Basic nuclear interactions and their link to nuclear processes in the cosmos and on earth

Theoretical historical introduction

Vittorio Somà
CEA Saclay, France

Rewriting nuclear physics textbooks
Pisa, 25 July 2017

Basic facts about nuclei

- 254 stable isotopes, ~ 3000 synthesised in the lab
- Heaviest synthesised element $Z=118$

- Neutron drip-line known up to $Z=8$ (16 neutrons)
- Over-stable magic nuclei $(2,8,20,28,50,82, \ldots)$

Basic questions about nuclei

- 254 stable isotopes, ~ 3000 synthesised in the lab
- How many bound nuclei exist? (6000-7000?)
- Heaviest synthesised element $Z=118$
- Heaviest possible element?

Enhanced stability near $\mathrm{Z}=120$?

- Neutron drip-line known up to $Z=8$ (16 neutrons)
- Where is the neutron drip-line beyond $Z=8$?
- Over-stable magic nuclei ($2,8,20,28,50,82, \ldots)$
\circ Are magic numbers the same for unstable nuclei?

Diversity of nuclear phenomena

Nucleus: bound (or resonant) state of Z protons and N neutrons

Ground state

Mass, size, superfluidity, ...

Radioactive decays
$\beta, 2 \beta, \alpha, p, 2 p$, fission, ...

Spectroscopy

Excitation modes

$\xrightarrow[\text { angular momentum }]{\longrightarrow}$

Several scales at play:

$\mathrm{p} \& \mathrm{n}$ momenta $\sim 1 \mathbf{1 0}^{\mathbf{8}} \mathrm{eV}$
Separation energies $\sim \mathbf{1 0}^{\mathbf{7}} \mathrm{eV}$
Vibrational excitations $\sim 1 \mathbf{1 0}^{6} \mathrm{eV}$
Rotational excitations $\boldsymbol{\sim} \mathbf{1 0}^{\mathbf{4}} \mathrm{eV}$

Exotic structures

Clusters, halos, ...

Reaction processes
Fusion, transfer, knockout, ...

Historical preamble

1896 Becquerel discovers radioactivity

1898 Pierre \& Marie Curie find α, β and γ rays

1911 Rutherford proposes the atomic nucleus
1919 Rutherford identifies the hydrogen nucleus as the proton
1929 Heitler \& Herzberg show that ${ }^{14} \mathrm{~N}$ is a boson
1931 Pauli proposes the neutrino
1932 Chadwick discovers the neutron

1933 Fermi proposes theory of weak interactions and β decay

Nuclear theory begins

Outline

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

2010's First lattice QCD calculations of NN potential \& multi-baryon systems

Today

Liquid drop model \& semi-empirical mass formula

© Picture the nucleus as a (suspended) drop of (incompressible) liquid with surface tension

Liquid drop model

[Gamow, Bohr, Wheeler]
Competing processes give rise to nuclear binding

$$
A=Z+N
$$

$$
\mathrm{BE}(Z, N)=a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z^{2}}{A^{1 / 3}}-a_{a} \frac{(N-Z)^{2}}{4 A}-\frac{\delta}{A^{1 / 2}}
$$

volume surface

> Coulomb
N-Z asymmetry
pairing
\checkmark Successful in explaining binding energy global trend x Unsuccessful in explaining fine features, excitation spectra, ...

Nuclear many-body problem

\odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment

Nuclear many-body problem

© Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment \bigcirc Which degrees of freedom?

- Quantised collective modes?
\circ Protons and neutrons (\equiv nucleons)? \rightarrow usually the natural choice
- What about quarks and gluons? (Full QCD treatment?)

Nuclear many-body problem

\odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment
\odot Which degrees of freedom?

- Quantised collective modes?
\circ Protons and neutrons (\equiv nucleons)? \rightarrow usually the natural choice
- What about quarks and gluons? (Full QCD treatment?)
- Provided we work with nucleons, we need interactions between them
- QCD: nuclear interactions as residual forces between bound states of quarks/gluons
- Otherwise, how can we model them?

Nuclear many-body problem

\odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment
\odot Which degrees of freedom?

