} = \boldsymbol{p}_1 - \boldsymbol{p}_2$

each one with 3 parts: **spin-scalar** + **spin-vector** + **spin-tensor**

Basic properties of NN interaction

• Nucleon-nucleon scattering

• Interaction leads to a change in the phase of the scattered wave \rightarrow scattering phase shifts δ

Basic properties of NN interaction

• Nucleon-nucleon scattering

• Interaction leads to a change in the phase of the scattered wave \rightarrow scattering phase shifts δ

• Scattering is analysed in **partial waves**

Total momentum is conserved $\vec{J} = \vec{L} + \vec{S} \implies |L - S| \le J \le |L + S|$ $\vec{S} = \vec{s_1} + \vec{s_2} \implies S = 0, 1 \implies J = \begin{cases} L & \text{for } S = 0 \\ |L - 1|, L, L + 1 & \text{for } S = 1 \end{cases}$ Spectroscopic notation $2S+1L_J$

Basic properties of NN interaction

Basic properties of NN interaction

S-wave: becomes repulsive at small distances

• Nucleon-nucleon scattering

• Example of phase shifts

δ

- \circ Non-zero quadrupole moment \rightarrow tensor
- Loosely bound system

S-wave: becomes repulsive at small distances

Yukawa potential

What was known:
 Coulomb interaction between charged particles (infinite range)
 Nuclear interaction is short range ~ 2 fm

➡ Idea: nuclear force mediated by massive spin-0 boson (the "mesotron" → later, pion)

• One-pion exchange describes long-range attraction between nucleons

• Works so well that, as of today, it is part of most sophisticated potential models!

- However, not the full story. Short-range part?
 - o 1950's: Multi-pion exchange: disaster
 - \circ 1960's: More mesons discovered → multi-pion resonances ≈ exchange of heavier mesons

One-boson-exchange potentials

 \odot Meson with larger masses (ho, ω , σ) can model ranges smaller than $1/m_{\pi}$

 \circ Different spin/isospin structures generated

• Parts sometimes phenomenological (or the whole, e.g. Av18)

Strategy:

- 1. Construct the operatorial structure
 - Radial functions
 - o Spin/tensor/isospin operators)
- 2. Fit coupling constants to data
 - \circ NN scattering
 - \circ Deuteron properties

• Experimental side: more and more precise NN data

• Theoretical side: more sophisticated potentials $\rightarrow \chi^2 \approx 2$ in the 1980's, $\chi^2 \approx 1$ in the 1990's

What about nuclear structure calculations?

Historical recap #2

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

1935 Yukawa potential

1949 Non-interacting shell model

1960's Valence-space interaction (= interacting shell model)

1970's Energy density functionals

1970's One-boson exchange potentials

1980's High precision one-boson exchange potentials

meters have been fixed, we extend the calculations to the whole $\in [0.4 \rho_0, 3 \rho_0]$ starting with the case of symmetric nuclear matter.

$$H = H^{2 \, body} \rightarrow H' = H^{2 \, body} + H^{3 \, body} \,, \qquad (4.1)$$

 $V = \frac{1}{3!} \int_{\substack{\circ \\ \circ \\ \text{Lightest nuclei do not match experiment}}} d\mathbf{r_1} d\mathbf{r_2} d\mathbf{r_3} \psi^{\dagger}(1) \psi^{\dagger}(2) \psi^{\dagger}(3) V_3(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3}) \psi(3) \psi(2) \psi(1) . \quad (4.2)$

loy in this work the three-body potential developed by u Dana group posed of two terms

$$V_{ijk}^{Urbana} = V_{ijk}^{2\pi} + V_{ijk}^{R}$$

$$(4.3)$$

part, attractive and dominant at low densities, is constructed from twohange with a Δ appearing as intermediate state as described in the prection: the repulsive contribution is responsible for the correct saturation **Fundamental reason**: nucleons are composite particles, but we treat them as structureless vails at high densities. Certain processes, e.g. involving nucleon excitations, can not be described as 2-body two potentials are structured as a sum over cyclic permutations of the rticles, denoted by the indeces $\{i, j, k\}$. The 2π -exchange term reads

