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§What	are	light	and	unbound	nuclei?

§What	is	the	role	of	light	and	unbound	nuclei	in	
the	Cosmos	and	on	Earth?

§How	can	we	learn	about	the	basic	nuclear	
interactions?

§Can	we	describe	exotic	nuclei	and	the	
phenomena	of	low-energy	nuclear	reactions?

Content



What are light and 
unbound nuclei?
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bound,	EC/𝛽+ unstable	
107 <T1/2<	10-5 sec

bound,	𝛽- unstable
107 <T1/2<	10-5 sec

unbound

bound,	
stableWhat	is	unbound?
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§ The	energy	required	to	disintegrate	a	nucleus	
into	its	components

§Progressively	adding	neutrons	(protons)	drives	
the	binding	energy	to	zero:	driplines

Binding	energy	(BE)

BE(Z,N) = Z mp c2 + N mn c2 – M(Z,N) c2
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§ 4He	tightly	bound	(BE	=	28.30	MeV)

§ 5He	is	not	bound.	Why?!?

The	case	of	5He
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1) Pauli	exclusion	principle

The	case	of	5He

Z=2 N=3

0s1/2

0p3/2

0p1/2

ℓ=0

ℓ=1

s-shell is full, extra neutron must be in p shell 
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2) Centrifugal	barrier

The	case	of	5He

Overall potential 
is attractive but 
not enough to 
bind the system
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Unbound	nuclear	systems,	resonances

Solution of 
time-independent 

Schrodinger 
equation

Solution of 
time-dependent 

Schrodinger 
equation

Equation (TDSE)

ih̄
ˆ

ˆt
|ÂÍ = H|ÂÍ. (1.2)

An eigenstate of the Hamiltonian H with energy E, i.e. a solution to the
Time-Independent Schrödinger Equation (TISE)

H|ÂÍ = E|ÂÍ (1.3)

has the simple time evolution

Â(t, r) = exp

3
≠iE

h̄
t
4

Â(0, r). (1.4)

With the energy E real, the exponential factor is just a phase and the
probability |Â(t, r)|2 of finding the particle at a given r is unchanged over
time. However, if we let the energy be complex

E = E0 ≠ i
�

2

, (1.5)

we get

|Â(t, r)|2 =

-----exp

3
≠iE0

h̄
t
4

exp

A

≠ �

2h̄
t

B

Â(0, r)

-----

2

= exp

A

≠�

h̄
t

B

|Â(0, r)|2,

(1.6)
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(b) An open quantum system

Figure 1.1: A closed and an open quantum system. The closed system has
an infinite number of bound, localized states, whereas the open system has
unbound scattering states and resonances in addition to a finite number of
bound states.
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§ Energy	E	is	a	real	number:

§ Energy	E	is	a	complex	complex:

Unbound	nuclear	systems,	resonances
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Resonance state
decaying exponentially

T1/2 = ln2/G
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Unbound	nuclear	systems,	resonances
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Adapted from J. Bengtsson, BS Thesis, Chalmers University
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Elastic	scattering	of	neutrons	on	4He
ENDF Request 1085, 2017-Jul-24,22:49:41

EXFOR Request: 3221/1, 2017-Jul-24 22:44:36
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One-Proton	Halo
Two-Proton	Halo
One-Neutron	Halo
Two-Neutron	Halo

Halo	nuclei
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The	helium	isotopes	chain

3He 4He 5He 6He 7He 8He

bound bound unbound
bound halo
(806 ms)

bound halo
(119 ms)

unbound

N/Z = 3 !

Borromean 
Halo

a
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Separation	energy:
energy	required	to	separate	particle(s)

San(Z,N) = BE(Z,N) – BE(Z,N-a)

4He 6He 8He

S2n = 0.97 MeV
S4n = 3.11 MeVS1n = 20.58 MeV
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Nuclear	sizes

r ≈ R0 A1/3

208Pb r(r) ≈ A/(4𝛑r3/3) 

R0 ≈ 1.2 fm

r(r) (A/fm3)
0.16

r/A1/3 (fm)
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Nuclear	sizes

r ≈ R0 A1/3

11Li

208Pb

R0 ≈ 1.2 fm

r(r) (A/fm3)
0.16

r/A1/3 (fm)

R0 ≈ 1.2 fm

r(r) (A/fm3)
0.16

r/A1/3 (fm)

r(r) ≈ A/(4𝛑r3/3) 

∼12 fm

Borromean
Halo
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How	do	we	measure	nuclear	sizes?
Cross	section	(s):	a	classical	view

s
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1 barn = 10-28 m2 = 100 fm2

As big as a barn …
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§ The	vast	majority	of	light	nuclei	are	either	
unstable	or	not	bound

§Nuclear	physics	does	not	stop	at	binding	
energies	and	radii

§All observed	nuclear	phenomena	can	help	us	
understand	the	basic	nuclear	interactions

§ Light	nuclei	already	display	a	wide	variety	of	
phenomena

Summary
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§Do	you	have	any	question	so	far?

