Neutron-induced nuclear reactions

Frank Gunsing
CEA Saclay, Irfu
F-91191 Gif-sur-Yvette
France

Neutron-induced nuclear reactions

Neutron-induced nuclear reactions

Neutron-induced nuclear reactions

$$
\begin{array}{cc}
\text { solid state, } & \text { nuclear, compound } \\
\text { Bragg scattering } & \text { nucleus reactions }
\end{array}
$$

de Broglie wavelength: $\lambda=\frac{h}{\sqrt{2 m E_{k}}}$

Neutron-induced nuclear reactions

- Reaction notations:

$$
\begin{array}{ll}
{ }^{10} \mathrm{~B}+{ }^{1} \mathrm{n} \rightarrow{ }^{7} \mathrm{Li}+{ }^{4} \mathrm{He} & { }^{238} \mathrm{U}+\mathrm{n} \rightarrow{ }^{239} \mathrm{U}^{*} \\
{ }^{10} \mathrm{~B}+\mathrm{n} \rightarrow{ }^{7} \mathrm{Li}+\alpha & { }^{238} \mathrm{U}+\mathrm{n} \rightarrow{ }^{239} \mathrm{U}+\gamma \\
{ }^{10} \mathrm{~B}(\mathrm{n}, \alpha) & \mathrm{U}(\mathrm{n}, \gamma)
\end{array}
$$

- Neutron induced nuclear reactions:
- elastic scattering (n,n)
- inelastic scattering (n, n ')
- capture (n, γ)
- fission (n, f)
- particle emission (n, α), (n, p), ($n, x n$)
- total cross section $\sigma_{\text {tot }}$: sum of all partial reactions
- Cross section σ, expressed in barns, $1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}$

Neutron-induced nuclear reactions

- neutron reaction $X(a, b) Y$

- neutron cross section:
function of the kinetic energy of the particle a

$$
\sigma\left(E_{a}\right)=\iint \frac{d^{2} \sigma\left(E_{a}, E_{b}, \Omega\right)}{d E_{b} d \Omega} d E_{b} d \Omega
$$

- differential cross section:
function of the kinetic energy of the particle a and function of the kinetic energy or the angle of the particle b

$$
\frac{d \sigma\left(E_{a}, E_{b}\right)}{d E_{b}} \quad \frac{d \sigma\left(E_{a}, \Omega\right)}{d \Omega}
$$

- double differential cross section:
function of the kinetic energy of the particle a and function of the kinetic energy and the angle of the particle b

$$
\frac{d^{2} \sigma\left(E_{a}, E_{b}, \Omega\right)}{d E_{b} d \Omega}
$$

Maxwell-Boltzmann distribution

- Maxwell-Boltzmann statistics describe neutron spectra from
- thermal-neutron induced fission
- water moderated neutrons (infinite moderator)
- stellar spectra (sources ${ }^{22} \mathrm{Ne}(\alpha, n){ }^{25} \mathrm{Mg},{ }^{13} \mathrm{C}(\alpha, n){ }^{16} \mathrm{O}$)
- Velocity distribution at temperature T

$$
n_{v}(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} \exp \left(-\frac{m v^{2}}{2 k T}\right)
$$

has maximum at

$$
v_{\max }=\sqrt{2 k T / m}
$$

- At velocity $\mathrm{v}=2200 \mathrm{~m} / \mathrm{s}$ (used as thermal neutron reference)

$$
\mathrm{E}_{\max }=25.3 \mathrm{meV}, \quad \mathrm{~T}=293.6 \mathrm{~K}, \quad \lambda=0.18 \mathrm{~nm}
$$

Maxwell-Boltzmann distribution

- Distributions of kinetic energy, wavelength or time-of-flight can be converted into each other

$$
n_{v}(v) d v=n_{E}(E) d E=n_{t}(t) d t=n_{\lambda}(\lambda) d \lambda
$$

- For neutron beams, a "flux"-like distribution is more appropriate

$$
\varphi_{v}(v) \propto v \times n_{v}(v)
$$

with conversions

$$
\varphi_{v}(v) d v=\varphi_{E}(E) d E=\varphi_{t}(t) d t=\varphi_{\lambda}(\lambda) d \lambda
$$