$$\begin{bmatrix} \pi & \pi \\ X & \pi \end{bmatrix} \begin{bmatrix} \pi & \pi \\ \tau & \tau \end{bmatrix} \begin{bmatrix} \pi & \tau \\$$

$$A\sum_{cyc} \left(\{X_{ij}, X_{jk}\} \{ \boldsymbol{\tau}_i^{\pi} \cdot \boldsymbol{\tau}_j, \boldsymbol{\tau}_j \cdot \boldsymbol{\tau}_k \} + \frac{1}{4} \left[X_{ij}, X_{jk}^{\dagger} \right] \left[\boldsymbol{\tau}_i^{\pi} \cdot \boldsymbol{\tau}_j, \boldsymbol{\tau}_j \cdot \boldsymbol{\tau}_k \right] \right), \quad (4.4)$$

Extended nuclear matter

Nuclear matter as a theoretical laboratory to test interactions & many-body methods
 • Homogeneous system of nucleons interacting via strong interactions (Coulomb switched off)
 • Thermodynamic limit (A→∞, V→∞, ρ=A/V constant)
 • Pure neutron matter is simpler and provides constraints for astrophysical systems

• Isospin-symmetric nuclear matter relates to bulk properties of nuclei

Equation of state of nuclear matter

Density distributions of nuclei

[Heyde 1998]

Electron scattering off nuclei

- Electrons constitute an optimal probe to study atomic nuclei
 - \circ Point-like \rightarrow excellent spatial resolution
- \circ EM weak and theoretically well constrained
- Accélérateur Linéaire @ Saclay (ALS)
 - Electron accelerator (1969-1990)
 - Refined data on tens of stable nuclei

- Electron scattering off unstable nuclei?
- Challenge for the future
- \circ First physics experiments in 2017 with SCRIT @ RIKEN

First ab initio calculations

□ 1990's: Green function Monte Carlo approach

• MC techniques to sample many-body wave function in coordinate, isospin and spin space

⇒ 2000's: No-core shell model approach

• Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)

Nuclei simulated from scratch!

Closed the gap between elementary nucleon-nucleon interactions and properties of nuclei

[Pieper & Wiringa 2001]

First ab initio calculations

□ 1990's: Green function Monte Carlo approach

• MC techniques to sample many-body wave function in coordinate, isospin and spin space

⇒ 2000's: No-core shell model approach

• Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)

Nuclei simulated from scratch!

Closed the gap between elementary nucleon-nucleon interactions and properties of nuclei

[Pieper & Wiringa 2001]

Computational effort increases exponentially/factorially with nucleon numberNecessity of treating three-nucleon forces makes it more severe

→ Approach currently limited to light nuclei

● Two main problems with OBE potentials

- 1. Substantial part remains phenomenological (in particular 3N sector)
- 2. Strong repulsive short-range component ("hard core")
 - Induces strong correlations in the wave function
 - \circ Large bases needed to converge \rightarrow applicability limited to light nuclei

Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

⊙ Two main problems with OBE potentials

- 1. Substantial part remains phenomenological (in particular 3N sector)
- 2. Strong repulsive short-range component ("hard core")
 - Induces strong correlations in the wave function
 - Large bases needed to converge → applicability limited to light nuclei

Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

⊙ Two main problems with OBE potentials

- 1. Substantial part remains phenomenological (in particular 3N sector)
- 2. Strong repulsive short-range component ("hard core")
 - Induces strong correlations in the wave function
 - Large bases needed to converge → applicability limited to light nuclei

Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

Conceptual breakthrough: apply Effective Field Theory to build nuclear potentials

Technical breakthrough: apply Renormalisation Group techniques to transform nuclear potentials

[figures from K. Hebeler]

[figures from K. Hebeler]

• The principles

Typical momentum at play $\frac{Q}{M}$ High energy scale (not included explicitly)

[Weinberg, van Kolck, ..]