- Quantised collective modes?
\circ Protons and neutrons (\equiv nucleons)? \rightarrow usually the natural choice
- What about quarks and gluons? (Full QCD treatment?)
© Provided we work with nucleons, we need interactions between them
- QCD: nuclear interactions as residual forces between bound states of quarks/gluons
- Otherwise, how can we model them?
\odot Provided we have nucleon forces, we need to solve a complicated quantum mechanical problem
- Many nucleons, but not enough to exploit statistical mechanics
- Relativistic treatment? $\frac{\vec{p}}{m} \approx \frac{200 \mathrm{MeV}}{1000 \mathrm{MeV}} \Rightarrow\left(\frac{v}{c}\right)^{2}<0.1 \Rightarrow$ nucleon dynamics non relativistic

Nuclear many-body problem

\odot Liquid drop model is semi-classical \rightarrow we need fully quantum mechanical treatment
๑ Which degrees of freedom?

- Quantised collective modes?
\circ Protons and neutrons (\equiv nucleons)? \rightarrow usually the natural choice
- What about quarks and gluons? (Full QCD treatment?)
© Provided we work with nucleons, we need interactions between them
- QCD: nuclear interactions as residual forces between bound states of quarks/gluons
- Otherwise, how can we model them?
- Provided we have nucleon forces, we need to solve a complicated quantum mechanical problem
- Many nucleons, but not enough to exploit statistical mechanics
- Relativistic treatment? $\frac{\vec{p}}{m} \approx \frac{200 \mathrm{MeV}}{1000 \mathrm{MeV}} \Rightarrow\left(\frac{v}{c}\right)^{2}<0.1 \Rightarrow$ nucleon dynamics non relativistic

1. Derive/build/model basic interactions between nucleons
2. Solve non-relativistic many-body Schrödinger equation

Structure vs reaction

$\odot A$-body Schrödinger eigenvalue equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$

Structure properties of nuclei with $A=2, \sim 400$
E.g. addition/removal energies

$$
E_{k}^{ \pm} \equiv \pm\left(E_{k}^{A \pm 1}-E_{0}^{A}\right)
$$

Nuclear matter properties
E.g. equation of state
$E / A(\rho, x, T)$

Structure vs reaction

$\odot A$-body Schrödinger eigenvalue equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$

Structure properties of nuclei with $A=2, \sim 400$
E.g. addition/removal energies

$$
E_{k}^{ \pm} \equiv \pm\left(E_{k}^{A \pm 1}-E_{0}^{A}\right)
$$

Nuclear matter properties
E.g. equation of state

$$
E / A(\rho, x, T)
$$

๑ Time-dependent Schrödinger equation

$$
H\left|\Psi^{A+B \rightarrow C+D}(t)\right\rangle=i \hbar \frac{\partial}{\partial t}\left|\Psi^{A+B \rightarrow C+D}(t)\right\rangle
$$

Reaction cross section

$$
\sigma\left(A_{k}+B_{l} \rightarrow C_{m}+D_{n}\right)
$$

Simplest reaction, but many other possibilities: more than two final products, more than two reactants (rare), particles other than nuclei (photons, neutrinos, ...)
\rightarrow Are structure properties easily obtainable from the reaction process?
\rightarrow When we make approximations, are they at the same level for structure and reactions?

Ab initio vs effective approach

Ab initio (= "from scratch") approach

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

Ab initio vs effective approach

Ab initio (= "from scratch") approach

$$
\begin{aligned}
& \text { A-body Hamiltonian } H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \\
& H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+\ldots+V^{A \mathrm{~N}}
\end{aligned}
$$

\longrightarrow Do we need all these terms??

Ab initio vs effective approach

Ab initio (= "from scratch") approach

$$
\begin{array}{cl}
\text { A-body Hamiltonian } & H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \\
H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+\ldots+V^{A \mathrm{~N}} & \begin{array}{l}
\text { A-body wave-function } \\
5 \text { variables } \mathrm{x} A \text { nucleons }
\end{array}
\end{array}
$$

\longrightarrow Do we need all these terms??
Unfavourable scaling for large A! \downarrow

Ab initio vs effective approach

Ab initio (= "from scratch") approach
A-body Hamiltonian

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle
$$

A-body wave-function

$$
H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+\ldots+V^{A \mathrm{~N}}
$$

Effective approach

Ab initio vs effective approach

Ab initio (= "from scratch") approach

$$
\begin{array}{cl}
\text { A-body Hamiltonian } & H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \\
H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+\ldots+V^{A \mathrm{~N}} & \begin{array}{l}
\text { A-body wave-function } \\
5 \text { variables } \times \text { A nucleons }
\end{array}
\end{array}
$$

\longrightarrow Do we need all these terms??

