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Basic facts about nuclei

o 254 stable isotopes, ~3000 synthesised in the lab o Heaviest synthesised element Z=118
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o Neutron drip-line known

up to Z=8 (16 neutrons) . .
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Basic questions about nuclei

o 254 stable isotopes, ~3000 synthesised in the lab
o How many bound nuclei exist? (~6000-7000?)

o Heaviest synthesised element Z=118

o Heaviest possible element?
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Enhanced stability near Z=120?

B Stable nuclei
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© Light/mid-mass elements
produced in stellar fusion

o How have heavy elements
been produced?

[figure from Bazin 2012]
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o Neutron drip-line known

up to Z=8 (16 neutrons)

o Over-stable magic nuclei (2, 8, 20, 28, 50, 82, ...)

© Are magic numbers the same for unstable nuclei?



Diversity of nuclear phenomena

Nucleus: bound (or resonant) state of Z protons and N neutrons
Several scales at play:

Ground state p & n momenta ~ 108eV

%SS, size, superfluidity, ... Separation energies ~ 107 eV

o Vibrational excitations~ 106 eV

© o Rotational excitations ~ 104eV

Exotic structures
Clusters, halos, ...

+ K

Radioactive decays
B, 2B, &, p, 2p, fission, ...

Spectroscopy Reaction processes
Excitation modes Fusion, transfer, knockout, ...
el T e -
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Historical preamble

1896 Becquerel discovers radioactivity

1898 Pierre & Marie Curie find «, 3 and y rays

1911 Rutherford proposes the atomic nucleus

1919 Rutherford identifies the hydrogen nucleus as the proton

1929 Heitler & Herzberg show that #N is a boson

1931 Pauli proposes the neutrino
1932 Chadwick discovers the neutron

1933 Fermi proposes theory of weak interactions and 3 decay

Nuclear theory begins



Outline

Pre-1935 stuff (Radioactivity, Rutherford’s experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

2010’s First lattice QCD calculations of NN potential & multi-baryon systems

Today



Liquid drop model & semi-empirical mass formula

® Picture the nucleus as a (suspended) drop of (incompressible) liquid with surface tension

N

[Gamow, Bohr, Wheeler]

Liquid drop model
Competing processes give rise to nuclear binding
A=Z+N
BE(Z,N) = a,A — asA*/? 2 W=27 9
(Z,N) = a,A —as —acA1/3—aa 1A AL/
volume surface Coulomb  N-Z asymmetry

9.0

[Weizsdcker, Bethe]

®
4]
T

B/A (MeV)

®
o

v Successful in explaining binding energy global trend

X Unsuccessful in explaining fine features, excitation spectra, ... 75k
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Nuclear many-body problem

® Liquid drop model is semi-classical = we need fully quantum mechanical treatment
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Nuclear many-body problem

® Liquid drop model is semi-classical = we need fully quantum mechanical treatment

® Which degrees of freedom?
o Quantised collective modes?

o Protons and neutrons (= nucleons)? — usually the natural choice

o What about quarks and gluons? (Full QCD treatment?)

® Provided we work with nucleons, we need interactions between them

o QCD: nuclear interactions as residual forces between bound states of quarks/gluons

o Otherwise, how can we model them?

® Provided we have nucleon forces, we need to solve a complicated quantum mechanical problem

o Many nucleons, but not enough to exploit statistical mechanics

— 2
P 200 MeV — (E) < 0.1 = nucleon dynamics non relativistic
m

o Relativistic treatment? ~
1000 MeV C

Typical strategy

1. Derive/build/model basic interactions between nucleons

2. Solve non-relativistic many-body Schrodinger equation



Structure vs reaction

® A-body Schrédinger eigenvalue equation H|U1) = E{| T4

Structure properties of nuclei with A=2, ~400 Nuclear matter properties

E.g. addition/removal energies E.g. equation of state

B = (B - B{) E/A(p,2,T)



Structure vs reaction

® A-body Schrédinger eigenvalue equation H|U1) = E{| T4

Structure properties of nuclei with A=2, ~400 Nuclear matter properties
E.g. addition/removal energies E.g. equation of state
Ff = +(EA* - B) E/A(p,2,T)
0
® Time-dependent Schrodinger equation ~ H|UATE7CTD (1)) = zh& (G AFTB=CHD (1))

Reaction cross section

Simplest reaction, but many other possibilities: more
O'(Ak + B; — Cm —|—Dn)

than two final products, more than two reactants (rare),
particles other than nuclei (photons, neutrinos, ...)