§ Form	a	group	of	2	or	3	people	and	take	a	couple	
of	minutes	to	discuss	…

Questions



What is the role of light   
and unbound nuclei in the 
Cosmos and on Earth?
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Reactions	‘R’	Us

4He

8Be*
(10-16 s)4He

12C

4He

g

g
4He16O

From	light	and	unbound	nuclei	to	the	the	chemical	building	
blocks	of	life,	to	the	processes	that	shaped	our	Universe
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Stars	are	powered	by	
thermonuclear	fusion	reactions

12C
16O
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Cross	section	of	fusion	reactions	at	
stellar	energies	are	very	small	!
§Positively-charged	colliding	nuclei	electrically	
repel	each	other

§ Fusion	process	
operates	mainly	
by	tunneling	
through	the	
Coulomb	barrier

Quantum tunneling
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Astrophysical S-factor: 
nuclear contribution

‘Coulomb’
Contribution
(tunneling)

Fusion
cross section

Fusion	cross	sections	drop	nearly	
exponentially	with	decreasing	energy

σ E( ) = S(E)
E

exp −
2πZ1Z2e

2

 2mE
"

#
$

%

&
'

2E/m2E/m
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We	need	reliable	theory	to	estimate	
the	S-factor	at	stellar	energies

??
4He+12C fusion

Figure adapted from 
C. Ugalde et al., PR12-15-005 
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Our	Sun:	one	of	the	best	tools																
for	studying	neutrinos

Standard solar model Neutrino 
oscillations

2015 Noble Prize 
in Physics
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Uncertainties	in	solar	fusion	S-factors
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Uncertainties	in	solar	fusion	S-factors
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§ Laser	confinement	experiments

§Magnetic	confinement	experiments	(ITER)		

Fusion	energy	generation

Symbol BE 
(MeV)

4He 28.30
3H or T 8.48
2H or D 2.22

−
−
= +17.6 !

D T 4He

n
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§By	perfectly	aligning	the	spins	of	D	and	T	
estimated	50%	enhancement	of	reaction	rate

§How	does	the	rate	depend	on	polarization?

Fusion	energy	generation

Symbol BE 
(MeV)

4He 28.30
3H or T 8.48
2H or D 2.22

−
−
= +17.6 !

D T 4He

n
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§ Light	nuclei	are	the	building	blocks	of	life	and	
the	universe	as	we	know	it

§Ongoing	attempts	to	harness	energy	from	
thermonuclear	fusion	reactions

§ Fusion	reactions	are	extremely	difficult	to	
measure	at	stellar	energies

§Predictive	theory	of	fusion	reactions	needed	to	
help	extrapolate	down	to	stellar	energies

Summary
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§Do	you	have	any	questions	on	this	section?

§Question	for	you:
—How	much	energy	is	released	from	the	fusion	of	
two	2H	nuclei?

§ Form	a	group	of	2	or	3	people	and	take	a	
couple	of	minutes	to	discuss	…

Questions



How can we learn 
about the basic 
nuclear interactions?
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§…	how	stable	nuclei	and	
rare	isotopes	are	put	
together	from	the	neutron	
and	proton	constituents?	

§ In	terms	of:
a) The	laws	of	quantum	

mechanics

b) The	underlying	theory	of	
the	strong	force	(quantum	
chromodynamics)

Can	we	accurately	explain	…

proton neutron

A nucleons

quark
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The	problem

proton neutron

A nucleons

quark

HΨ = EΨ

How do we describe 
the interactions 
among nucleons in 
this A-nucleon 
Hamiltonian?

How do we describe 
these A-nucleon 
wave functions?

How do we solve this 
equation ``exactly” ?



