

Light and unbound nuclei

Rewriting Nuclear Physics Textbooks: Basic nuclear interactions and their link to nuclear processes in the cosmos and on earth

Pisa, July 25, 2017

Sofia Quaglioni

Content

- What are light and unbound nuclei?
- What is the role of light and unbound nuclei in the Cosmos and on Earth?
- How can we learn about the basic nuclear interactions?
- Can we describe exotic nuclei and the phenomena of low-energy nuclear reactions?

What are light and unbound nuclei?

What is light?								¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	_		. 7	
							¹⁵ F	¹⁶ F	¹⁷ F	¹⁸ F	¹⁹ F	A		N+Z	
1	(7)				¹² O	¹³ O	¹⁴ O	¹⁵ O	¹⁶ O	¹⁷ O	¹⁸ O		≲ 2	20	
2	2015				¹¹ N	¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N	
+ ()	protons			⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C	¹⁹ C	
2		⁸ B			⁹ B	¹⁰ B	¹¹ B	¹² B	¹³ B	¹⁴ B	¹⁵ B	¹⁶ B	¹⁷ B	¹⁸ B	
				⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be	¹³ Be	¹⁴ Be	¹⁵ Be	¹⁶ Be	¹⁷ Be	
			⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li	¹¹ Li	¹² Li	¹³ Li				
		³ He	⁴He	⁵He	⁶ He	⁷ He	⁸ He	⁹ He	¹⁰ He						
	¹ H	² H	ЗН	⁴H	⁵H	۴H	⁷ H								
	n neutrons (N)														

W	'ha'	t is	ur	nbo	oun	d?		¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne					
							¹⁵ F	¹⁶ F	¹⁷ F	¹⁸ F	¹⁹ F		stable			
	\				¹² O	¹³ O	¹⁴ O	¹⁵ O	¹⁶ O	¹⁷ O	¹⁸ O		unbo	ound		
bour 10 ⁷ <	¹¹ N	¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N						
	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C	¹⁹ C						
Z ♠ ⁸ B					⁹ B	¹⁰ B	¹¹ B	¹² B	¹³ B	¹⁴ B	¹⁵ B	¹⁶ B	¹⁷ B	¹⁸ B		
	⁷ Be				⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be	¹³ Be	¹⁴ Be	¹⁵ Be	¹⁶ Be	¹⁷ Be		
			⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li	¹¹ Li	¹² Li	¹³ Li					
		³ He	⁴He	⁵He	⁶ He	⁷ He	⁸ He	⁹ He	¹⁰ He		bour	nd, β^{-} unstable				
	¹ H	² H	³Н	⁴H	⁵H	⁶ H	⁷ H				107) ⁷ <t<sub>1/2< 10⁻⁵ sec</t<sub>				
		n	→ N													

Binding energy (BE)

 The energy required to disintegrate a nucleus into its components

$$BE(Z,N) = Z m_p c^2 + N m_n c^2 - M(Z,N) c^2$$

 Progressively adding neutrons (protons) drives the binding energy to zero: driplines

The case of ⁵He

- ⁴He tightly bound (BE = 28.30 MeV)
- ⁵He is not bound. Why?!?

The case of ⁵He

1) Pauli exclusion principle

s-shell is full, extra neutron must be in p shell

The case of ⁵He

2) Centrifugal barrier

Overall potential is attractive but not enough to bind the system

Unbound nuclear systems, resonances

$$\psi(t, \boldsymbol{r}) = \exp\left(-\frac{iE}{\hbar}t\right)\psi(0, \boldsymbol{r})$$

Solution of Solution of time-dependent Schrodinger equation Schrodinger equation

Unbound nuclear systems, resonances

$$\psi(t, \boldsymbol{r}) = \exp\left(-\frac{iE}{\hbar}t\right)\psi(0, \boldsymbol{r})$$

- Energy E is a real number: $|\psi(t, \mathbf{r})|^2 = |\psi(0, \mathbf{r})|^2$
- Energy E is a complex complex: $E = E_0 i\frac{\Gamma}{2}$

Unbound nuclear systems, resonances

Adapted from J. Bengtsson, BS Thesis, Chalmers University

Elastic scattering of neutrons on ⁴He

The helium isotopes chain

Separation energy: energy required to separate particle(s)

$$S_{an}(Z,N) = BE(Z,N) - BE(Z,N-a)$$

Nuclear sizes

Nuclear sizes

How do we measure nuclear sizes? Cross section (σ): a classical view

1 barn = 10^{-28} m² = 100 fm²

Summary

- The vast majority of light nuclei are either unstable or not bound
- Nuclear physics does not stop at binding energies and radii
- All observed nuclear phenomena can help us understand the basic nuclear interactions
- Light nuclei already display a wide variety of phenomena

Questions

Do you have any question so far?