— Are structure properties easily obtainable from the reaction process?

— When we make approximations, are they at the same level for structure and reactions?



Ab initio vs effective approach

Ab initio (= “from scratch”) approach

H|y) = Ef|Ty)
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Ab initio vs effective approach

Ab initio (= “from scratch”) approach

H|0;) = B |T5) |
A-body Hamiltonian A-body wave-function

H=T+V2N_jyy3N_y, 4 yAN 5 variables x A nucleons

L_—v Do we need all these terms?? Unfavourable scaling for large A! <->

Effective approach
Reduce active _, [Interacting shell
Hilbert space model - ¢
Two main options H ) = B[
. A Energy density
Simplify [V} — functional

® Which properties we aim at and which level of accuracy are we seeking?
® Applicability throughout the nuclear chart? — Universal/global vs local description

® Predictive power? — Estimate of theoretical error



Independent particle model & mean field

A
® If particles of a many-body system don’t interact, then H = Z h; (=1-body only), and
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— From an A-body problem to A one-body problems



Independent particle model & mean field

A
® If particles of a many-body system don’t interact, then H = Z h; (=1-body only), and

A A A . L
H|Vi) = Ei |9} > hildp) = eplor)
— From an A-body problem to A one-body problems

® Independent particles: nucleons move inside a (one-body) potential well or mean field

® Does an independent-particle picture make any sense at all?

— Inter-particle distance in nuclei ~ 2 fm

— Range of nuclear interaction ~ 2 fm 100

= T=5 MeV

A [fm]

Turns out that it does

v Fermi statistics helps out

v Large mean free path A -50 0 50 100 150 200 250 300 350
e-U [MeV]

[Rios & Soma 2012; Lopez et al. 2014]



Independent particle model & mean field

A
® If particles of a many-body system don’t interact, then H = Z h; (=1-body only), and

H|Uy) = B |

> hildn) = eplon)

— From an A-body problem to A one-body problems

® Independent particles: nucleons move inside a (one-body) potential well or mean field

Coulomb shifts proton potentials

p?

h;, =
2m

Commonly used are potentials
of Woods-Saxon type

1+exp(ﬂ)

a

V(’I‘z) —

Nucleons (which are fermions) are placed in
energy levels according to Pauli principle



(Non-interacting) shell model

Measured binding energies
VS.
Liquid drop model predictions

Systematic deviations
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© What creates regular patterns?

o Nucleon shells? (cf. electrons in the atom)

o Yet, no obvious common potential



(Non-interacting) shell model

Measured binding energies = Idea: devise an effective one-body potential

VS.
Liquid drop model predictions

o 1. Start with 3D spherical HO potential

0 2. Add term proportional to €2 (centrifugal)

[Goppert-Mayer, Jensen]
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© What creates regular patterns?

o Nucleon shells? (cf. electrons in the atom)

o Yet, no obvious common potential

........... 1s1/2

Magic numbers reproduced!



(Interacting) shell model

® Independent-particle shell model OK for closed shells/ magic numbers
® In general, a correlated wave function is needed... but H = Hip.sm + Hres too costly to diagonalise

= Idea: exploit “shells” and their energy separation
220

1. Define an active Hilbert space (“valence space”)

/

Major shells —

\

2. Build valence-space Hamiltonian Heff

3. Diagonalise H¢ff in the restricted space
Valence space: 6 neutrons

1960’s Frozen core: 160




(Interacting) shell model

® Independent-particle shell model OK for closed shells/ magic numbers
® In general, a correlated wave function is needed... but H = Hip.sm + Hres too costly to diagonalise

= Idea: exploit “shells” and their energy separation
220

1. Define an active Hilbert space (“valence space”)

/

Major shells <

® How to build valence-space interactions?