Effective approach

Reduce active
Hilbert space
:---:
model

Simplify $\left|\Psi_{k}^{A}\right\rangle \rightarrow \quad \begin{gathered}\text { Energy density } \\ \text { functional }\end{gathered}$
\odot Which properties we aim at and which level of accuracy are we seeking?
\odot Applicability throughout the nuclear chart? \rightarrow Universal/global vs local description
\odot Predictive power? \rightarrow Estimate of theoretical error

Independent particle model \& mean field

๑ If particles of a many-body system don't interact, then $H=\sum_{i}^{A} h_{i}$ (= 1-body only), and

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \longrightarrow h_{i}\left|\phi_{k}^{i}\right\rangle=\varepsilon_{k}^{i}\left|\phi_{k}^{i}\right\rangle
$$

\rightarrow From an A-body problem to A one-body problems

Independent particle model \& mean field

๑ If particles of a many-body system don't interact, then $H=\sum_{i}^{A} h_{i}$ (= 1-body only), and

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \longrightarrow h_{i}\left|\phi_{k}^{i}\right\rangle=\varepsilon_{k}^{i}\left|\phi_{k}^{i}\right\rangle
$$

\rightarrow From an A-body problem to A one-body problems
\odot Independent particles: nucleons move inside a (one-body) potential well or mean field
\odot Does an independent-particle picture make any sense at all?
\rightarrow Inter-particle distance in nuclei $\sim 2 \mathrm{fm}$
\rightarrow Range of nuclear interaction $\sim 2 \mathrm{fm}$

Turns out that it does
\checkmark Fermi statistics helps out
\checkmark Large mean free path λ

[Rios \& Somà 2012; Lopez et al. 2014]

Independent particle model \& mean field

๑ If particles of a many-body system don't interact, then $H=\sum_{i}^{A} h_{i}$ (= 1-body only), and

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \longrightarrow h_{i}\left|\phi_{k}^{i}\right\rangle=\varepsilon_{k}^{i}\left|\phi_{k}^{i}\right\rangle
$$

\rightarrow From an A-body problem to A one-body problems
\odot Independent particles: nucleons move inside a (one-body) potential well or mean field

$$
h_{i}=\frac{p_{i}^{2}}{2 m}+V\left(r_{i}\right)
$$

Commonly used are potentials of Woods-Saxon type

$$
V\left(r_{i}\right)=-\frac{V_{0}}{1+\exp \left(\frac{r_{i}-R}{a}\right)}
$$

Coulomb shifts proton potentials
Nucleons (which are fermions) are placed in energy levels according to Pauli principle

(Non-interacting) shell model

Measured binding energies
VS.
Liquid drop model predictions

Systematic deviations

\odot What creates regular patterns?

- Nucleon shells? (cf. electrons in the atom)
- Yet, no obvious common potential

(Non-interacting) shell model

Measured binding energies
vs.
Liquid drop model predictions

Systematic deviations

\odot What creates regular patterns?

- Nucleon shells? (cf. electrons in the atom)
- Yet, no obvious common potential
\Rightarrow Idea: devise an effective one-body potential
- 1. Start with 3D spherical HO potential
- 2. Add term proportional to ℓ^{2} (centrifugal)
- 3. Add a spin-orbit term $\ell \cdot s$
[Göppert-Mayer, Jensen]

Notation $\mathrm{n} \ell_{\mathrm{J}}$

Magic numbers reproduced!

(Interacting) shell model

○ Independent-particle shell model OK for closed shells/magic numbers
\odot In general, a correlated wave function is needed... but $H=H_{\mathrm{IP}-\mathrm{SM}}+H_{\mathrm{res}}$ too costly to diagonalise \Rightarrow Idea: exploit "shells" and their energy separation

(Interacting) shell model

○ Independent-particle shell model OK for closed shells/magic numbers
© In general, a correlated wave function is needed... but $H=H_{\mathrm{IP}-\mathrm{SM}}+H_{\mathrm{res}}$ too costly to diagonalise \Rightarrow Idea: exploit "shells" and their energy separation

$\circ \mathbf{A b}$ initio: use projection techniques to go from full to restricted Hilbert space
\checkmark Universal and systematic \rightarrow predictive power
x Requires sophisticated many-body techniques \rightarrow "fully ab initio" only very recently

- Phenomenologically: (re)fit parameters of $H^{\text {eff }}$ to data
\checkmark Successful in reproducing fine spectroscopy \rightarrow very good accuracy
$x H^{\text {eff }}$ depends on exp. data locally \rightarrow validity of extrapolations not guaranteed