2. Write all possible terms allowed by symmetries of underlying theory (QCD)

- 3. Order by size all possible terms \rightarrow systematic expansion (= "power counting")
- 4. Truncate at a give order and adjust coupling constants (use underlying theory or data)

• The principles

• The principles

• The principles

Chiral effective field theory

- ✓ **Systematic** framework to construct *A*N interactions (*A*=2, 3, …)
- ✓ A **theoretical error** can be assigned to each order in the expansion
- Is the chiral expansion converging quickly enough?
- \rightarrow If not, the approach becomes unfeasible

• Goal: apply to the many-nucleon system (and propagate the theoretical error!)

Solving the many-body Schrödinger equation

• Basis truncation

- \circ Representation of the many-body wave function
- \circ Infinite in principle, finite in practise \rightarrow need to be large enough to contain relevant physics
- The weaker the high-momentum components in H, the smaller the basis to converge

Solving the many-body Schrödinger equation

• Basis truncation

- Representation of the many-body wave function
- \circ Infinite in principle, finite in practise \rightarrow need to be large enough to contain relevant physics
- The weaker the high-momentum components in H, the smaller the basis to converge

• Expansion around a reference state

- One particular configuration can be solution of an auxiliary problem (with Hamiltonian H₀)
- \circ Express total Hamiltonian as $H = H_0 + H_1$
- \circ Expand exact wave function around that "reference state" \rightarrow approximate ab initio

Solving the many-body Schrödinger equation

• Basis truncation

- \circ Representation of the many-body wave function
- \circ Infinite in principle, finite in practise \rightarrow need to be large enough to contain relevant physics
- The weaker the high-momentum components in H, the smaller the basis to converge

• Expansion around a reference state

- One particular configuration can be solution of an auxiliary problem (with Hamiltonian H₀)
- \circ Express total Hamiltonian as $H = H_0 + H_1$
- \circ Expand exact wave function around that "reference state" \rightarrow approximate ab initio

• Many-body truncation

- Order "by size" contributions from all different configurations
- \circ Keep only the most important ones \rightarrow approximate ab initio
- \circ The weaker the high-momentum components in H, the more you can truncate

Approximate ab initio methods

● Trade exactness of the solution for more favourable scaling with A

 \circ Express the problem in perturbation \rightarrow truncate \rightarrow resum (non perturbative)

• Three main methods:

1. Self-consistent Green's function theory (SCGF)

 \circ Rewrite many-body Schrödinger equation in terms of G and $\Sigma \rightarrow$ Dyson equation

$$\mathbf{G}_{ab}(\omega) = \mathbf{G}_{ab}^{(0)}(\omega) + \sum_{cd} \mathbf{G}_{ac}^{(0)}(\omega) \, \boldsymbol{\Sigma}_{cd}^{\star}(\omega) \, \mathbf{G}_{db}(\omega)$$

2. Coupled-cluster theory (CC)

• Computes the similarity-transformed normal-ordered Hamiltonian

$$\overline{H} \equiv e^{-T} H_N e^T \qquad \qquad E = \langle \phi | \overline{H} | \phi \rangle$$

3. In-medium similarity renormalisation group (IM-SRG)

• Employs a continuous unitary transformation of H to decouple g.s. from excitations

Flow equation $\frac{d}{ds}H(s) = [\eta(s), H(s)]$ truncated at rank *n* at each step

Approximate ab initio methods

Approximate / truncated methods capture correlations via an expansion in ph excitations
Open-shell nuclei are (near-)degenerate with respect to ph excitations

when $\epsilon_i + \epsilon_j = \epsilon_a + \epsilon_b$ the expansion breaks down

• Way out: formulate the expansion around a **symmetry-breaking** reference state

- Symmetry-breaking solution allows to **lift the degeneracy**
- GF theory extended to particle-number breaking scheme (Gorkov formalism) [Gorkov 1958]
- Implementation for semi-magic nuclei developed in Saclay & Surrey [Somà, Duguet & Barbieri 2011]
- Symmetries must be eventually restored

Similarity renormalisation group

X No free lunch: unitary transformation generates 3- and many-body forces

The potential "bubble nucleus" Si34

 \odot **Unconventional depletion** ("bubble") in the centre of ρ_{ch} conjectured for certain nuclei

• Purely quantum mechanical effect

- \circ *ℓ* = 0 orbitals display radial distribution peaked at *r* = 0
- \circ *ℓ* ≠ 0 orbitals are instead suppressed at small *r*
- \circ Vacancy of *s* states ($\ell = 0$) embedded in larger- ℓ orbitals might cause central depletion

• Ab initio Green's function calculations

Input: NN+3N interactions from ChEFT
Output: BE, radii, densities, spectra, ...