2. Build valence-space Hamiltonian Heff

3. Diagonalise H¢ff in the restricted space
Valence space: 6 neutrons

1960’s Frozen core: 160

o Ab initio: use projection techniques to go from full to restricted Hilbert space
v Universal and systematic = predictive power

X Requires sophisticated many-body techniques — “fully ab initio” only very recently

o Phenomenologically: (re)fit parameters of Hef to data
v Successful in reproducing fine spectroscopy — very good accuracy

X Heff depends on exp. data locally — validity of extrapolations not guaranteed



(Interacting) shell model

® Problem: as A increases, dimensions of relevant valence spaces increase

® Computational aspects of the method rather challenging

o Progress in algorithms + computational resources have pushed the limits of applicability

o First calculations (1960’s): matrix dimensions 102 — today: matrix dimensions 10°-101°

> Main limitation: aggregate memory

o 10 nonzero matrix elements — 800 TB

o Progress relies on “Moore’s law” Applicability: A < 80-100

T — . - B 2s

g 10 800 TB JF B

= _ . i 1.

S 102k oo _ - B’

5 10 3 TH 0 |-

> i I B

E 101 Q. - »

= < - Ml

© 108 L < i i

E) 10 i ® ] . :_

S 10° -

= ] ] ] ] ] ] ] 3 ==ui il NI T I I s 1 .

104 100 10° 10" 10® 10° 10" 0 10 20 30 40

matrix dimension



Energy density functionals

> Idea: work with a simplified many-body wave-function |¢; )

H|UL) = Bt o) Hes|o7) = Ef'|é%)

. ) Simplest possible: independent particles
Correlations incorporated in H.g

® Original approach: Hamiltonian-based

o Hartree-Fock theory — mean-field potential built self-consistently from a NN interaction

® Modern approach: energy as a functional of (one-body) densities (+ currents)

o First density-dependent Hamiltonian, then more general functional of one-body density

® For both, parameters are fitted to data



Energy density functionals

= Idea: work with a simplified many-body wave-function o)
HIVE) = B i) Hetl61) = Eit o)

. ) Simplest possible: independent particles
Correlations incorporated in H.g

® Original approach: Hamiltonian-based

o Hartree-Fock theory — mean-field potential built self-consistently from a NN interaction

® Modern approach: energy as a functional of (one-body) densities (+ currents)

o First density-dependent Hamiltonian, then more general functional of one-body density

® For both, parameters are fitted to data

® Relies on symmetry breaking and restoration Physical solution must have good symmetries

— one must restore them in the end
Wave function has lost some of the symmetries of the Hamiltonian,

but energy is closer (w.r.t. symmetry-conserved case) to the exact one !

v Symmetry-broken HF calculations provide fair description and have low computational cost

X Restoring symmetries needed for refined results but may become very costly



Energy density functionals

® Several implementations developed over the years ]
PP 30 :
o Non-relativistic: Skyrme (1972+) and Gogny (1975+) s
o Relativistic: (1986+) =% '
101 ]
v Favourable scaling = only method applicable to all nuclei ’
30 -
v Can tackle efficiently nuclear matter S
= 20 7
X Lack of systematic character 5 |
10 ]
X Validity of extrapolations not guaranteed .
120 . . 30:— / = 7]
- Stable nuclei %\ i
N Known nuclei =3 20:_ /// 7
—.—l:‘ Drip line (,)5 E //
N 8ol @ Sy =2Mev 10" //%_
E 0%0 20 30 40 50 60 70 80 80 100 110
c Z
e e
[Delaroche et al. 2010]
80 120 160 200 240 280 [Erler et al. 2012]

Neutron number, N



Historical recap #1

Pre-1935 stuff (Radioactivity, Rutherford’s experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)
1949 Non-interacting shell model

1960’s Valence-space interaction (= interacting shell model)

1970’s Energy density functionals

Today



Basic structure of NN interaction

® Hamiltonian for the 2-nucleon system H =T + Vyy + Ve
Coulomb (+ small corrections)

® Most general fOl‘m VNN — V(T’l, T2,p1,p2,0'1,0'2,7'1,7_2)
— AN

positions / ] isospins
momenta  spins



Basic structure of NN interaction

® Hamiltonian for the 2-nucleon system H =T + Vyy + Ve
Coulomb (+ small corrections)