Neutron cross sections

Applications of neutron-induced reactions

Different fields for applications

- Stellar nucleo-synthesis, neutron capture, elements $>$ Fe
- Nuclear technology, reactors, fuel cycles, waste transmutation
- Resonance spectroscopy, level densities
- Reaction mechanisms (fission) and model development
- Others

Need for "evaluated" data for simulations

- Historically developed for nuclear reactors
- Nowadays general purpose (Nuclear Data)

Evaluated nuclear data libraries

Libraries:

- JEFF - Europe
- JENDL - Japon
- ENDF/B - US
- BROND - Russia
- CENDL - China

Common format:

ENDF-6

Contents:

Data for particle-induced reactions (neutrons, protons, gamma, other) but also radioactive decay data

```
Data are indentified by "materials"
(isotopes, isomeric states, (compounds) )
ex. \({ }^{16} \mathrm{O}: \quad\) mat \(=825\)
natV: \(\quad\) mat \(=2300\)
\(242 \mathrm{~m} A \mathrm{~m}: \quad\) mat \(=9547\)
```


Files for a material

```
1 \text { General information}
2 Resonance parameter data
3 Reaction cross sections
4 \text { Angular distributions for emitted particles}
5 \text { Energy distributions for emitted particles}
6 \text { Energy-angle distributions for emitted particles}
7 \text { Thermal neutron scattering law data}
8 Radioactivity and fission-product yield data
9 Multiplicities for radioactive nuclide production
1 0 \text { Cross sections for photon production}
1 2 \text { Multiplicities for photon production}
1 3 \text { Cross sections for photon production}
1 4 \text { Angular distributions for photon production}
1 5 \text { Energy distributions for photon production}
2 3 \text { Photo-atomic interaction cross sections}
2 7 \text { Atomic form factors or scattering functions for photo-atomic interactions}
3 0 \text { Data Covariances obtained from parameter covariances and sensitivities}
3 1 \text { Data covariances for nubar}
3 2 \text { Data covariances for resonance parameters}
3 3 \text { Data covariances for reaction cross sections}
3 4 \text { Data covariances for angular distributions}
3 5 \text { Data covariances for energy distributions}
3 9 \text { Data covariances for radionuclide production yields}
4 0 \text { Data covariances for radionuclide production cross sections}
```


Example: part of an evaluated data file

The library JEFF－3．1

Users

nuclear energy technology

astrophysics
nuclear science

Producers

Need for standards

Users

Applications

- reactors,

GEN IV

- safety
- criticality
- fuel cycles
- design
- transmutation
- ADS
- dosimetry
- health
- fusion
- nuclear structure
- astrophysics

Chart of nuclides

Nuclei of interest for neutron induced reactions

Russell, Nature 93 (1914) 252

or color

Hertzsprung-Russell diagram

10^{6} stars observed so far with GAIA satellite

Russell, Nature 93 (1914) 252

NVTN 83:5 (2016)

Actinide build-up in reactors (''w' - process)

fresh fuel spent fuel

Fission yield and fission product half lifes

Fission yield and fission product half lifes

Parity non-conservation

transmission of polarized neutrons

sample of target nuclei

Parity non-conservation

- Parity non-converation observed in neutron resonances (TRIPLE Collaboration)
- Helicity dependence of transmission of polarized neutrons Observed asymmetries up to several percent.

$$
A=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}=\frac{2 V_{s p}^{J}}{E_{s}-E_{p}} \sqrt{\frac{\Gamma_{n, s}}{\Gamma_{n, p}}}
$$

- CPT invariance
- Asymmetries due to weak interaction

$$
\Psi=\Psi^{\pi}+F \Psi^{-\pi}
$$

with

$$
F \sim 10^{-7}
$$

- Amplification of 10^{6} due to factors $\sqrt{\frac{\Gamma_{n, s}}{\Gamma_{n, p}}} \quad \frac{1}{E_{s}-E_{p}}$

low-lying levels:
Count levels, all J"
neutron resonances:
Count levels, selected J \quad, extract D_{0}
- All level density models reproduce the low-lying levels and D_{0} at S_{n}