Form a group of 2 or 3 people and take a couple of minutes to discuss ... What is the role of light and unbound nuclei in the Cosmos and on Earth?

Reactions 'R' Us

From light and unbound nuclei to the the chemical building blocks of life, to the processes that shaped our Universe

Stars are powered by thermonuclear fusion reactions

Cross section of fusion reactions at stellar energies are very small !

- Positively-charged colliding nuclei electrically repel each other
- Fusion process
 operates mainly
 by tunneling
 through the
 Coulomb barrier

Fusion cross sections drop nearly exponentially with decreasing energy

We need reliable theory to estimate the S-factor at stellar energies

28

Our Sun: one of the best tools for studying neutrinos

Neutrino oscillations 2015 Noble Prize in Physics

Uncertainties in solar fusion S-factors

Uncertainties in solar fusion S-factors

Fusion energy generation

- Laser confinement experiments
- Magnetic confinement experiments (ITER)

Fusion energy generation

- By perfectly aligning the spins of D and T estimated 50% enhancement of reaction rate
- How does the rate depend on polarization?

Summary

- Light nuclei are the building blocks of life and the universe as we know it
- Ongoing attempts to harness energy from thermonuclear fusion reactions
- Fusion reactions are extremely difficult to measure at stellar energies
- Predictive theory of fusion reactions needed to help extrapolate down to stellar energies

Questions

Do you have any questions on this section?

- Question for you:
 - —How much energy is released from the fusion of two ²H nuclei?

 Form a group of 2 or 3 people and take a couple of minutes to discuss ... How can we learn about the basic nuclear interactions?

Can we accurately explain ...

- ... how stable nuclei and rare isotopes are put together from the neutron and proton constituents?
- In terms of:
 - a) The laws of quantum mechanics
 - b) The underlying theory of the strong force (quantum chromodynamics)

The problem

How to describe the interactions among nucleons?

Separation of scales

• At low energy short-distance physics is not resolved

 $1/\lambda = Q << \Lambda = 1/R$

Separation of scales

• At low energy short-distance physics is not resolved

 $1/\lambda = Q << \Lambda = 1/R$

Nucleon-nucleon interaction

Chiral effective field theory has transformed the way we think about and treat nuclear forces

Links the nuclear forces to the fundamental theory of quantum chromodynamics (QCD)

- organization in systematically improvable expansion: $(Q/\Lambda)^{\nu}$
- empirically constrained parameters capture unresolved short-distance physics

At leading order long-range NN interaction is usual one-pion exchange

Three-nucleon forces appear at N²LO

How to best implement the theory and constrain it is an active topic or research

Nomenclature/Parameterizations:

- NN: potential at N³LO, 500 MeV cutoff (by Entem & Machleidt)
- NN+3N(500): NN plus 3N force at N²LO, 500 MeV cutoff (local form by Navrátil)
- NN+3N(400): NN plus 3N forace at N²LO, 400 MeV cutoff (local form by Navrátil)
- N²LOsat : NN+3N at N²LO, fitted simultaneously (by Ekström et al.)

How to solve the Schrödinger equation?

Well-known example: one particle in 1D, finite square-well potential

Well-known example: one particle in 1D, finite square-well potential

1D finite square-well potential: E<0

1D finite square-well potential: E>0

1D finite square-well potential: solutions

One particle in 3D more complicated, can be solved analytically in some case

- Particle in spherically symmetric potential
 - -Spherical 'square-well' potential
 - -Harmonic Oscillator potential
 - -Hydrogen-like atoms

 Reduce to 1D problem using spherical coordinates, spherical harmonics

Harmonic oscillator potential

$$H^{(2)} = T_{1} + T_{2} + V(|r_{1} - r_{2}|)$$

$$r = r_{1} - r_{2}$$

$$R = (r_{1} + r_{2})/2$$

$$k = (p_{1} - p_{2})/2$$

$$P = p_{1} + p_{2}$$

$$s_1$$
 R s_2
 r_1 R_2 s_2
 r_1 r_2 s_2 s_2 s_2 s_2 s_2 s_2 s_2 s_3 s_4 s_2 s_2 s_3 s_4 s_5 s_2 s_3 s_4 s_5 s_2 s_3 s_4 s_5 s_5

 Reduce to one-body 3D problem for the intrinsic motion ...