® Most general form Vnn =V (71,72, p1,P,01,02,71,72)
— AN

positions / ] isospins
momenta  spins

® Symmetry-constrained form
o Continuous symmetries (translation in time /space, rotation in space+spin, Galilean invariance)

o Discrete symmetries (parity, time reversal, baryon+lepton number conservation)

o Isospin:
charge symmetry charge independence
p<n = pp<nn PP < pn <> nn
(— spectra of mirror nuclei) (— pp vs. np scattering lengths)

r=—7Tr1 —7T>

Vi = V; ' M ’ V’T y Vs ) )
NN 1("“1?01 02)—|- (TP01 02)71 T2 pP=p; — Py

NS

each one with 3 parts:

spin-scalar + spin-vector + spin-tensor



Basic properties of NN interaction

® Nucleon-nucleon scattering

o Interaction leads to a change in the phase of the scattered wave — scattering phase shifts &

S§<0 0>0
Repulsive > > Attractive
N7 v N\
—_—> —

Wave pushed out by V Wave pulled in by V



Basic properties of NN interaction

® Nucleon-nucleon scattering

o Interaction leads to a change in the phase of the scattered wave — scattering phase shifts &

0<0

»

Repulsive

—

o Scattering is analysed in partial waves

NS

Wave pushed out by V

0=>0
> Attractive
N/
4
Wave pulled in by V

Total momentum is conserved J=L+S = |[L—S|<J<|L+ S|

S=§5+5 — §=01 = J=

Spectroscopic notation

L for S=0

IL—1|,L,L+1 for S=1



Basic properties of NN interaction

® Nucleon-nucleon scattering

0<0
o Example of phase shifts W R
N v N\

—_— —
Wave pushed out by V Wave pulled in by V

6=>0

»
»

25+1LJ

075 |} T=1 PHASE PARAMETERS

0.50

025 |

MeV

o

Eias

PHASE SHIFT { RADIANS)

-025

-0.50




Basic properties of NN interaction

® Nucleon-nucleon scattering

0<0
o Example of phase shifts W

6 |

100

075 |

0.50

PHASE SHIFT { RADIANS)

-025

-0.50

025 |

0=>0

»
»

N v N\

—_— —
Wave pushed out by V Wave pulled in by V

Almost bound! (nn system)

28+1LJ

T=1 PHASE PARAMETERS

P-wave: there’s something more than central — spin orbit

S-wave: becomes repulsive at small distances



Basic properties of NN interaction

® Nucleon-nucleon scattering

o Example of phase shifts
© Deuteron properties:

o Non-zero quadrupole moment — tensor

;
d Almost bound! (nn system) > LOREE ORDIE i

100

075 § T=1 PHASE PARAMETERS

n
Z

3 0s0 P-wave: there’s something more than central — spin orbit
&

-

u 025

I

w

%) 0 MeVv

< + ——

o 400 E,,p

-0.25 \ .
AN

-0.50

S-wave: becomes repulsive at small distances



Yukawa potential

o Coulomb interaction between charged particles (infinite range)
What was known:
o Nuclear interaction is short range ~ 2 fm

= Idea: nuclear force mediated by massive spin-0 boson (the “mesotron” — later, pion)

[Yukawa, Proca]

Yukawa potential
Y T —mr
.................. €
g Vir) «
T
e e N N
m ~ 100 MeV « r~2fm Range ~ Compton wavelength of exchanged boson ~ 1/m

® One-pion exchange describes long-range attraction between nucleons

o Works so well that, as of today, it is part of most sophisticated potential models!

® However, not the full story. Short-range part?

© 1950’s: Multi-pion exchange: disaster

© 1960’s: More mesons discovered — multi-pion resonances = exchange of heavier mesons



One-boson-exchange potentials

® Meson with larger masses (p , w, o) can model ranges smaller than 1/m;

o Different spin/isospin structures generated 1970s
o Parts sometimes phenomenological (or the whole, e.g. Av18)
300 L B | | LA A N (NS S B N BN S S B R S S R R
[ 1 ]
> Strategy: “ S, channel -
1. Construct the operatorial structure 200 ]
o Radial functions = [ | | ]
) _repulsive | 2n I o
© Spin/tensor /isospin operators) % 100 - core | p,w, 0 | |
= [ | | ]
2. Fit coupling constants to data = I11 | 11 1
o NN scattering Dt - :
o Deuteron properties - Bonn
Reid93
-100 AV |
~ e r[fm] -
TR | MR MR P MR
®© Experimental side: more and more precise NN data 0 0.5 1 1.5 2 25

® Theoretical side: more sophisticated potentials — 2= 2 in the 1980’s, x?> = 1 in the 1990’s

What about nuclear structure calculations?