How to describe the 
interactions among nucleons? 
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§At	low	energy	short-distance	physics	is	not	resolved

Separation	of	scales

u
u d

d
u u

u
d ud

u d

u
d d

d
d u

d
d u

d
u d

u
d d

d
u uu

u d

u
d u

R

𝛌 >> R

𝛑

1/𝛌 = Q << 𝚲 = 1/R
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§At	low	energy	short-distance	physics	is	not	resolved

Separation	of	scales

𝛌 >> R

1/𝛌 = Q << 𝚲 = 1/R



42

Nucleon-nucleon	interaction

Quantum Chromodynamics
Chiral Effective 
Field Theory
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Links	the	nuclear	forces	to	the	
fundamental	theory	of	quantum	
chromodynamics	(QCD)

§ organization	in	systematically	
improvable	expansion:	(Q/L)n

§ empirically	constrained	
parameters	capture	unresolved	
short-distance	physics

Chiral	effective	field	theory	has	transformed	the	
way	we	think	about	and	treat	nuclear	forces

Worked out by Van Kolck, Keiser, Meissner, Epelbaum, Machleidt, ...
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At	leading	order	long-range	NN	
interaction	is	usual	one-pion	exchange

one-pion 
exchange
potential

NN 
contact

interaction

Worked out by Van Kolck, Keiser, Meissner, Epelbaum, Machleidt, ...
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Three-nucleon	forces	appear	at	N2LO

Worked out by Van Kolck, Keiser, Meissner, Epelbaum, Machleidt, ...

two-pion 
exchange
potential

one-pion 
exchange +
NN contact

NNN contact
interaction
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How	to	best	implement	the	theory	and	
constrain	it	is	an	active	topic	or	research

Worked out by Van Kolck, Keiser, Meissner, Epelbaum, Machleidt, ...

Nomenclature/Parameterizations:

§ NN: potential	at	N3LO,	500	MeV	cutoff	
(by	Entem &	Machleidt)

§ NN+3N(500):	NN	plus	3N	force	at	
N2LO,	500	MeV	cutoff	(local	form	by	
Navrátil)

§ NN+3N(400): NN	plus	3N	forace at	
N2LO,	400	MeV	cutoff	(local	form	by	
Navrátil)

§ N2LOsat	: NN+3N	at	N2LO,	fitted	
simultaneously	(by	Ekström et	al.)

§ …



How to solve the 
Schrödinger equation?
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xa-a
-V0

V(x)

0

H = T+V(x)

Well-known	example:	one	particle					
in	1D,	finite	square-well	potential

HΨ(x) = EΨ(x)
We want to solve:



49

xa-a
-V0

V(x)

0= (E+V0)

Well-known	example:	one	particle					
in 1D,	finite	square-well	potential
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1D	finite	square-well	potential:	E<0

xa-a
-V0

V(x)

0

= Cekx = Ae−iax+ Beiax = Ce−kx

(V0−|E|)
a =

Solution by requiring 
continuity of Ψ(x) 
and Ψ’(x) at the
borders (a and -a)

|E|
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1D	finite	square-well	potential:	E>0

xa-a
-V0

V(x)

0

= Ceikx = Ae−iax+ Beiax = Ce−ikx

(V0+E)
a =

Solution by requiring 
continuity of Ψ(x) 
and Ψ’(x) at the
borders (a and -a)
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xa-a

0

Ψ(x)

E<0

E>0

1D	finite	square-well	potential:	solutions	

𝛿 (E)
Phase
shift
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§Particle	in	spherically	symmetric	potential
—Spherical	‘square-well’	potential

—Harmonic	Oscillator	potential

—Hydrogen-like	atoms

— …

§Reduce	to	1D	problem	using	spherical	
coordinates,		spherical	harmonics

One	particle	in	3D	more	complicated,	
can	be	solved	analytically	in	some	case

Ψ(r) = R(r) Yℓm(θ,φ)
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Harmonic	oscillator	potential



55

Two-nucleon	problem

s1 s2

r1 r2

O

R

r

r = r1-r2

R = (r1+r2)/2

k = (p1-p2)/2
P = p1+p2

(spin/isospin degrees 
of freedom implicit)

H(2) = T1+T2+V(|r1-r2|)
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Two-nucleon	problem

H(2) = Tcm+Tk+V(r)

= Tcm + Hint

Ψ(r,R) = e-iPR Ψint(r)

s1 s2

O

R

r

(spin/isospin degrees 
of freedom implicit)
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§Reduce	to	one-body	
3D	problem	for	the	
intrinsic	motion	…

§…	and	to	1D	problem

Two-nucleon	problem

s1 s2
r

HintΨint(r) = EΨint(r)

Ψint(r) = 𝝨𝞳 C𝞳 Rnℓ(r) Yℓm(θ,φ) 𝝌S𝞾(1,2) 𝝌T𝜏(1,2)

S = 1/2+1/2 = 0, 1

T = 1/2+1/2 = 0, 1

all quantum
numbers 

radial orbital
angular

spin isospin
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§Nucleons	are	identical	particles

§ Spin	statistic	theorem:
—Bosons	=	integer	spin	è P12Ψ = Ψ (symmetric)	