(Interacting) shell model

\odot Problem: as A increases, dimensions of relevant valence spaces increase
\odot Computational aspects of the method rather challenging

- Progress in algorithms + computational resources have pushed the limits of applicability
- First calculations (1960's): matrix dimensions $10^{2} \rightarrow$ today: matrix dimensions 10 $0^{9}-10^{10}$
\Rightarrow Main limitation: aggregate memory
- 10^{14} nonzero matrix elements $\rightarrow 800 \mathrm{~TB}$
- Progress relies on "Moore's law"

Applicability: A < 80-100

Energy density functionals

\Rightarrow Idea: work with a simplified many-body wave-function $\left|\phi_{k}^{A}\right\rangle$

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \quad \square \quad H_{\mathrm{eff}}\left|\phi_{k}^{A}\right\rangle=E_{k}^{A}\left|\phi_{k}^{A}\right\rangle
$$

Correlations incorporated in $H_{\text {eff }}$
Simplest possible: independent particles

○ Original approach: Hamiltonian-based
\circ Hartree-Fock theory \rightarrow mean-field potential built self-consistently from a NN interaction
○ Modern approach: energy as a functional of (one-body) densities (+ currents)

- First density-dependent Hamiltonian, then more general functional of one-body density
© For both, parameters are fitted to data

Energy density functionals

\Rightarrow Idea: work with a simplified many-body wave-function $\left|\phi_{k}^{A}\right\rangle$

$$
H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle \quad \square \quad H_{\mathrm{eff}}\left|\phi_{k}^{A}\right\rangle=E_{k}^{A}\left|\phi_{k}^{A}\right\rangle
$$

Correlations incorporated in $H_{\text {eff }}$
Simplest possible: independent particles

○ Original approach: Hamiltonian-based
\circ Hartree-Fock theory \rightarrow mean-field potential built self-consistently from a NN interaction
○ Modern approach: energy as a functional of (one-body) densities (+ currents)

- First density-dependent Hamiltonian, then more general functional of one-body density
© For both, parameters are fitted to data
© Relies on symmetry breaking and restoration
Physical solution must have good symmetries \rightarrow one must restore them in the end
Wave function has lost some of the symmetries of the Hamiltonian, but energy is closer (w.r.t. symmetry-conserved case) to the exact one !
\checkmark Symmetry-broken HF calculations provide fair description and have low computational cost x Restoring symmetries needed for refined results but may become very costly

Energy density functionals

- Several implementations developed over the years
- Non-relativistic: Skyrme (1972+) and Gogny (1975+)
- Relativistic: (1986+)
\checkmark Favourable scaling \rightarrow only method applicable to all nuclei \checkmark Can tackle efficiently nuclear matter
X Lack of systematic character
x Validity of extrapolations not guaranteed

[Delaroche et al. 2010]
[Erler et al. 2012]

Historical recap \#1

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)

1949 Non-interacting shell model
1960's Valence-space interaction (= interacting shell model)
1970's Energy density functionals

Today

Basic structure of NN interaction

๑ Hamiltonian for the 2-nucleon system $\quad H=T+V_{N N}+V_{\mathrm{em}} \longrightarrow$ Coulomb (+ small corrections)
\bigcirc Most general form $V_{N N}=V\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right)$

Basic structure of NN interaction

๑ Hamiltonian for the 2-nucleon system $\quad H=T+V_{N N}+V_{\mathrm{em}} \longrightarrow$ Coulomb (+ small corrections)
\bigcirc Most general form $V_{N N}=V\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right)$

© Symmetry-constrained form

- Continuous symmetries (translation in time/space, rotation in space+spin, Galilean invariance)
- Discrete symmetries (parity, time reversal, baryon+lepton number conservation)
- Isospin:

> charge symmetry
> $\mathrm{p} \leftrightarrow \mathrm{n} \Rightarrow \mathrm{pp} \leftrightarrow \mathrm{nn}$
> $(\rightarrow$ spectra of mirror nuclei $)$
charge independence

$$
\mathrm{pp} \leftrightarrow \mathrm{pn} \leftrightarrow \mathrm{nn}
$$

$(\rightarrow$ pp vs. np scattering lengths)

$$
V_{N N}=V_{1}\left(\boldsymbol{r}, \boldsymbol{p}, \sigma_{1}, \sigma_{2}\right)+V_{\tau}\left(\boldsymbol{r}, \boldsymbol{p}, \sigma_{1}, \sigma_{2}\right) \tau_{1} \cdot \tau_{2}
$$

each one with 3 parts:
spin-scalar + spin-vector + spin-tensor

Basic properties of NN interaction

© Nucleon-nucleon scattering

- Interaction leads to a change in the phase of the scattered wave \rightarrow scattering phase shifts δ