Historical recap #2

Pre-1935 stuff (Radioactivity, Rutherford’s experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

1935 Yukawa potential

1949 Non-interacting shell model

1960’s Valence-space interaction (= interacting shell model)
1970’s Energy density functionals

1970’s One-boson exchange potentials

1980’s High precision one-boson exchange potentials

Today



Three-nucleon forces

® Calculations with accurate (x?= 1) OBE potentials show deficiencies in systems with A>2

o Lightest nuclei do not match experiment

o Saturation point of nuclear matter is not reproduced

Three-nucleon forces must be considered

1980’s
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[900T ‘v 12 1]



Three-nucleon forces

® Calculations with accurate (x?= 1) OBE potentials show deficiencies in systems with A>2

-10 T T T T T T T T T T T

o Lightest nuclei do not match experiment ol ]
: : : & 7P |

o Saturation point of nuclear matter is not reproduced . -\\
6[ oc ]
18 "_ v18@® gPAR ]
V4 gN93 @il :
-20 - R93‘ o NI ‘
-22 B® eCD -
. 24 | ]
Three-nucleon forces must be considered Noe ]
1980’s ! s
-28 i A@]

30

1 1 1 1 1 1 1 1 1 1 1
015 020 025 030 035 040
p (fm?)

= Fundamental reason: nucleons are composite particles, but we treat them as structureless

o Certain processes, e.g. involving nucleon excitations, can not be described as 2-body

b1l

T

A » I [Fujita, Miyazawa]

o — — —

T

o Three-nucleon forces are added mostly phenomenologically to OBE potentials

[900T ‘v 12 1]



Extended nuclear matter

® Nuclear matter as a theoretical laboratory to test interactions & many-body methods
o Homogeneous system of nucleons interacting via strong interactions (Coulomb switched off)
o Thermodynamic limit (A— co, V— o0, p=A/V constant)
o Pure neutron matter is simpler and provides constraints for astrophysical systems

o Isospin-symmetric nuclear matter relates to bulk properties of nuclei

Equation of state of nuclear matter Density distributions of nuclei

0.20

PF nuclear
matter

E [MeV]

010

[Heyde 1998]



Electron scattering off nuclei

® Electrons constitute an optimal probe to study atomic nuclei

o Point-like — excellent spatial resolution

o EM weak and theoretically well constrained

® Accélérateur Linéaire @ Saclay (ALS)

o Electron accelerator (1969-1990)

o Refined data on tens of stable nuclei

( electron ring

i(/—\)
A

' lon Source

1y

electrodes
||||||||| Avvvl'lllllllll eliecuron pean

mirror potential “\
\ injection

|

extraction

N S Y
o O O O O
o —_ <

Lg—g [(cm™s ) (cm?sr!)]

[E—
(@)
o b

[Tsukada et al. 2017]

Xe target

¢ Exp. (Ee=151 MeV)
® Exp.(Ee=201 MeV)
Y Exp. (Ee=301 MeV)
—— 2-param. Fermi
— —— Lapikas
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= Electron scattering off unstable nuclei?

o Challenge for the future
o First physics experiments in 2017 with SCRIT @ RIKEN
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[Frois et al. 1977]



First ab initio calculations

= 1990’s: Green function Monte Carlo approach

o MC techniques to sample many-body wave function in coordinate, isospin and spin space

= 2000’s: No-core shell model approach

o Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)

Energy (MeV)

20,

-30

-40
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-60
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-100

-\, 7/2— .
4-\" 0 Em i
K mE=5/0- N
; 1/2 5127 —\/5/2+ o+ ;
B 3/2- 1/2+ =7 3+ 1
L 3/2%- 712" >+ 1
T 9 3/2~ A g
N 8L. 2+ Ll 3/2+ 1* + -
- 1 s+ | /32t e
- Argonne v =R Y .
- 18 SBe 5/2- T2 2+ -
- with Illinois-7 -
- GFMC Calculations 9Be 10Be ]
C 108 .
- eIL7:4 parameters fit to 23 states VISX .
— * 600 keV rms error, 51 states A .
- Lo VI8 o]
- *~60 isobaric analogs also computed +IL7 EXpt. ]
- ® 12C—:

Nuclei simulated from scratch!