—Fermions	=	half-integer	spin	è P12Ψ = -Ψ
(antisymmetric)

Two-nucleon	problem
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Two-nucleon	problem

Rnℓ(r) Yℓm(θ,φ) 
𝝌S𝞾(1,2) 𝝌T𝜏(1,2)

Rnℓ(r) Yℓm(𝛑-θ,2𝛑+φ) 
𝝌S𝞾(2,1) 𝝌T𝜏(2,1)

s1s2
r’=-rs1 s2

r P12
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Two-nucleon	problem

s1s2
r’=-rs1 s2

r P12

Rnℓ(r) Yℓm(θ,φ) 
𝝌S𝞾(1,2) 𝝌T𝜏(1,2)

(-1)ℓ+S+T Rnℓ(r) Yℓm(𝛑,φ) 
𝝌S𝞾(1,2) 𝝌T𝜏(1,2)

Only the components for which ℓ+S+T is 
odd are physical two-nucleon configurations
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§Reduces	to	1D	1-body	problem	by
1) Moving	to	relative	coordinates

2) Using	expansion	in	spherical	harmonics

§ Solutions	have	to	be	antisymmetric	under	
nucleon	exchange	(Pauli	exclusion	principle)

§Can	be	solved	analytically	only	in	a	few	cases	
(e.g.,	harmonic	oscillator	potential)

§With	chiral	forces	need	to	solve	numerically

Two-nucleon	problem:	To	summarize
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§Do	you	have	any	questions?

§Question	for	you:
—What	are	the	physical	two-nucleon	channels?

Questions
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§ℓ = 0, S = 0, J = 0, T = 0?

§ℓ = 0, S = 0, J = 0, T = 1?

§ℓ = 0, S = 1, J = 1, T = 0?

§ℓ = 0, S = 1, J = 1, T = 1?

§ℓ = 1, S = 0, J = 1, T = 0?

§ℓ = 1, S = 0, J = 1, T = 1?

§…

Some	physical	two-nucleon	channels
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§Use	‘Jacobi’	coordinates	
(generalization	of	2-body	
relative	coordinates)

§Use	expansion	in	
hyperspherical harmonics	
(generalization	of	1D	
spherical	harmonics)

§Hard	to	antisymmetrize!

Few-nucleon	problem:	A	=	3,4,5	…

O

s1 s2

R
s3

x

y

E.g.: A=3
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Main	examples:

§ Faddeev equations	(A=3)

§ Faddeev-Yacubovsky
(A=4,5*),	Alt-Grassberger-
Sandhas equations	(A=4)

§ Jacobi-coordinate	no-core	
shell	model	(A	=	3,4)

§Hyperspherical harmonics	
expansions	(A	=	3,	4,	6)

Few-nucleon	problem:	A	=	3,4,(5),	6	…

O

s1 s2

R
s3

x

y

E.g.: A=3

*	New	development!
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A-nucleon	problem

H(A) =    Ti +    VNN(|ri-rj|) +    V3N
A

i=1

A

i<j=1

A

i<j<k=1
ijk

s1 s2

r1
r2

O

sA

rA
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§A	position	coordinates	(A-1	without	C.M.)

§A	spin	coordinates

§A	isospin	coordinates

§ The	solution	has	to	be	antisymmetric	under	
exchange	of	any	two	nucleons

§Way	to	complicated	to	solve	as	before!

A-nucleon	problem

What to do???
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… search under the lamp post!
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1) Solve	single-particle	problem:

We	know	how	to	solve	the	
independent-particle	problem

H(A) =    Ti + U(ri) =    hi

A

i=1

A

i=1

Single-particle
Hamiltonian

h ϕn(r) = εn ϕn(r)

~

e.g.: U(r) =  mΩ2r2−12
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2) The	antisymmetric	A-nucleon	solutions	can	be	
build	as

We	have	that:

We	know	how	to	solve	the	
independent-particle	problem

1
ϕk1(r1)  ϕk1(r2)  …  ϕk1(rA)

ϕk2(r1)  ϕk2(r2) … ϕk2(rA)

ϕkA(r1)  ϕkA(r2) …  ϕkA(rA)
… … …A!− det𝛟k =√−

H(A) 𝛟k = Ek 𝛟k with 
A

i=1
Ek =     εki dki

Degeneracy
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3) Use	the	independent-particle	model	solutions	
as	`basis	states’	to	build	an	ansatz	for	the	A-
nucleon	wave	function		

What	about	our	original	A-nucleon	
problem?