 $H_{int}\Psi_{int}(\mathbf{r}) = E\Psi_{int}(\mathbf{r})$

$$S = 1/2 + 1/2 = 0, 1$$

$$T = 1/2 + 1/2 = 0, 1$$

... and to 1D problem

 $\Psi_{int}(\mathbf{r}) = \sum_{\kappa} C_{\kappa} R_{n\ell}(\mathbf{r}) Y_{\ell m}(\theta, \phi) \chi_{Sv}(1,2) \chi_{T\tau}(1,2)$ all quantum radial orbital spin isospin angular

Nucleons are identical particles

Spin statistic theorem:

-Bosons = integer spin $\rightarrow P_{12}\Psi = \Psi$ (symmetric)

-Fermions = half-integer spin $\Rightarrow P_{12}\Psi = -\Psi$ (antisymmetric)

 $\begin{array}{c} \mathsf{R}_{\mathsf{n}\ell}(\mathsf{r}) \; \mathsf{Y}_{\ell\mathsf{m}}(\theta, \varphi) \\ \boldsymbol{\chi}_{\mathsf{S}\upsilon}(1, 2) \; \boldsymbol{\chi}_{\mathsf{T}\tau}(1, 2) \end{array}$

 $\begin{array}{c} \mathsf{R}_{\mathsf{n}\ell}(\mathsf{r}) \; \mathsf{Y}_{\ell\mathsf{m}}(\boldsymbol{\pi}-\boldsymbol{\theta},\boldsymbol{2\pi}+\boldsymbol{\varphi}) \\ \chi_{\mathsf{S}\upsilon}(\mathsf{2},\mathsf{l}) \; \chi_{\mathsf{T}\tau}(\mathsf{2},\mathsf{l}) \end{array}$

Only the components for which l+S+T is odd are physical two-nucleon configurations

Two-nucleon problem: To summarize

- Reduces to 1D 1-body problem by
 - 1) Moving to relative coordinates
 - 2) Using expansion in spherical harmonics
- Solutions have to be antisymmetric under nucleon exchange (Pauli exclusion principle)
- Can be solved analytically only in a few cases (e.g., harmonic oscillator potential)
- With chiral forces need to solve numerically

Questions

Do you have any questions?

Question for you:

—What are the physical two-nucleon channels?

Some physical two-nucleon channels

63

Few-nucleon problem: A = 3,4,5 ...

- Use 'Jacobi' coordinates (generalization of 2-body relative coordinates)
- Use expansion in hyperspherical harmonics (generalization of 1D spherical harmonics)
- Hard to antisymmetrize!

Few-nucleon problem: A = 3,4,(5), 6 ...

Main examples:

- Faddeev equations (A=3)
- Faddeev-Yacubovsky (A=4,5*), Alt-Grassberger-Sandhas equations (A=4)
- Jacobi-coordinate no-core shell model (A = 3,4)
- Hyperspherical harmonics expansions (A = 3, 4, 6)

E.g.: A=3 S_1 X S_2 R S_3

* New development!

A-nucleon problem

$$\mathbf{H}^{(A)} = \sum_{i=1}^{A} \mathbf{T}_{i} + \sum_{i < j=1}^{A} \mathbf{V}^{NN}(|\mathbf{r}_{i} - \mathbf{r}_{j}|) \stackrel{A}{\underset{i < j < k=1}{\longrightarrow}} \mathbf{V}^{3N}_{ijk}$$

A-nucleon problem

- A position coordinates (A-1 without C.M.)
- A spin coordinates
- A isospin coordinates
- The solution has to be antisymmetric under exchange of any two nucleons
- Way to complicated to solve as before!

What to do???

BAR

Callender

"I'm searching for my keys."