Closed the gap between elementary
nucleon-nucleon interactions and
properties of nuclei

[Pieper & Wiringa 2001]



First ab initio calculations

= 1990’s: Green function Monte Carlo approach

o MC techniques to sample many-body wave function in coordinate, isospin and spin space

= 2000’s: No-core shell model approach

o Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)
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He 6He i 8He 712+ "
40— 1/2 512 -\/5/2+ o+
B 3/2- 1/2% =7 3+
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Nuclei simulated from scratch!

Closed the gap between elementary
nucleon-nucleon interactions and
properties of nuclei

[Pieper & Wiringa 2001]

X Computational effort increases exponentially / factorially with nucleon number

X Necessity of treating three-nucleon forces makes it more severe

— Approach currently limited to light nuclei



Resolution scale of nucleon-nucleon interactions

© Two main problems with OBE potentials

1. Substantial part remains phenomenological (in particular 3N sector)

2. Strong repulsive short-range component (“hard core”)
o Induces strong correlations in the wave function

o Large bases needed to converge — applicability limited to light nuclei

Hard core <« Strong coupling between low and high momenta < High resolution
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Resolution scale of nucleon-nucleon interactions

© Two main problems with OBE potentials

1. Substantial part remains phenomenological (in particular 3N sector)

2. Strong repulsive short-range component (“hard core”)
o Induces strong correlations in the wave function

o Large bases needed to converge — applicability limited to light nuclei

Hard core <« Strong coupling between low and high momenta < High resolution

Do we really need such high resolution to compute properties of nuclei?

P, w, o masses > 700 MeV pion mass ~ 140 MeV

spatial distances < 0.5 fm @ < «> | observables ~ 0.1-10 MeV

of. nucleon radius ~ 0.8 fm av. nucleon momenta ~ 200 MeV

= Conceptual breakthrough: apply Effective Field Theory to build nuclear potentials

= Technical breakthrough: apply Renormalisation Group techniques to transform nuclear potentials
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Effective field theory

® The principles
1. Use separation of scales to define d.o.f & expansion parameter [Weinberg, van Kolck, ..]
: Q High energy scale
Typical momentum at play M

(not included explicitly) 1990’s
2. Write all possible terms allowed by symmetries of underlying theory (QCD)

3. Order by size all possible terms — systematic expansion (= “power counting”)

4. Truncate at a give order and adjust coupling constants (use underlying theory or data)
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® The principles
1. Use separation of scales to define d.o.f & expansion parameter [Weinberg, van Kolck, ..]
o | Q High energy scale
lypical momentum at play M (not included explicitly) 1990’s

2. Write all possible terms allowed by symmetries of underlying theory (QCD)

3. Order by size all possible terms — systematic expansion (= “power counting”)

4. Truncate at a give order and adjust coupling constants (use underlying theory or data)
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Effective field theory

® The principles

1. Use separation of scales to define d.o.f & expansion parameter

Typical momentum at play

Q

M

[Weinberg, van Kolck, ..]

High energy scale
(not included explicitly) 1990’s

2. Write all possible terms allowed by symmetries of underlying theory (QCD)

3. Order by size all possible terms — systematic expansion (= “power counting”)

4. Truncate at a give order and adjust coupling constants (use underlying theory or data)

Chiral EFT
= Expand around Q ~ m,

High-energy via contact interactions

Keep pion dynamic explicit

MeV
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—— myN

-_ mp
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500 |

250 F

Pionless EFT
= Expand around Q ~ 0

Integrate out pions too
— only contact terms



Chiral effective field theory

v Systematic framework to construct AN interactions (A=2, 3, ...)

v A theoretical error can be assigned to each order in the expansion

® Is the chiral expansion converging quickly enough?

— If not, the approach becomes unfeasible

Two-nucleon force Three-nucleon force Four-nucleon force
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[Meifsner 2016]

® Goal: apply to the many-nucleon system (and propagate the theoretical error!)