Ψ (r1,r2,…,rA) =   ck 𝛟k(r1,r2,…,rA) 
k

(H(A)-E) Ψ = 0 è ck (H(A)-E) 𝛟k= 0
k

N

N

Maximum 
number of 
excitations
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4) Project	the	equation	on	the	basis	states	(from	
the	left)

What	about	our	original	A-nucleon	
problem?

ck ∫𝛟m(r1,…,rA) H(A) 𝛟k(r1,…,rA) dr1…drA*

= E    ck ∫𝛟m(r1,…,rA)𝛟k(r1,…,rA) dr1…drA
k

*

𝛿mk

k

N

N

Hmk ck = E cm
k

N
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The	A-nucleon	Schrödinger	equation	becomes	a	
linear	algebra	eigenvalue	problem

§ The	elements	of	the	N×N Hamiltonian	matrix	are

§ And	the	unknown	expansion	coefficients	ck are	the	
elements	of	the	eigenvector	c

What	about	our	original	A-nucleon	
problem?

H mk = ∫𝛟m(r1,…,rA) H(A) 𝛟k(r1,…,rA) dr1…drA*

H c = E c uknown



74

The	A-nucleon	Schrödinger	equation	becomes	a	
linear	algebra	eigenvalue	problem

§ The	elements	of	the	N×N Hamiltonian	matrix	are

§ And	the	unknown	expansion	coefficients	ck are	the	
elements	of	the	eigenvector	c

What	about	our	original	A-nucleon	
problem?

H mk = ⟨𝛟m | H(A) | 𝛟k⟩

H c = E c

Short-hand 
notation
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§ This	is	an	‘expansion’	technique:	uses	large	(but	
finite!)	expansion	on	A-body	basis	states

§Convergence	to	the	exact	result	is	approached	
(variationally)	by	increasing	N	(i.e.,	basis	size)

§Antisymmetrization is	trivial

§Did	we	forget	about	anything?

Some	notes
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§ In	the	independent-particle	problem,	in	general	
the	c.m.	motion	is	mixed	with	intrinsic	motion,	
giving	rise	to	spurious	effects	

§ Exception:	harmonic	oscillator	(HO)	potential	is	
exactly	separable

What	about	the	center	of	mass	motion?	

H(HO) =   Ti +  mΩ2r2
A

i=1

~ −12
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§ In	the	independent-particle	problem,	in	general	
the	c.m.	motion	is	mixed	with	intrinsic	motion,	
giving	rise	to	spurious	effects	

§ Exception:	harmonic	oscillator	(HO)	potential	is	
exactly	separable

H(HO)~
A

i<j=1
−12= Tint +                 + Tcm +   AmΩ2R2mΩ2 (ri-rj)2

2A

Hint
Hcm

What	about	the	center	of	mass	motion?	
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Hard	core	of	nuclear	interaction	
scatters	nucleons	to	high	momenta

V(r)
Vkk’ = ∫ eik’r V(r)e-ikrdr

= ⟨k| V |k’⟩

Fourier 
Transform

J = 0 S = 1
ℓ = 0 T = 0
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Hard	core	of	nuclear	interaction	
scatters	nucleons	to	high	momenta

Very large N values (basis sizes) are 
required to reach convergent solution! 
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Basis	dimension	grows	rapidly	with	A!

Convergence can be a challenge!
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§ Introduce	unitary	transformation:	𝒰 (𝒰⨥𝒰 = 𝟙)

Effective	interactions	from	unitary	
transformations	of	bare	Hamiltonian

E = ⟨Ψ| H(A) |Ψ⟩

E = ⟨Ψ| 𝒰⨥𝒰 H(A) 𝒰⨥𝒰 |Ψ⟩

= (⟨Ψ|𝒰⨥) 𝒰H(A)𝒰⨥ (𝒰|Ψ⟩)

= ⟨Ψ| H(A) |Ψ⟩~ ~ ~

Bare 
Hamiltonian,

wave function

Effective
Hamiltonian,

wave function



82

Example:	Similarity	renormalization	
group	(SRG)	transformation

⟨H𝛌 = 𝒰𝛌H 𝒰⨥
𝛌 k| 

H(2) |k’⟩
~ dH𝛌 = -4 [𝜼(𝛌),H𝛌 ]

d𝛌 𝛌5
~ ~

Flow 
parameterʹk

k
⟨k| H(2) |k’⟩
𝛌0 > 𝛌1> 𝛌2 …

Plane 
wave

𝛌
~

Two-body Hamiltonian  
in momentum space 
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Example:	Similarity	renormalization	
group	(SRG)	transformation