Basic properties of NN interaction

\odot Nucleon-nucleon scattering
\circ Interaction leads to a change in the phase of the scattered wave \rightarrow scattering phase shifts δ

- Scattering is analysed in partial waves

Total momentum is conserved $\vec{J}=\vec{L}+\vec{S} \Longrightarrow|L-S| \leq J \leq|L+S|$

$$
\vec{S}=\overrightarrow{s_{1}}+\overrightarrow{s_{2}} \Longrightarrow S=0,1 \Longrightarrow J=\left\{\begin{array}{r}
L \text { for } S=0 \\
|L-1|, L, L+1 \text { for } S=1
\end{array}\right.
$$

Spectroscopic notation ${ }^{2 S+1} L_{J}$

Basic properties of NN interaction

© Nucleon-nucleon scattering

- Example of phase shifts

Basic properties of NN interaction

© Nucleon-nucleon scattering

- Example of phase shifts

S-wave: becomes repulsive at small distances

Basic properties of NN interaction

© Nucleon-nucleon scattering

- Example of phase shifts

S-wave: becomes repulsive at small distances

Yukawa potential

What was known:

- Coulomb interaction between charged particles (infinite range)
- Nuclear interaction is short range $\sim 2 \mathrm{fm}$
\lrcorner Idea: nuclear force mediated by massive spin-0 boson (the "mesotron" \rightarrow later, pion)

\odot One-pion exchange describes long-range attraction between nucleons
- Works so well that, as of today, it is part of most sophisticated potential models!
© However, not the full story. Short-range part?
- 1950's: Multi-pion exchange: disaster
- 1960's: More mesons discovered \rightarrow multi-pion resonances \approx exchange of heavier mesons

One-boson-exchange potentials

\odot Meson with larger masses (ρ, ω, σ) can model ranges smaller than $1 / \mathrm{m}_{\pi}$ - Different spin/isospin structures generated

- Parts sometimes phenomenological (or the whole, e.g. Av18)

\Rightarrow Strategy:

1. Construct the operatorial structure

- Radial functions
- Spin/tensor/isospin operators)

2. Fit coupling constants to data

- NN scattering
- Deuteron properties
© Experimental side: more and more precise NN data

© Theoretical side: more sophisticated potentials $\rightarrow \chi^{2} \approx 2$ in the 1980's, $\chi^{2} \approx 1$ in the 1990's

What about nuclear structure calculations?

Historical recap \#2

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)
1935 Yukawa potential
1949 Non-interacting shell model
1960's Valence-space interaction (= interacting shell model)
1970's Energy density functionals
1970's One-boson exchange potentials
1980's High precision one-boson exchange potentials

Today

Three-nucleon forces

๑ Calculations with accurate $\left(\chi^{2}=1\right)$ OBE potentials show deficiencies in systems with $A>2$

- Lightest nuclei do not match experiment
- Saturation point of nuclear matter is not reproduced

Three-nucleon forces must be considered

Three-nucleon forces

๑ Calculations with accurate $\left(\chi^{2}=1\right)$ OBE potentials show deficiencies in systems with $A>2$

- Lightest nuclei do not match experiment
- Saturation point of nuclear matter is not reproduced

Three-nucleon forces must be considered

弓 Fundamental reason: nucleons are composite particles, but we treat them as structureless

- Certain processes, e.g. involving nucleon excitations, can not be described as 2-body

- Three-nucleon forces are added mostly phenomenologically to OBE potentials

Extended nuclear matter

© Nuclear matter as a theoretical laboratory to test interactions \& many-body methods

- Homogeneous system of nucleons interacting via strong interactions (Coulomb switched off)
- Thermodynamic limit $(A \rightarrow \infty, \mathcal{V} \rightarrow \infty, \rho=A / \mathcal{V}$ constant $)$
- Pure neutron matter is simpler and provides constraints for astrophysical systems
- Isospin-symmetric nuclear matter relates to bulk properties of nuclei

Equation of state of nuclear matter

Density distributions of nuclei

[Heyde 1998]