Solving the many-body Schrodinger equation

® Basis truncation
o Representation of the many-body wave function
o Infinite in principle, finite in practise — need to be large enough to contain relevant physics

o The weaker the high-momentum components in H, the smaller the basis to converge
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Solving the many-body Schrodinger equation

® Basis truncation
o Representation of the many-body wave function
o Infinite in principle, finite in practise — need to be large enough to contain relevant physics

o The weaker the high-momentum components in H, the smaller the basis to converge

© Expansion around a reference state

© One particular configuration can be solution of an auxiliary problem (with Hamiltonian Ho)
o Express total Hamiltonian as H = Ho + H;

o Expand exact wave function around that “reference state” — approximate ab initio

® Many-body truncation
o Order “by size” contributions from all different configurations
o Keep only the most important ones — approximate ab initio

o The weaker the high-momentum components in H, the more you can truncate




Approximate ab initio methods

© Trade exactness of the solution for more favourable scaling with A

o Express the problem in perturbation & truncate — resum (non perturbative)

o Three main methods:

1. Self-consistent Green’s function theory (SCGF)

o Rewrite many-body Schrédinger equation in terms of G and . — Dyson equation

Gap(w) = G (w) Z G (w) By (w) Gap(w)
2. Coupled-cluster theory (CC)

o Computes the similarity-transformed normal-ordered Hamiltonian

H=c THye" E = (¢|H|p)

3. In-medium similarity renormalisation group (IM-SRG)

o Employs a continuous unitary transformation of H to decouple g.s. from excitations

OpOh 1plh  2p2h  3p3h _ OpOh 1plh  2p2h  3p3h

=

Flow equation

d
S H(s) =1n(s), H(s)]
s

truncated at rank 7 at each step

3p3h 2p2h 1plh OpOh
3p3h 2p2h 1plh OpOh

(i H(00) |7)



Approximate ab initio methods

® Approximate /truncated methods capture correlations via an expansion in ph excitations

® Open-shell nuclei are (near-)degenerate with respect to ph excitations

a b
fiﬁ —0-0-0-0-
closed-shell & open-shell
1 1 j a b

(ablolij)

1
. (2) _ = e el A
o E.g. consider MBPT(2) ALY = 1 E (ij|0|ab)

€+ € —€, —€
abij i T € — € ~ € w

when €; + €¢; = €, + €, the expansion breaks down

® Way out: formulate the expansion around a symmetry-breaking reference state
o Symmetry-breaking solution allows to lift the degeneracy
o GF theory extended to particle-number breaking scheme (Gorkov formalism) [Gorkov 1958]
o Implementation for semi-magic nuclei developed in Saclay & Surrey [Soma, Duguet & Barbieri 2011]

o Symmetries must be eventually restored



Similarity renormalisation group

= Can we make the couplings between low and high momenta even weaker?

— After all, any unitary transformation on H leaves observables unchanged!

¥

Similarity Renormalisation Group (SRG) techniques for 2N and 3N forces

= Unitary transformation to further lower the resolution scale of the original Hamiltonian

k(fm") k(fm'1) 1 —24_'|'|'|\“'| T T T 7T 1
L \
O 2 3 4 0 2 3 4 5 I _25; 4HC ‘\ @ -0 bare |
\ v—v SRG
\
\
— = or S chiral EFT
L

4 -05
1 a) b)
1

= _29_|||||||||||||||||||
2 4 6 8 10 12 14 16 18 20 22

VSRG [Bogner, Furnstahl & Schwenk 2010] N“‘
[Jurgenson, Navratil & Furnstahl 2013]

X No free lunch: unitary transformation generates 3- and many-body forces



Evolution of ab initio nuclear chart
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Evolution of ab initio nuclear chart

® Approximate methods for closed-shells ® Approximate methods for open-shells
o Since 2000’s o Since 2010’s
o SCGF, CC, IMSRG o GGF, BCC, MR-IMSRG
o Polynomial scaling o Polynomial scaling
L2013 -amEmmmmmmmRE
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R L ® “Exact” methods
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ais i 5!; i o Since 1980’s
- E E E o Monte Carlo, CI, ...
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Evolution of ab initio nuclear chart

® Approximate methods for closed-shells ® Approximate methods for open-shells
o Since 2000’s o Since 2010’s
o SCGF, CC, IMSRG o GGF, BCC, MR-IMSRG
o Polynomial scaling o Polynomial scaling