dH𝛌 = -4 [𝜼(𝛌),H𝛌 ]
d𝛌 𝛌5
~ ~

𝛌 = 20 fm-1

⟨k| H(2) |k’⟩𝛌
~

Low and high momentum 
components coupled

⟨H𝛌 = 𝒰𝛌H 𝒰⨥
𝛌 k| 

H(2) |k’⟩
~
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Example:	Similarity	renormalization	
group	(SRG)	transformation

dH𝛌 = -4 [𝜼(𝛌),H𝛌 ]
d𝛌 𝛌5
~ ~

𝛌 = 2 fm-1

⟨k| H(2) |k’⟩𝛌
~

Low and high momentum 
components de-coupled

⟨H𝛌 = 𝒰𝛌H 𝒰⨥
𝛌 k| 

H(2) |k’⟩
~
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Example:	Similarity	renormalization	
group	(SRG)	transformation

dH𝛌 = -4 [𝜼(𝛌),H𝛌 ]
d𝛌 𝛌5
~ ~

𝛌 = 2 fm-1

⟨k| H(2) |k’⟩𝛌
~

Can work with smaller 
N values (basis sizes)! 

⟨H𝛌 = 𝒰𝛌H 𝒰⨥
𝛌 k| 

H(2) |k’⟩
~
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Example:	Similarity	renormalization	
group	(SRG)	transformation

dH𝛌 = -4 [𝜼(𝛌),H𝛌 ]
d𝛌 𝛌5
~ ~

𝛌 = 2 fm-1

⟨k| H(2) |k’⟩𝛌
~

⟨H𝛌 = 𝒰𝛌H 𝒰⨥
𝛌 k| 

H(2) |k’⟩
~

See: Bogner, Furnstahl, Schwenk, 
Prog. Part. Nucl. Phys. 65 (2010) 
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§This	sounds	to	good	to	be	true	…

§What’s	the	catch?

Question
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§ The	transformation	(e.g.,	SRG)	generates	a	
‘new’,	softer	NN	interaction

§Unitarily	equivalent	to	the	bare	NN	potential	in	
the	two-nucleon	sector	only!

§ Induces	3-body	and,	in	general,	up	to	A-body	
forces	even	starting	from	an	NN	potential

Notes	on	effective	interactions
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Example:	convergence	of	4He	ground-
state	energy	with	chiral	NN+3N	forces	

Jurgenson et al., PRL 103, 082501

SRG 
NN+3N

Bare 
NN+3N
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§ Superposition	of	
Harmonic	Oscillator	
(HO)	wave	functions

§Bare/effective	(e.g.,	
SRG)	NN+3N	forces

§ ‘Diagonalizes’	
Hamiltonian	matrix

§A	≲ 16

Ab	initio	no-core	shell	model	(NCSM)

1max += NN
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§ Superposition	of	
Harmonic	Oscillator	
(HO)	wave	functions

§Bare/effective	(e.g.,	
SRG)	NN+3N	forces

§ ‘Diagonalizes’	
Hamiltonian	matrix

§A	≲ 16

Ab	initio	no-core	shell	model	(NCSM)
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§ Superposition	of	
Harmonic	Oscillator	
(HO)	wave	functions

§Bare/effective	(e.g.,	
SRG)	NN+3N	forces

§ ‘Diagonalizes’	
Hamiltonian	matrix

§A	≲ 16

Ab	initio	no-core	shell	model	(NCSM)

Works well if wave 
function is localized
(well-bound states)
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Helped to point out 
the fundamental 
importance of 3N 
forces in structure 
calculations 

Ab	initio	no-core	shell	model	(NCSM)

PRL 99, 042501 (2007)

En
er

gy
 sp

ec
tr

um
 o

f n
uc

le
ar

 st
at

es
 (M

eV
)

NN+3N

Example: energy 
spectrum of 
nuclear states of 
the 10B nucleus
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Ab	initio	no-core	shell	model	(NCSM)

§ Superposition	of	
Harmonic	Oscillator	
(HO)	wave	functions

§Bare/effective	(e.g.,	
SRG)	NN+3N	forces

§ ‘Diagonalizes’	
Hamiltonian	matrix

§A	≲ 16
Does not works as well 
for nuclei with exotic
densities (halo nuclei)
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Ab	initio	no-core	shell	model	(NCSM)

§ Superposition	of	
Harmonic	Oscillator	
(HO)	wave	functions

§Bare/effective	(e.g.,	
SRG)	NN+3N	forces

§ ‘Diagonalizes’	
Hamiltonian	matrix

§A	≲ 16
Definitively not adapted  
to the description of

scattering wave functions!
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Ab	initio	community	extremely	successful	
in	describing	the	static	properties	of	nuclei
§ Green’s	function	Monte	Carlo

§ Nuclear	Lattice	Effective																		
Field	Theory

§ Coupled	Cluster	theory

§ In-Medium	SRG

§ Gorkov-Green	function	theory

§ Many-Body	Perturbation	
Theory

§ Ab	initio	valence-space	shell	
model

Explosion of ab 
initio methods 
pushing to 
medium-mass 
nuclei

What about the dynamics 
between nuclei (scattering 
States with E>0)?