Nuclear level densities

Count the number of levels in the energy interval \rightarrow level density

Nuclear level densities

Nuclear level densities

Level density by counting levels: missing levels

${ }^{197} \mathbf{A u}+\mathbf{n}$

What is the statistical model for a nucleus

- Neutron resonances correspond to states in a compound nucleus, which is a nucleus in a highly excited state above the neutron binding energy.
- The compound nucleus corresponds to a very complex particle-hole configuration.
\rightarrow Gaussian Orthogonal Ensemble (GOE)
- The transition probability between two levels is related to the matrix elements of the interaction between two levels.
- Matrix elements (amplitudes γ) are Gaussian random variables with zero mean.
Observables are widths $\Gamma \sim \gamma^{2}$.

The nucleus at energies around S_{n} can be described by the
Gaussian Orthogonal Ensemble (GOE)

The matrix elements governing the nuclear transitions are random variables with a Gaussian distribution with zero mean.

- Consequences:
- The partial widths have a Porter-Thomas distribution.
- The spacing of levels with the same $J \pi$ have approximately a Wigner distribution.

Chi-square distribution

$$
x=\frac{\gamma^{2}}{<\gamma^{2}>} \quad P_{\mathrm{PT}}(x)=\frac{1}{\sqrt{2 \pi x}} \exp \left(-\frac{x}{2}\right)
$$

For neutron widths (s-waves), use the effective reduced neutron width

$$
\left.\Gamma_{n}^{0}=\Gamma_{n} / \sqrt{(} E\right)
$$

and

$$
x=\frac{g \Gamma_{n}^{0}}{<g \Gamma_{n}^{0}>}
$$

and for easy handling use

$$
\int_{x_{t}}^{\infty} P_{\mathrm{PT}}(x)
$$

Introduction R-matrix theory

- Formalism to decribe (neutron) reactions
- For resolved resonances, full cross sections can be constructed from only a few resonance parameters
- Standard way of storage for evaluated nuclear data

Decay of a (nuclear) quantum state

state with a life time τ :

$$
\Psi(t)=\Psi_{0} e^{-i E_{0} t / h} e^{-t / 2 \tau}
$$

definition (Heisenberg):

$$
\Gamma=\frac{\hbar}{\tau}
$$

Fourier transform gives energy profile:

$$
I(E)=\frac{\Gamma / 2 \pi}{\left(E-E_{0}\right)^{2}+\Gamma^{2} / 4}
$$

$$
j_{\substack{\text { incident } \\ \text { plain wave }}}^{\hbar} \frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
$$

scattered radial wave
$j_{\text {out }}$

Conservation of probability density: $\quad \sigma(\Omega)=\frac{r^{2} j_{\text {out }}(r, \Omega)}{j_{\text {inc }}}$
Solve Schrödinger equation of system to get cross sections. Shape of wave functions of in- and outgoing particles are known, potential is unknown. Two approaches:

- calculate potential (optical model calculations, smooth cross section)
- use eigenstates (R-matrix, resonances)

Quantum system: the finite well

Solve Schrödinger equation in two regions:

- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$

Now the wave function exists also outside the well at $x<0$ and $x>a$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
& 0<x<a \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V_{0} \psi(x)=E \psi(x) \\
& x<0, x>a \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x)
\end{aligned}
$$

Quantum system: the finite well

Solve Schrödinger equation in two regions:

- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$

Now the wave function exists also outside the well at $x<0$ and $x>a$

$$
\begin{aligned}
& 0<x<a-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \\
& x<0, x>a-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V_{0} \psi(x)=E \psi(x) \\
& d x^{2}
\end{aligned}
$$

Quantum system: the finite well

Solve Schrödinger equation in two regions:

- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$

Now the wave function exists also outside the well at $x<0$ and $x>a$

In general, a generic state can be written as a linear expansion of it eigenstates:

$$
\psi(x)=\sum_{k} c_{k} \psi_{k}(x)
$$

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

$$
\begin{array}{r}
\psi_{1}(x)=A e^{i k(x) x}+B e^{-i k(x) x} \\
\psi_{2}(x)=C e^{i k(x) x}+D e^{-i k(x) x} \\
\psi_{3}(x)=E e^{i k(x) x}+F e^{-i k(x) x} \\
\quad k(x)=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}}
\end{array}
$$

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

$$
\begin{array}{r}
\psi_{1}(x)=A e^{i k(x) x}+B e^{-i k(x) x} \\
\psi_{2}(x)=C e^{i k(x) x}+D e^{-i k(x) x} \\
\psi_{3}(x)=E e^{i k(x) x}+F e^{-i k(x) x} \\
\quad k(x)=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}}
\end{array}
$$

Quantum system: the potential barrier

Solve Schrödinger equation in three regions:

- free travelling particle of energy E
- inside and outside the well
- normalize solutions to match value and derivative and borders $x=0$ and $x=a$
- transmission and reflection

$$
\begin{array}{r}
\psi_{1}(x)=A e^{i k(x) x}+B e^{-i k(x) x} \\
\psi_{2}(x)=C e^{i k(x) x}+D e^{-i k(x) x} \\
\psi_{3}(x)=E e^{i k(x) x}+F e^{-i k(x) x} \\
k(x)=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}} \\
j=\frac{\hbar}{2 m i}\left(\psi^{*} \nabla \psi-\nabla \psi^{*} \psi\right)
\end{array}
$$

transmission $T=|F|^{2} /|A|^{2}=j_{\text {trans }} / j_{\text {inc }}$

Quantum systems

Other interesting excercises in 1D:

- barrier potential
- finite potential well
- harmonic oscillator

More complicated in 3D, $\mathrm{V}=\mathrm{V}(\mathrm{r})$, more particles, degeneracy:

- cartesian well
- spherical well
- harmonic oscillator
- realistic potentials (Wood-Saxon),
\rightarrow No analytical solution possible, numerical solutions

Apply to real quantum systems:
atoms (hydrogen) but also to nuclei.

${ }_{8}^{15} \mathrm{O}$

${ }_{8}^{16} \mathrm{O}$

${ }_{8}^{17} \mathrm{O}$

The nucleus as a quantum system

shell model representation:

configuration of nucleons in their potential

level scheme representation:

excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system

shell model representation:

configuration of nucleons in their potential

level scheme representation:

excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system

shell model representation:

configuration of nucleons in their potential

level scheme representation:

excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system

shell model representation:

configuration of nucleons in their potential

level scheme representation:

excited states of a nucleus
(shell model and other states)

The nucleus as a quantum system

The nucleus as a quantum system

The nucleus as a quantım system

The nucleus as a quantum system

Nuclear levels

Compound neutron-nucleus reactions

R-matrix formalism

partial incoming wave functions: $\mathcal{I}_{\mathcal{C}}$ partial outgoing wave functions: $\mathcal{O}_{\mathcal{C}^{\prime}}$
cross section:
related by collision matrix:

$$
\sigma_{c c^{\prime}}=\pi \lambda_{c}^{2}\left|\delta_{c^{\prime} c}-U_{c^{\prime} c}\right|^{2}
$$

$$
\begin{array}{cl}
r>a_{c} & \text { external region } \\
r<a_{c} & \text { internal region } \\
r=a_{c} & \text { match value and derivate of } \\
{\left[\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}-\frac{2 m_{c}}{\hbar^{2}}(V-E)\right] r R(r)=0}
\end{array}
$$

External region: easy, solve Schrödinger equation central force, separate radial and angular parts.