We know how to solve the independent-particle problem

$$\widetilde{H}^{(A)} = \sum_{i=1}^{A} T_i + U(r_i) = \sum_{i=1}^{A} h_i - \frac{\text{Single-particle}}{\text{Hamiltonian}}$$

1) Solve single-particle problem:

e.g.: U(r) = $\frac{1}{2}$ m Ω^2 r²

We know how to solve the independent-particle problem

2) The antisymmetric A-nucleon solutions can be build as

$$\Phi_{k} = \frac{1}{\sqrt{A!}} \det \begin{pmatrix} \varphi_{k1}(\mathbf{r}_{1}) & \varphi_{k1}(\mathbf{r}_{2}) & \dots & \varphi_{k1}(\mathbf{r}_{A}) \\ \varphi_{k2}(\mathbf{r}_{1}) & \varphi_{k2}(\mathbf{r}_{2}) & \dots & \varphi_{k2}(\mathbf{r}_{A}) \\ \vdots & \vdots & \vdots \\ \varphi_{kA}(\mathbf{r}_{1}) & \varphi_{kA}(\mathbf{r}_{2}) & \dots & \varphi_{kA}(\mathbf{r}_{A}) \end{pmatrix}$$

We have that: $H^{(A)} \Phi_k = E_k \Phi_k$ with $E_k = \sum_{i=1}^{A} \varepsilon_{ki} d_{ki}$

What about our original A-nucleon problem?

 Use the independent-particle model solutions as `basis states' to build an ansatz for the Anucleon wave function

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A}) = \sum_{k}^{N} c_{k} \phi_{k}(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A})$$

$$\bigwedge_{k}^{N} \phi_{k}(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A})$$

What about our original A-nucleon problem?

Project the equation on the basis states (from the left)

$$\sum_{k}^{N} c_{k} \int \boldsymbol{\phi}_{m}(\boldsymbol{r}_{1}^{*},...,\boldsymbol{r}_{A}) H^{(A)} \boldsymbol{\phi}_{k}(\boldsymbol{r}_{1},...,\boldsymbol{r}_{A}) d\boldsymbol{r}_{1}...d\boldsymbol{r}_{A}$$

$$= E \sum_{k}^{N} c_{k} \int \boldsymbol{\phi}_{m}^{*}(\boldsymbol{r}_{1},...,\boldsymbol{r}_{A}) \boldsymbol{\phi}_{k}(\boldsymbol{r}_{1},...,\boldsymbol{r}_{A}) d\boldsymbol{r}_{1}...d\boldsymbol{r}_{A}$$

$$\delta_{mk}$$

$$\sum_{k}^{N} H_{mk} c_{k} = E c_{m}$$

What about our original A-nucleon problem?

The A-nucleon Schrödinger equation becomes a linear algebra eigenvalue problem

The elements of the N×N Hamiltonian matrix are

$$H_{mk} = \int \phi_m^*(r_1,...,r_A) H^{(A)} \phi_k(r_1,...,r_A) dr_1...dr_A$$

And the unknown expansion coefficients c_k are the elements of the eigenvector c

What about our original A-nucleon problem?

The A-nucleon Schrödinger equation becomes a linear algebra eigenvalue problem

H c = E **c**

The elements of the N×N Hamiltonian matrix are

$$H_{mk} = \langle \Phi_m | H^{(A)} | \Phi_k \rangle \qquad \begin{array}{c} \text{Short-hand} \\ notation \end{array}$$

 And the unknown expansion coefficients c_k are the elements of the eigenvector c

Some notes

- This is an 'expansion' technique: uses large (but finite!) expansion on A-body basis states
- Convergence to the exact result is approached (variationally) by increasing N (i.e., basis size)
- Antisymmetrization is trivial

Did we forget about anything?

What about the center of mass motion?

- In the independent-particle problem, in general the c.m. motion is mixed with intrinsic motion, giving rise to spurious effects
- Exception: harmonic oscillator (HO) potential is exactly separable

$$\widetilde{H}^{(HO)} = \sum_{i=1}^{A} T_i + \frac{1}{2} m \Omega^2 r^2$$

What about the center of mass motion?

- In the independent-particle problem, in general the c.m. motion is mixed with intrinsic motion, giving rise to spurious effects
- Exception: harmonic oscillator (HO) potential is exactly separable

$$\widetilde{H}^{(HO)} = T_{int} + \sum_{i < j=1}^{A} \underline{m\Omega^2 (\mathbf{r}_i - \mathbf{r}_j)^2} + T_{cm} + \frac{1}{2} Am\Omega^2 R^2$$
$$H_{int} \qquad H_{cm}$$

77

Hard core of nuclear interaction scatters nucleons to high momenta

Hard core of nuclear interaction scatters nucleons to high momenta

Very large N values (basis sizes) are required to reach convergent solution!

Basis dimension grows rapidly with A!