How to describe the 
phenomena of low-energy 
nuclear reactions based on 
colliding nuclei made of 
interacting nucleons?



98

Problem	of	nuclear	collisions	in	A-
nucleon	systems	even	harder	to	solve!

§ In	collisions	wave	
functions	extend												
all	over	the	place

§ Simultaneously															
A-nucleon	and	
projectile-target	
problem

§Nucleons	can	re-arrange	
in	different	‘channels’

7Li

p

7Li p

n
7Be

6Li

4He
4He

d

E.g.: reaction 
of 7Li with 

protons
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§We	can	improve	our	ansatz	for	the	A-
nucleon	wave	function	by	further	adding	
‘microscopic	cluster	states’	for	the	
relevant	reaction	channels

At	low-energy	usually	only	a	few	
reaction	channels	are	open	…

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns

Ψ
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0

Ab	initio	no-core	shell	model											
with	continuum	(NCSMC)

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r
Ψ

Localized       
A-nucleon 
solutions 

(eigenstates)
computed with 

the NCSM 

=    bk 𝛟k(r1,r2,…,rA) 
k

N
(l)

(H(A)-El) = 0
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1

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r
Ψ

Continuous 
microscopic cluster 

states made of 
projectile-target 
pairs in relative 

motion
, n1 , n2= 𝛿 ( - A-a ,a)

(A− a ) ( a )

Ab	initio	no-core	shell	model											
with	continuum	(NCSMC)

r r
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2

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r
Ψ

Ab	initio	no-core	shell	model											
with	continuum	(NCSMC)

Antisymmetrizes
exchanges of nucleons 
between projectile and 

target

Sum over relevant 
reaction channels      
(mass partitions)
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3

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r
Ψ

Describe efficiently 
the wave function 
when all A nucleons 
are close together 

Ab	initio	no-core	shell	model											
with	continuum	(NCSMC)

Describe efficiently 
the wave function 

when the reactants/ 
reaction products 

are far apart
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4

Ψ(A) = cλ
λ

∑ ,λ + d!r uv (
!r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r
Ψ

Works well for describing 
clustering in nuclei (halo nuclei)  

Ab	initio	no-core	shell	model											
with	continuum	(NCSMC)

Works well for describing both 
bound and scattering state
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5

A ′ν

∧

H Aν

∧

€ 

r'

€ 

r
A !ν

∧

Aν
∧

€ 

r'

€ 

r
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§ The	spurious	center-of	mass	motion	can	again	
be	separated	exactly	(a	bit	more	complicated)
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§…	the	phenomena	of	low-
energy	nuclear	reactions	
based	on	colliding	nuclei	
made	of	interacting	
nucleons?

Question	II:	Can	we	predict	…

12C

g

4He

16O
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A	good	starting	point:	
elastic	scattering	of	neutrons	on	4He
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§ New	5-body	Faddeev-Yacubovsky (FY,	symbols)	
calculations	from	R.	Lazauskas (ongoing	work),	in	very	
good	agreement	with	the	NCSMC	results	(solid	lines)

R. Lazauskas, INT Program 17-1a

A	good	starting	point:	
elastic	scattering	of	neutrons	on	4He
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G. Hupin, S. Quaglioni, and P. Navratil, 
JPC Conf. Proc. (2015)

n-4He scattering represents a stringent test for 
nuclear interaction models, and can be used in the 

future to better constrain chiral NN+3N forces

NN+3N(500)

x
NN (with ind. terms)
Expt.

§ The	3N	force	enhances	the	
splitting	between	the	1/2-
and	3/2- phase	shifts

A	good	starting	point:	
elastic	scattering	of	neutrons	on	4He
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We	can	now	predict	nucleon	and	deuterium	
scattering	on	4He	based	on	chiral	NN+3N	forces	

G. Hupin, S.Q., and P. Navratil, 
Phys. Rev. C 90, 061601(R) (2014)

G. Hupin, S.Q, and  P. Navratil, 
Phys. Rev. Lett. 114, 212502 (2015) 

NN+3N(500)

NN+3N(500)

Chiral NN+3N forces works well, but not everywere! 