@ Hybrid (valence-space) methods

o Since 2014
o Effective interaction via CC/IMSRG

| é E i o Mixed scaling
s e L
=
- —E—-—-:-:--i--.-:..ﬂ.....i. _____ . ® “Exact” methods
| iii © Monte Carlo, (I, ...
_ ‘i:“jr"':gg:::?.* o o Factorial scaling




The potential “bubble nucleus” Si34

® Unconventional depletion (“bubble”) in the centre of ps, conjectured for certain nuclei

®© Purely quantum mechanical effect
o £ =0 orbitals display radial distribution peaked at r =0

o £ = 0 orbitals are instead suppressed at small »

o Vacancy of s states (£ = 0) embedded in larger-¢ orbitals might cause central depletion

e ege . . Duguet, Soma et al. 2017
® Ab initio Green’s function calculations [Dug |

0.1F -
L 34Q; |
o Input: NN+3N interactions from ChEFT o 3631
o Qutput: BE, radii, densities, spectra, ... 0.08 I = S (exp) 7]
i
= 0.06
v Computed density of 3S agrees with data =

v Computed density of 3Si shows bubble =004}

0.02 _
> Density measurement of (unstable) 345i? _




Lattice QCD

® At low-energy, QCD is non-perturbative — calculations possible only on the lattice

o Calculation of hadron masses very successful

o Multi-baryon systems? Atomic nuclei?

® Two different routes are currently followed

50

AE (MeV)
|
[,
o

-100

-150

> Direct calculation of nuclei

4He(()+)

p+p+n+n

d+p+n

nn+p+p

nn + pp

L=24,|p|=0

L=32,|pl=0

L=48 , |p|=0

d+d

He +n

Excitation energy << QCD scales

X High statistic data required

[C10T ‘17 12 suead]

= Calculation of nucleon-nucleon potential

V(1) [MeV]
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Model-dependent extraction

X 3-body part problematic

[£00¢ epnsieH 2 DOV ‘TYs[]]



Historical recap #3

Pre-1935 stuff (Radioactivity, Rutherford’s experiment, discovery of the neutron, ...

1935 Semi-empirical mass formula (liquid drop)

1935 Yukawa potential

1949 Non-interacting shell model

1960’s Valence-space interaction (= interacting shell model)

1970’s Energy density functionals

1970’s One-boson exchange potentials

1980’s High precision one-boson exchange potentials

1990’s First ab initio calculations

1990’s Effective field theory applied to nuclear forces

2000’s Approximate ab initio (= “many-body”) methods developed
2010’s Renormalisation group techniques applied to nuclear forces
2010’s Massively-parallelised simulations of medium-mass nuclei

2010’s First lattice QCD calculations of NN potential & multi-baryon systems

Today



Computational challenges

® Progress relies on increasing computational resources
o Numerical codes heavily parallelised
o Collaboration with computer scientists necessary

o Yearly allocations of the order of 10-100M CPU hours

Curie @ CCRT/CEA, France

Building of NN/3N interactions Ab initio three-body forces

Costly multi-parameter fits Number of matrix elements explodes
A . O%,} 100
'~-,\,‘ C | _
S \ S o -
A 1 o _ 3
Q Z ol =)
= = Z
n (:«s 001 ’-W“.
' 0001 | =
] ' @)
) —_
= 0.0001 F =
N
& 1e-05 F
= 1e-06 - | - -
0 500 1000 1500 2000
a
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Theoretical challenges

®© Bridge structure and reactions

o Theoretical tools to deal with continuum

o Nucleon-nucleus interaction? @/ﬁé@

o Reaction approaches <= model dependence?

o Structure consistently “extracted” and computed?

—5p . .
o N e | ® Theoretical errors
SE it i
> _o5f } E . .
2 + ------------- “#4.-| o Systematic errors hardest to estimate
— -15F = =35 o .
s [ = S D ]
3 - - - L 14 2 ] . . . .
2 S R 1 o Crucial where no data is/will be available
oy 550 E
30F : ] . .
sl —65 1 o EFTs offer tools to quantify our ignorance
0.1 0.2 0.3 0.4 0.5 0.6 _75: J | | ]
LO NLO N?LO

p [fm3] o Challenge: EFT + nuclear many-body problem

[Hu et al. 2017] [Lynn et al. 2017]