Effective interactions from unitary transformations of bare Hamiltonian

• Introduce unitary transformation: $\mathcal{U} (\mathcal{U}^+\mathcal{U} = 1)$

$$E = \langle \Psi | H^{(A)} | \Psi \rangle \qquad \begin{array}{c} \text{Bare} \\ \text{Hamiltonian,} \\ \text{wave function} \end{array}$$
$$= \langle \Psi | \mathcal{U}^{+}\mathcal{U} H^{(A)} \mathcal{U}^{+}\mathcal{U} | \Psi \rangle$$
$$= (\langle \Psi | \mathcal{U}^{+} \rangle \mathcal{U} H^{(A)} \mathcal{U}^{+} (\mathcal{U} | \Psi \rangle)$$
$$Effective \\ \text{Hamiltonian,} \\ \text{wave function} = \langle \widetilde{\Psi} | \widetilde{H}^{(A)} | \widetilde{\Psi} \rangle$$

$$\widetilde{H}_{\lambda} = \mathcal{U}_{\lambda} H \mathcal{U}^{+}_{\lambda}$$

 $\frac{d\widetilde{H}_{\lambda}}{d\lambda} = -4 \left[\eta(\lambda), \widetilde{H}_{\lambda} \right]$ parameter

Two-body Hamiltonian in momentum space

 $\langle \mathbf{k} | \ \widetilde{\mathbf{H}}_{\lambda}^{(2)} | \mathbf{k}' \rangle$ $\lambda_0 > \lambda_1 > \lambda_2 \dots$

Plane wave

$$\frac{d\widetilde{H}_{\lambda}}{d\lambda} = -\frac{4}{\lambda^{5}} [\eta(\lambda), \widetilde{H}_{\lambda}]$$

$$\langle \mathbf{k} | \; \widetilde{\mathbf{H}}_{\lambda}^{(2)} | \mathbf{k'} \rangle$$

$$\lambda = 20 \text{ fm}^{-1}$$

Low and high momentum components coupled

$$\widetilde{\mathsf{H}}_{\lambda} = \mathcal{U}_{\lambda} \mathsf{H} \ \mathcal{U}^{+}_{\lambda}$$

$$\frac{d\widetilde{H}_{\lambda}}{d\lambda} = -\frac{4}{\lambda^{5}} [\eta(\lambda), \widetilde{H}_{\lambda}]$$

$$\langle \mathbf{k} | \widetilde{\mathbf{H}}_{\lambda}^{(2)} | \mathbf{k'} \rangle$$

$$\delta \quad \lambda = 2 \text{ fm}^{-1}$$

Low and high momentum components de-coupled

$$\widetilde{\mathsf{H}}_{\lambda} = \mathcal{U}_{\lambda} \mathsf{H} \ \mathcal{U}^{+}_{\lambda}$$

$$\frac{d\widetilde{H}_{\lambda}}{d\lambda} = -4 \left[\eta(\lambda), \widetilde{H}_{\lambda} \right]$$

$$^{0.5}$$
 $\langle \mathbf{k} | \tilde{\mathbf{H}}_{\lambda}^{(2)} | \mathbf{k'} \rangle$

$$\circ \quad \lambda = 2 \text{ fm}^{-1}$$

Can work with smaller N values (basis sizes)!

$$\widetilde{\mathsf{H}}_{\lambda} = \mathcal{U}_{\lambda} \mathsf{H} \ \mathcal{U}^{+}_{\lambda}$$

$$\frac{d\widetilde{H}_{\lambda}}{d\lambda} = -\frac{4}{\lambda^{5}} [\eta(\lambda), \widetilde{H}_{\lambda}]$$

$$\langle \mathbf{k} | \; \widetilde{\mathbf{H}}_{\lambda}^{(2)} | \mathbf{k'} \rangle$$

$$\circ \quad \lambda = 2 \text{ fm}^{-1}$$

See: Bogner, Furnstahl, Schwenk, Prog. Part. Nucl. Phys. 65 (2010)

Question

This sounds to good to be true ...

What's the catch?