Proton	elastic	recoil	off	helium Elastic	d-4He	Scattering
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With	the	same	NN+3N	forces,	we	can	also	make	
predictions	for	more	complex	transfer	reactions

§What	is	the	effect	of	spin	
polarization	on	the	DT	
reaction	rate?
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§What	is	the	spin-parity	of	the	ground	state	of	
the	11B	nucleus?

Problem

Z=4 N=7

0s1/2

0p3/2

0p1/2

2n+ℓ=0

2n+ℓ=1

1s1/2

0d5/2

0d3/2
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Can	ab initio	theory	explain	the	
phenomenon	of	parity	inversion	in	11Be?

Inverted 
compared 
to Expt.! 

Prediction!

NN (with 
ind. terms)

+3N (350) +3N (400) N2LOsat
NN+3N

Expt. Expt.
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A. Calci, P. Navratil, R. Roth,          
J. Dohet-Eraly, S.Q., and G. 
Hupin, Phys. Rev. Lett. 117, 

242501 (2016)

11Be

Correct
ordering

+

J. Dohet-EralyA. Calci



11
6

Scattering	and	reactions	in	A	=	11

g

11Be

10Be

n 10C

10C

pp

IRIS collaboration

A. Calci, P. Navratil, R. Roth, J. 
Dohet-Eraly, S.Q., and G. Hupin, Phys. 

Rev. Lett. 117, 242501 (2016)

A. Kumar, R. Kanungo, A. Calci, P. 
Navratil et al., to appear shortly 

in Phys. Rev. Lett.
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Solar neutrinos
En < 15 MeV

An artist's 
impression 

of the SNO 
detector.

Now	gradually	building	up	capability
to	describe	solar	pp-chain	reactions

3He(a,g)7Be	Astrophysical	S-factor

7Be

g4He (a)3He

J. Dohet-Eraly, P. Navrátil, S.Q., W. 
Horiuchi, and F. Raimondi, Physics 

Letters B 757, 430 (2016) 

The	3He(a,g)7Be	fusion	
essential	to	simulate	the	
flux	of	solar	neutrinos

SRG-N3LO NN

J. Dohet-Eraly

Quantitative comparison still 
requires inclusion of 3N forces 
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What	about	helium	burning	reactions?

Nuclear	Lattice	EFT	with	the	
Adiabatic	Projection	Method

§ Use	projection	Monte	Carlo	to	‘dress’	
clusters

§ Evaluate	adiabatic	inter-cluster	
Hamiltonian,	norm	matrix	elements

§ Solve	for	relative	scattering	wave	
function	 Elhatisari, Lee, Rupak, Epelbaum, 

Krebs, Lähde, Luu, Meißner, Nature 
528, 111 (2015) 
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Towards	ab	initio	
calculations	of	helium	burning

a-a D-wave 
scattering

Nuclear	Lattice	EFT	with	the	
Adiabatic	Projection	Method

§ Promising	results	for	a-a scattering

§ Quantitative	predictions	still	
require	calculation	at	N3LO

§ Computational	scaling	~A2

§ 12C(a,g)16O	becoming	possible!

§ Extensions	to	enable	treatment	of	
three-cluster	dynamics	required	
before	the	method	can	be	applied	
to	the	4He(aa,g)12C	process

Expt.

Elhatisari, Lee, Rupak, Epelbaum, 
Krebs, Lähde, Luu, Meißner, Nature 

528, 111 (2015) 
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How	many-body	correlations	
and	a-clustering	shape	6He

§ Stringent	tests	
for	ab	initio
theory

§ 3-cluster	
NCSMC

6He

+

Expt.

Expt.

Expt.

C. Romero-Redondo, S.Q., P.Navratil, and G. Hupin, 
Phys. Rev. Lett. 117, 222501 (2016)
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Results	for	6He	low-energy	continuum

For now, qualitative agreement with experiment. Inclusion of 3N 
forces (currently underway) remains crucial to arrive at 

accurate description of the spectrum as a whole. 
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§ In	recent	years	ab initio	theory	has	made	great	strides	in	its	
description	of	light-nuclei	scattering	and	reactions	as	well	as	of	
the	structure	of	loosely	bound	and	unbound	exotic	nuclei

§ We	are	on	the	verge	of	predicting	Solar	fusion	and	Helium	
burning	cross	sections	from	chiral	NN+3N	forces

§ This	will	aid	in	solving	long-standing	problems	in	stellar	
nucleosynthesis

§ These	developments	are	also	allowing	to	further	expose	and	
will	help	overcome	deficiencies	in	chiral	NN+3N	forces

Conclusions	and	Prospects