✓ Computed density of ³⁶S agrees with data
 ✓ Computed density of ³⁴Si shows bubble

Solution State Construction State Stat

[Duguet, Somà et al. 2017]

Lattice QCD

 \odot At low-energy, QCD is non-perturbative \rightarrow calculations possible only on the lattice

- Calculation of hadron masses very successful
- Multi-baryon systems? Atomic nuclei?
- Two different routes are currently followed

➡ Direct calculation of nuclei

Excitation energy << QCD scales
X High statistic data required</pre>

Model-dependent extraction

✗ 3-body part problematic

Historical recap #3

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

- **1935** Semi-empirical mass formula (liquid drop)
- 1935 Yukawa potential
- **1949** Non-interacting shell model
- **1960's** Valence-space interaction (= interacting shell model)
- **1970's** Energy density functionals
- 1970's One-boson exchange potentials
- 1980's High precision one-boson exchange potentials
- 1990's First ab initio calculations
- **1990's** Effective field theory applied to nuclear forces
- **2000's** Approximate ab initio (= "many-body") methods developed
- **2010's** Renormalisation group techniques applied to nuclear forces
- **2010's** Massively-parallelised simulations of medium-mass nuclei
- **2010's** First lattice QCD calculations of NN potential & multi-baryon systems

Today

The concept of quasiparticle plays a key role in the Complescriptipondanderstandingofmanyabody systems. It is at the core of Landau's theory of Permi liquids [1] [...]

Curie @ CCRT/CEA, France

NN

In nuclear physics, the success of the shell model can be interpreted in terms of weakly interacting quasiparticles.

- Progressnrelies on increasing computational resources, which read in framework for defining quasiparticles [2]. • Numerical codes heavily parallelised
 - Comparison with computer scientists necessary
 - where $\mathcal{A}(k,\omega)$ is the

• Yearly allocations of the order of 10-100M CPU hours ould think that

complex energy z = Rpoles of $\mathcal{G}(k, z)$, i.e. equation

limit the single-particl the energy is real-valu

finitesimally small) imthe issue. One there

propagators $\mathcal{G}(k, \omega \pm i)$

modulus¹, $\omega \in \mathbb{R}$ the

relevant are the so cal

 $\mathcal{G}_{R/A}(k,\omega)$

THEORETICAL SCHEME II.

Que iparticles in binfinite outperes-body forces $^{-1}(k,z)$ **Building of NN/3N interactions** ody Number of mantrix elements explodes Costly multi-parameter fits finite N_1 In a unction (GF) along the energy axis Green's partic ind-stateo and excited) energies of the nt the (gr repres v_{ijk} lative to the N-body ground state and systems 1 $(\mathbf{X}\pm 1)$ are us ally denot d as one-particle separation or excita-tion e ergies. W en N increases this energy spectrum becom s more ar more degenerate and a description in terms f isolated ccitations less meaningful. In the ther-[Lesinski 2011] $_{E_R}$ = v_{ijkl} = nody mic limit the energy gap between two adjacent excita on tends zero, which can be mathematically transl ed into t e poles of the GF being transformed $+ \operatorname{Re} \Sigma$ into b anch cuts. In this¹fifth t the spectral function be-× 0 continue s function of the energy that is typical comes 2000 smooth background and prominent characerised by one would a cess real One can then identify such peaks with quasipeaks cle energies ind consec ➡ Machine learning techniques partic s, whose hergy The Algorithms on to olsh from bigcdattans (the syste excitation of the system. The broadness of the neak can fulfile the the reflection instead be associated with the degree of de-coherence,

Theoretical challenges