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$ solution: solve Schrödinger equation of relative motion:

- Coulomb functions
- special case of neutron particles (neutrons): fonctions de Bessel

Internal region: very difficult, Schrödinger equation cannot be solved directly solution: expand the wave function as a linear combination of its eigenstates. using the R -matrix:

$$
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E}
$$

The R-matrix formalism

The R-matrix formalism

The wave function of the system is a superposition of incoming and outgoing waves:

$$
\Psi=\sum_{c} y_{c} \mathcal{I}_{c}+\sum_{c^{\prime}} x_{c^{\prime}} \mathcal{O}_{c}^{\prime}
$$

Incoming and outgoing wavefunctions have form:

$$
\begin{aligned}
& \mathcal{I}_{c}=I_{c} r^{-1} \varphi_{c} i^{\ell} Y_{m_{\ell}}^{\ell}(\theta, \phi) / \sqrt{v_{c}} \\
& \mathcal{O}_{c}=O_{c} r^{-1} \varphi_{c} i^{\ell} Y_{m_{\ell}}^{\ell}(\theta, \phi) / \sqrt{v_{c}}
\end{aligned}
$$

The physical interaction is included in the collision matrix \mathbf{U} :

The wave function depends on the R-matrix, which depends on the widths and levels of the eigenstates.

$$
x_{c^{\prime}} \equiv-\sum_{c} U_{c^{\prime} c} y_{c}
$$

$$
\begin{array}{r}
\Psi=\Psi\left(R_{c c^{\prime}}\right) \\
R_{c c^{\prime}}=\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E}
\end{array}
$$

The relation between the R-matrix and the collision matrix:

$$
\begin{array}{r}
\mathbf{U}=\boldsymbol{\Omega} \mathbf{P}^{1 / 2}[\mathbf{1}-\mathbf{R}(\mathbf{L}-\mathbf{B})]^{-1}\left[\mathbf{1}-\mathbf{R}\left(\mathbf{L}^{*}-\mathbf{B}\right)\right] \mathbf{P}^{-1 / 2} \boldsymbol{\Omega} \\
\text { with: } L_{c}=S_{c}+i P_{c}=\left(\frac{\rho}{O_{c}} \frac{d O_{c}}{d \rho}\right)_{r=a_{c}}
\end{array}
$$

The relation between the collision matrix and cross sections:
channel to one other channel: $\quad \sigma_{c c^{\prime}}=\pi \lambda_{c}^{2}\left|\delta_{c^{\prime} c}-U_{c^{\prime} c}\right|^{2}$
channel to any other channel: $\quad \sigma_{c r}=\pi \lambda_{c}^{2}\left(1-\left|U_{c c}\right|^{2}\right)$
channel to same channel: $\quad \sigma_{c c}=\pi \lambda_{c}^{2}\left|1-U_{c c}\right|^{2}$
channel to any channel (total): $\quad \sigma_{c, T}=\sigma_{c}=2 \pi \lambda_{c}^{2}\left(1-\operatorname{Re} U_{c c}\right)$

The Breit-Wigner Single Level approximation:

total cross section:

$$
\sigma_{c}=\pi \lambda_{c}^{2} g_{c}\left(4 \sin ^{2} \phi_{c}+\frac{\Gamma_{\lambda} \Gamma_{\lambda c} \cos 2 \phi_{c}+2\left(E-E_{\lambda}-\Delta_{\lambda}\right) \Gamma_{\lambda c} \sin 2 \phi_{c}}{\left(E-E_{\lambda}-\Delta_{\lambda}\right)^{2}+\Gamma_{\lambda}^{2} / 4}\right)
$$

neutron channel: $c=n$
only capture, scattering, fission: $\quad \Gamma_{\lambda}=\Gamma=\Gamma_{n}+\Gamma_{\gamma}+\Gamma_{f}$
other approximations: $\ell=0 \quad \cos \phi_{c}=1 \quad \sin \phi_{c}=\rho=k a_{c} \quad \Delta_{\lambda}=0$
total cross section:

Average cross sections

The relation between the energy averaged collision matrix and energy averaged cross sections:
average scattering:

$$
\begin{aligned}
& \overline{\sigma_{c c}}=\pi \lambda_{c}^{2} g_{c} \mid \overline{1-\left.U_{c c}\right|^{2}} \\
& \overline{\sigma_{c c}^{\mathrm{se}}}=\pi \lambda_{c}^{2} g_{c}\left|1-\overline{U_{c c}}\right|^{2} \\
& \overline{\sigma_{c c}^{\mathrm{ee}}}=\pi \lambda_{c}^{2} g_{c}\left(\overline{\left|U_{c c}\right|^{2}}-\left|\overline{U_{c c}}\right|^{2}\right)
\end{aligned}
$$

shape elastic (potential) compound elastic
average any reaction

$$
\overline{\sigma_{c r}}=\pi \lambda_{c}^{2} g_{c}\left(1-\overline{\left|U_{c c}\right|^{2}}\right)
$$

average total
average single reaction

$$
\overline{\sigma_{c, T}}=2 \pi \lambda_{c}^{2} g_{c}\left(1-\operatorname{Re} \overline{U_{c c}}\right)
$$

$$
\overline{\sigma_{c c^{\prime}}}=\pi \lambda_{c}^{2} g_{c} \overline{\left|\delta_{c c^{\prime}}-U_{c c^{\prime}}\right|^{2}}
$$

average compound nucleus

$$
\overline{\sigma_{c}}=\pi \lambda_{c}^{2} g_{c}\left(1-\left|\overline{U_{c c}}\right|^{2}\right)
$$

Average cross sections

- From optical model calculations one can calculate $\overline{U_{c c}}$ but not $\overline{\left|U_{c c}\right|^{2}}$
- Therefore, only $\overline{\sigma_{c, T}}, \quad \overline{\sigma_{c c}^{\mathrm{se}}}, \quad \overline{\sigma_{c}}$ can be calculated, of which only the total average cross section can be compared with measurements.
- In OMP one uses transmission coefficients $T_{c}=1-\left|\overline{U_{c c}}\right|^{2}$
- Average single reaction cross section (Hauser-Feshbach):

$$
\overline{\sigma_{c c^{\prime}}}=\overline{\sigma_{c c}^{\mathrm{se}}} \delta_{c c^{\prime}}+\pi \lambda_{c}^{2} g_{c} \frac{T_{c} T_{c^{\prime}}}{\Sigma T_{i}} W_{c c^{\prime}}
$$

- Average single reaction cross section (Hauser-Feshbach):

$$
W_{c c^{\prime}}=\overline{\left(\frac{\Gamma_{c} \Gamma_{c^{\prime}}}{\Gamma}\right)} \overline{\bar{\Gamma}} \overline{\overline{\Gamma_{c}} \overline{\Gamma_{c^{\prime}}}}
$$

Measured quantities for resolved resonances

- Experimental quantities are not cross sections but reaction yields and transmission factors
reaction yield: $Y\left(E_{n}\right)=\mu\left(E_{n}\right)\left(1-e^{-n \sigma_{T}\left(E_{n}\right)}\right) \cdot \frac{\sigma_{\gamma}\left(E_{n}\right)}{\sigma_{T}\left(E_{n}\right)}$
transmission: $T\left(E_{n}\right)=e^{-n \sigma_{T}\left(E_{n}\right)}$
- Cross sections are functions of the resonance parameters

$$
\sigma_{c r}=\pi \lambda_{c}^{2} g_{c}\left(1-\left|U_{c c}\right|^{2}\right)
$$

cross section:

$$
\sigma=\sigma\left(\left\{E_{r}, J^{\pi}, \Gamma, \Gamma_{r}\right\}, \ldots\right)
$$