Electron scattering off nuclei

- Electrons constitute an optimal probe to study atomic nuclei
- Point-like \rightarrow excellent spatial resolution
- EM weak and theoretically well constrained
- Accélérateur Linéaire @ Saclay (ALS)
- Electron accelerator (1969-1990)
- Refined data on tens of stable nuclei

[Tsukada et al. 2017]

[Frois et al. 1977]
\Rightarrow Electron scattering off unstable nuclei?
- Challenge for the future
- First physics experiments in 2017 with SCRIT @ RIKEN

First ab initio calculations

\Rightarrow 1990's: Green function Monte Carlo approach

- MC techniques to sample many-body wave function in coordinate, isospin and spin space
\Rightarrow 2000's: No-core shell model approach
- Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)

Nuclei simulated from scratch!
Closed the gap between elementary nucleon-nucleon interactions and
properties of nuclei

First ab initio calculations

\Rightarrow 1990's: Green function Monte Carlo approach

- MC techniques to sample many-body wave function in coordinate, isospin and spin space \Rightarrow 2000's: No-core shell model approach
- Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)

Nuclei simulated from scratch!

Closed the gap between elementary nucleon-nucleon interactions and properties of nuclei
[Pieper \& Wiringa 2001]
x Computational effort increases exponentially / factorially with nucleon number
X Necessity of treating three-nucleon forces makes it more severe
\rightarrow Approach currently limited to light nuclei

Resolution scale of nucleon-nucleon interactions

© Two main problems with OBE potentials

1. Substantial part remains phenomenological (in particular 3 N sector)
2. Strong repulsive short-range component ("hard core")

- Induces strong correlations in the wave function
- Large bases needed to converge \rightarrow applicability limited to light nuclei

Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

Resolution scale of nucleon-nucleon interactions

- Two main problems with OBE potentials

1. Substantial part remains phenomenological (in particular 3N sector)
2. Strong repulsive short-range component ("hard core")

- Induces strong correlations in the wave function
\circ Large bases needed to converge \rightarrow applicability limited to light nuclei
Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

Do we really need such high resolution to compute properties of nuclei?

ρ, ω, σ masses $>700 \mathrm{MeV}$
spatial distances $<0.5 \mathrm{fm}$
cf. nucleon radius $\sim 0.8 \mathrm{fm}$
:---:
av. nucleon momenta $\sim 200 \mathrm{MeV}$

Resolution scale of nucleon-nucleon interactions

- Two main problems with OBE potentials

1. Substantial part remains phenomenological (in particular 3N sector)
2. Strong repulsive short-range component ("hard core")

- Induces strong correlations in the wave function
\circ Large bases needed to converge \rightarrow applicability limited to light nuclei
Hard core \leftrightarrow Strong coupling between low and high momenta \leftrightarrow High resolution

Do we really need such high resolution to compute properties of nuclei?
ρ, ω, σ masses $>700 \mathrm{MeV}$

spatial distances $<0.5 \mathrm{fm}$
cf. nucleon radius $\sim 0.8 \mathrm{fm}$

pion mass $\sim 140 \mathrm{MeV}$

av. nucleon momenta $\sim 200 \mathrm{MeV}$$\leftrightarrow$| |
| :---: |

Δ Conceptual breakthrough: apply Effective Field Theory to build nuclear potentials
\Rightarrow Technical breakthrough: apply Renormalisation Group techniques to transform nuclear potentials

Resolution scale of nucleon-nucleon interactions

Resolution scale of nucleon-nucleon interactions

Effective field theory

© The principles

1. Use separation of scales to define d.o.f \& expansion parameter
[Weinberg, van Kolck, ..]
Typical momentum at play $\frac{Q}{M} \longrightarrow \begin{gathered}\text { High energy scale } \\ \text { (not included explicitly) }\end{gathered}$
2. Write all possible terms allowed by symmetries of underlying theory (QCD)
3. Order by size all possible terms \rightarrow systematic expansion (= "power counting")
4. Truncate at a give order and adjust coupling constants (use underlying theory or data)

Effective field theory

© The principles

1. Use separation of scales to define d.o.f \& expansion parameter
[Weinberg, van Kolck, ..]
Typical momentum at play $\frac{Q}{M} \longrightarrow \begin{gathered}\text { High energy scale } \\ \text { (not included explicitly) }\end{gathered}$
2. Write all possible terms allowed by symmetries of underlying theory (QCD)