Notes on effective interactions

- The transformation (e.g., SRG) generates a 'new', softer NN interaction
- Unitarily equivalent to the bare NN potential in the two-nucleon sector only!
- Induces 3-body and, in general, up to A-body forces even starting from an NN potential

Example: convergence of ⁴He groundstate energy with chiral NN+3N forces

- Superposition of Harmonic Oscillator (HO) wave functions
- Bare/effective (e.g., SRG) NN+3N forces
- 'Diagonalizes' Hamiltonian matrix
- A ≲ 16

- Superposition of Harmonic Oscillator (HO) wave functions
- Bare/effective (e.g., SRG) NN+3N forces
- 'Diagonalizes' Hamiltonian matrix
- A ≲ 16

- Superposition of Harmonic Oscillator (HO) wave functions
- Bare/effective (e.g., SRG) NN+3N forces
- 'Diagonalizes' Hamiltonian matrix
- A ≲ 16

Works well if wave function is localized (well-bound states)

Example: energy spectrum of nuclear states of the ¹⁰B nucleus

Helped to point out the fundamental importance of 3N forces in structure calculations

- Superposition of Harmonic Oscillator (HO) wave functions
- Bare/effective (e.g., SRG) NN+3N forces
- 'Diagonalizes' Hamiltonian matrix
- A ≲ 16

Does not works as well for nuclei with exotic densities (halo nuclei)

- Superposition of Harmonic Oscillator (HO) wave functions
- Bare/effective (e.g., SRG) NN+3N forces
- 'Diagonalizes' Hamiltonian matrix
- A ≲ 16

Definitively not adapted to the description of scattering wave functions!

Ab initio community extremely successful in describing the static properties of nuclei

- Green's function Monte Carlo
- Nuclear Lattice Effective Field Theory
- Coupled Cluster theory
- In-Medium SRG
- Gorkov-Green function theory
- Many-Body Perturbation Theory
- Ab initio valence-space shell model

What about the dynamics between nuclei (scattering States with E>0)? How to describe the phenomena of low-energy nuclear reactions based on colliding nuclei made of interacting nucleons?

Problem of nuclear collisions in Anucleon systems even harder to solve!

- In collisions wave functions extend all over the place
- Simultaneously
 A-nucleon and
 projectile-target
 problem
- Nucleons can re-arrange in different 'channels'

At low-energy usually only a few reaction channels are open ...

$$\Psi = \sum_{\lambda} C_{\lambda} | (A) , \lambda \rangle + \sum_{\nu} \int d\vec{r} \, u_{\nu}(\vec{r}) \, \hat{A}_{\nu} | (A-a) , \nu \rangle$$
Unknowns

 We can improve our ansatz for the Anucleon wave function by further adding 'microscopic cluster states' for the relevant reaction channels

$$\Psi = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \ u_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\underbrace{(A-a)}} \right|_{(A-a)} \left| \stackrel{(A)}{\underbrace{(A-a)}} \right|_{(A-a)} \left| \stackrel{(A)}{\underbrace{(A)}} \right|_{(A-a)} \left| \stackrel$$

Localized A-nucleon solutions (eigenstates) computed with the NCSM

$$\Psi = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \, u_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\bigoplus}_{(A-a)} \stackrel{(a)}{\longrightarrow}, \nu \right\rangle$$

.*a*)

$$\begin{vmatrix} \vec{r} & \vec{r} \\ (A-a) & (a) \\ = \begin{vmatrix} (A-a) \\ (A-a) \\ (a) \\ (a) \\ (a) \\ (a) \\ (b) \\ (v_2) \\ (c) \\$$

Continuous microscopic cluster states made of projectile-target pairs in relative motion

$$\Psi = \sum_{\lambda} c_{\lambda} | {}^{(A)} , \lambda \rangle + \sum_{\nu} \int d\vec{r} \, u_{\nu}(\vec{r}) \, \hat{A}_{\nu} | \overset{\vec{r}}{\underbrace{(A-a)}} , \nu \rangle$$

Sum over relevant reaction channels (mass partitions)

Antisymmetrizes exchanges of nucleons between projectile and target

$$\Psi = \sum_{\lambda} c_{\lambda} | \stackrel{(A)}{\longrightarrow}, \lambda \rangle + \sum_{\nu} \int d\vec{r} \, u_{\nu}(\vec{r}) \, \hat{A}_{\nu} | \stackrel{\vec{r}}{\underset{(A-a)}{\longrightarrow}} , \nu \rangle$$

Describe efficiently the wave function when all A nucleons are close together

Describe efficiently the wave function when the reactants/ reaction products are far apart

$$\Psi = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\clubsuit}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \ u_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\clubsuit} \stackrel{\vec{r}}{(a)}, \nu \right\rangle$$

Works well for describing clustering in nuclei (halo nuclei)

Works well for describing both bound and scattering state

A-nucleon Schrödinger equation again reduces to an eigenvalue problem

A-nucleon Schrödinger equation again reduces to an eigenvalue problem

A-nucleon Schrödinger equation again reduces to an eigenvalue problem

 The spurious center-of mass motion can again be separated exactly (a bit more complicated)

Question II: Can we predict ...