3. Order by size all possible terms \rightarrow systematic expansion (= "power counting")
4. Truncate at a give order and adjust coupling constants (use underlying theory or data)

Effective field theory

© The principles

1. Use separation of scales to define d.o.f \& expansion parameter
[Weinberg, van Kolck, ..]

$$
\text { Typical momentum at play } \frac{Q}{M}>\begin{gathered}
\text { High energy scale } \\
\text { (not included explicitly) }
\end{gathered}
$$

2. Write all possible terms allowed by symmetries of underlying theory (QCD)
3. Order by size all possible terms \rightarrow systematic expansion (= "power counting")
4. Truncate at a give order and adjust coupling constants (use underlying theory or data)

Effective field theory

© The principles

1. Use separation of scales to define d.o.f \& expansion parameter
[Weinberg, van Kolck, ..]

$$
\text { Typical momentum at play } \frac{Q}{M} \rightarrow \begin{gathered}
\text { High energy scale } \\
\text { (not included explicitly) }
\end{gathered}
$$

2. Write all possible terms allowed by symmetries of underlying theory (QCD)
3. Order by size all possible terms \rightarrow systematic expansion (= "power counting")
4. Truncate at a give order and adjust coupling constants (use underlying theory or data)
Chiral EFT
\Rightarrow Expand around $\mathrm{Q} \sim \mathrm{m}_{\pi}$
High-energy via contact interactions
Keep pion dynamic explicit

Pionless EFT
\Rightarrow Expand around $\mathrm{Q} \sim 0$

Integrate out pions too
\rightarrow only contact terms

Chiral effective field theory

\checkmark Systematic framework to construct $A \mathrm{~N}$ interactions ($A=2,3, \ldots$)
\checkmark A theoretical error can be assigned to each order in the expansion

- Is the chiral expansion converging quickly enough?
\rightarrow If not, the approach becomes unfeasible

[Meißner 2016]
© Goal: apply to the many-nucleon system (and propagate the theoretical error!)

Solving the many-body Schrödinger equation

\odot Basis truncation

- Representation of the many-body wave function
- Infinite in principle, finite in practise \rightarrow need to be large enough to contain relevant physics
- The weaker the high-momentum components in H , the smaller the basis to converge

Solving the many-body Schrödinger equation

- Basis truncation

- Representation of the many-body wave function
- Infinite in principle, finite in practise \rightarrow need to be large enough to contain relevant physics
\circ The weaker the high-momentum components in H , the smaller the basis to converge
© Expansion around a reference state
- One particular configuration can be solution of an auxiliary problem (with Hamiltonian H_{0})
- Express total Hamiltonian as $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{1}$
- Expand exact wave function around that "reference state" \rightarrow approximate ab initio

Solving the many-body Schrödinger equation

- Basis truncation

- Representation of the many-body wave function
- Infinite in principle, finite in practise \rightarrow need to be large enough to contain relevant physics
\circ The weaker the high-momentum components in H , the smaller the basis to converge
\odot Expansion around a reference state
- One particular configuration can be solution of an auxiliary problem (with Hamiltonian H_{0})
- Express total Hamiltonian as $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{1}$
- Expand exact wave function around that "reference state" \rightarrow approximate ab initio

- Many-body truncation

- Order "by size" contributions from all different configurations
- Keep only the most important ones \rightarrow approximate ab initio
- The weaker the high-momentum components in H, the more you can truncate

Approximate ab initio methods

\odot Trade exactness of the solution for more favourable scaling with A
\circ Express the problem in perturbation \rightarrow truncate \rightarrow resum (non perturbative)

- Three main methods:

1. Self-consistent Green's function theory (SCGF)

- Rewrite many-body Schrödinger equation in terms of G and $\Sigma \rightarrow$ Dyson equation

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

2. Coupled-cluster theory (CC)

- Computes the similarity-transformed normal-ordered Hamiltonian

$$
\bar{H} \equiv \mathrm{e}^{-T} H_{N} \mathrm{e}^{T} \quad E=\langle\phi| \bar{H}|\phi\rangle
$$

3. In-medium similarity renormalisation group (IM-SRG)

- Employs a continuous unitary transformation of H to decouple g.s. from excitations

Flow equation

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)]
$$

truncated at rank n at each step

$\langle i| H(\infty)|j\rangle$

Approximate ab initio methods

- Approximate/truncated methods capture correlations via an expansion in ph excitations
\odot Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shell
- E.g. consider MBPT(2)

$$
\Delta E^{(2)}=\frac{1}{4} \sum_{a b i j}\langle i j| \hat{v}|a b\rangle \frac{\langle a b| \hat{v}|i j\rangle}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}}
$$

when $\epsilon_{i}+\epsilon_{j}=\epsilon_{a}+\epsilon_{b}$ the expansion breaks down

- Way out: formulate the expansion around a symmetry-breaking reference state
- Symmetry-breaking solution allows to lift the degeneracy
- GF theory extended to particle-number breaking scheme (Gorkov formalism) [Gorkov 1958]
- Implementation for semi-magic nuclei developed in Saclay \& Surrey [Somà, Duguet \& Barbieri 2011]
- Symmetries must be eventually restored

Similarity renormalisation group

\Rightarrow Can we make the couplings between low and high momenta even weaker?
\rightarrow After all, any unitary transformation on H leaves observables unchanged!

Similarity Renormalisation Group (SRG) techniques for 2 N and 3 N forces
$=$ Unitary transformation to further lower the resolution scale of the original Hamiltonian

Evolution of ab initio nuclear chart

Evolution of ab initio nuclear chart

- Approximate methods for closed-shells
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling

Evolution of ab initio nuclear chart

- Approximate methods for closed-shells
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling
© Approximate methods for open-shells
- Since 2010's
- GGF, BCC, MR-IMSRG
- Polynomial scaling

Evolution of ab initio nuclear chart

- Approximate methods for closed-shells
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling
© Approximate methods for open-shells
- Since 2010's
- GGF, BCC, MR-IMSRG
- Polynomial scaling

The potential "bubble nucleus" Si34

\odot Unconventional depletion ("bubble") in the centre of ρ_{ch} conjectured for certain nuclei
\odot Purely quantum mechanical effect

- $\ell=0$ orbitals display radial distribution peaked at $r=0$
$-\ell \neq 0$ orbitals are instead suppressed at small r
- Vacancy of s states $(\ell=0)$ embedded in larger- ℓ orbitals might cause central depletion
© Ab initio Green's function calculations
- Input: NN+3N interactions from ChEFT
- Output: BE, radii, densities, spectra, ...
\checkmark Computed density of ${ }^{36} \mathrm{~S}$ agrees with data \checkmark Computed density of ${ }^{34} \mathrm{Si}$ shows bubble
\Rightarrow Density measurement of (unstable) ${ }^{34} \mathrm{Si}$?
[Duguet, Somà et al. 2017]

Lattice QCD

\odot At low-energy, QCD is non-perturbative \rightarrow calculations possible only on the lattice

- Calculation of hadron masses very successful
- Multi-baryon systems? Atomic nuclei?

๑ Two different routes are currently followed
\Rightarrow Direct calculation of nuclei

Excitation energy \ll QCD scales X High statistic data required
\leftrightharpoons Calculation of nucleon-nucleon potential

Model-dependent extraction
X 3-body part problematic

Historical recap \#3

Pre-1935 stuff (Radioactivity, Rutherford's experiment, discovery of the neutron, ...)

1935 Semi-empirical mass formula (liquid drop)
1935 Yukawa potential
1949 Non-interacting shell model
1960's Valence-space interaction (= interacting shell model)
1970's Energy density functionals
1970's One-boson exchange potentials
1980's High precision one-boson exchange potentials
1990's First ab initio calculations
1990's Effective field theory applied to nuclear forces
2000's Approximate ab initio (= "many-body") methods developed
2010's Renormalisation group techniques applied to nuclear forces
2010's Massively-parallelised simulations of medium-mass nuclei
2010's First lattice QCD calculations of NN potential \& multi-baryon systems

Today

Computational challenges

Curie @ CCRT / CEA, France

Building of NN/3N interactions

Costly multi-parameter fits

B
0
0
0
0
0
0
0
0
0
0
0
0
\Rightarrow Machine learning techniques

Ab initio three-body forces

Number of matrix elements explodes

\Rightarrow Algorithms/tools from "big data"

Theoretical challenges

\odot Bridge structure and reactions

- Theoretical tools to deal with continuum
- Nucleon-nucleus interaction?
- Reaction approaches \leftrightarrow model dependence?

- Structure consistently "extracted" and computed?

[Hu et al. 2017]

[Lynn et al. 2017]
© Theoretical errors
- Systematic errors hardest to estimate
- Crucial where no data is/will be available
- EFTs offer tools to quantify our ignorance
- Challenge: EFT + nuclear many-body problem