 ... the phenomena of lowenergy nuclear reactions based on colliding nuclei made of interacting nucleons?

A good starting point: elastic scattering of neutrons on ⁴He

G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. (2015)

A good starting point: elastic scattering of neutrons on ⁴He

New 5-body Faddeev-Yacubovsky (FY, symbols) calculations from R. Lazauskas (ongoing work), in very good agreement with the NCSMC results (solid lines)

A good starting point: elastic scattering of neutrons on ⁴He

G. Hupin, S. Quaglioni, and P. Navratil, JPC Conf. Proc. (2015)

n-⁴He scattering represents a stringent test for nuclear interaction models, and can be used in the future to better constrain chiral NN+3N forces

We can now predict nucleon and deuterium scattering on ⁴He based on chiral NN+3N forces

G. Hupin, S.Q., and P. Navratil, Phys. Rev. C **90**, 061601(R) (2014)

G. Hupin, S.Q, and P. Navratil, Phys. Rev. Lett. **114**, 212502 (2015)

Chiral NN+3N forces works well, but not everywere!

With the same NN+3N forces, we can also make predictions for more complex transfer reactions

Problem

What is the spin-parity of the ground state of the ¹¹B nucleus?

Can ab initio theory explain the phenomenon of parity inversion in ¹¹Be?

Scattering and reactions in A = 11

A. Calci, P. Navratil, R. Roth, **J. Dohet-Eraly**, S.Q., and G. Hupin, Phys. Rev. Lett. 117, 242501 (2016)

A. Kumar, R. Kanungo, A. Calci, P. Navratil et al., to appear shortly in Phys. Rev. Lett.

Now gradually building up capability ³ to describe solar pp-chain reactions

The ³He(α , γ)⁷Be fusion essential to simulate the flux of solar neutrinos

J. Dohet-Eraly, P. Navrátil, S.Q., W.

Horiuchi, and F. Raimondi, Physics

Quantitative comparison still requires inclusion of 3N forces ⁷Be

What about helium burning reactions?

Nuclear Lattice EFT with the Adiabatic Projection Method

 Use projection Monte Carlo to 'dress' clusters

 $|\vec{R}\rangle_{\tau} = \exp(-H\tau)|\vec{R}\rangle$

 Evaluate adiabatic inter-cluster Hamiltonian, norm matrix elements

$$[H_{\tau}]_{\vec{R},\vec{R}'} = \tau \langle \vec{R} | H | \vec{R}' \rangle_{\tau}$$
$$[N_{\tau}]_{\vec{R},\vec{R}'} = \tau \langle \vec{R} | \vec{R}' \rangle_{\tau}$$

 Solve for relative scattering wave function

$$ert ec R
angle = \sum_{ec r} ert ec r + ec R
angle_1 \otimes ert ec r
angle_2$$

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015)

Towards ab initio calculations of helium burning

Nuclear Lattice EFT with the Adiabatic Projection Method

- Promising results for α - α scattering
- Quantitative predictions still require calculation at N³LO
- Computational scaling ~A²
- ¹²C(α,γ)¹⁶O becoming possible!
- Extensions to enable treatment of three-cluster dynamics required before the method can be applied to the ⁴He(αα,γ)¹²C process

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015)

How many-body correlations and α -clustering shape ⁶He

C. Romero-Redondo, S.Q., P.Navratil, and G. Hupin, Phys. Rev. Lett. 117, 222501 (2016)

Results for ⁶He low-energy continuum

For now, qualitative agreement with experiment. Inclusion of 3N forces (currently underway) remains crucial to arrive at accurate description of the spectrum as a whole.

Conclusions and Prospects

- In recent years ab initio theory has made great strides in its description of light-nuclei scattering and reactions as well as of the structure of loosely bound and unbound exotic nuclei
- We are on the verge of predicting Solar fusion and Helium burning cross sections from chiral NN+3N forces
- This will aid in solving long-standing problems in stellar nucleosynthesis
- These developments are also allowing to further expose and will help overcome deficiencies in chiral NN+3N forces