- Experimental quantities are average yields and average transmission factors
reaction yield: $\langle Y\rangle=\left\langle\mu\left(1-e^{-n \sigma_{T}}\right) \frac{\sigma_{\gamma}}{\sigma_{T}}\right\rangle=f_{r} \times n \times<\sigma_{\gamma}>$
transmission: $\langle T\rangle=\left\langle e^{-n \sigma_{T}}\right\rangle=e^{-n\left\langle\sigma_{T}\right\rangle} \cdot\left\langle e^{-n\left(\sigma_{T}-\left\langle\sigma_{T}\right\rangle\right)}\right\rangle=$

$$
f_{T} \times e^{-n\left\langle\sigma_{T}\right\rangle}
$$

- Change of parameters describing the cross section resolved \rightarrow unresolved parameters

$$
\begin{aligned}
E, J^{\pi} & \rightarrow \rho_{\ell} \quad \text { or } \quad D_{\ell} \\
\Gamma_{\gamma} & \rightarrow\left\langle\Gamma_{\gamma}\right\rangle \\
g \Gamma_{n}^{\ell} & \rightarrow\left\langle g \Gamma_{n}^{\ell}\right\rangle=(2 \ell+1) S_{\ell} D_{\ell}
\end{aligned}
$$

Cross sections $\sigma_{T}, \sigma_{\gamma}, \sigma_{\mathrm{n}}$ et σ_{f}

Cross sections $\sigma_{\mathrm{T}}, \sigma_{\gamma}, \sigma_{\mathrm{n}}$ et σ_{f}

Measuring reaction yield for resolved resonances

Measured reaction yield

production target, neutron source
 particles

sample
flight length L

```
time zero
```


Neutron time-of-flight

production target, reaction product
detector

sample
flight length L

Neutron time-of-flight

production target, reaction product
detector $\quad \square$

flight length L

time of flight t

Neutron time-of-flight

time of flight t

$$
\begin{array}{ll}
\begin{array}{l}
\text { Deduce kinetic energy from } \\
\text { neutron by time-of-flight: }
\end{array} & E_{n}=m c^{2}(\gamma-1) \\
& \gamma=\left(1-\frac{L^{2}}{c^{2} t^{2}}\right)^{-1 / 2}
\end{array}
$$

Neutron time-of-flight

time-of-flight (ns)

Neutron time-of-flight

- Continuous sampling of detector output ("zero" deadtime) for each TOF cycle during ~100 ms with sampling interval of 1 ns . Zero suppression.
- Offline event construction from timing and pulse height analysis, sometimes pulse shape analysis (PSA) for particle identification

part of a full TOF cycle

Four methods to measure neutron capture:

Four methods to measure neutron capture:

1. Activitation

- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

Measuring neutron capture

Four methods to measure neutron capture:

1. Activitation

- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

2. Level population spectroscopy

- needs HPGe,
- some nuclei only

Measuring neutron capture

Four methods to measure neutron capture:

1. Activitation

- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

1. Level population spectroscopy

- needs HPGe,
- some nuclei only

2. Total absorption technique (TAC with for example BaF_{2})

Measuring neutron capture

Four methods to measure neutron capture:

1. Activitation

- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

2. Level population spectroscopy

- needs HPGe,
- some nuclei only

3. Total absorption technique (TAC with for example BaF_{2})
4. Total energy technique
efficiency proportional to gamma-ray energy

$$
\varepsilon_{\gamma}=k \cdot E_{\gamma}
$$

- Moxon-Ray detectors
- Use Weighting Function

The neutron capture reaction

Four methods to measure neutron capture:

1. Activitation

- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

1. Level population spectroscopy

- needs HPGe,
- some nuclei only

2. Total absorption technique (TAC with for example BaF_{2})
3. Total energy technique efficiency proportional to gamma-ray energy

$$
\varepsilon_{\gamma}=k \cdot E_{\gamma}
$$

- Moxon-Ray detectors
- Use Weighting Function

Neutron sources

- Nuclear fission reactors. Water-moderated beams.
- Accelerator-based sources (for example p + ${ }^{7} \mathrm{Li}$ or $\mathrm{d}+{ }^{9} \mathrm{Be}$), can be mono-energetic.
- pulsed white neutron sources
- electron-based machines with heavy target

Bremsstrahlung followed by (γ, n) and (γ, f)

- proton-based machines with heavy target
spallation reactions

Facility	Location	particle	$\begin{array}{r} \hline \hline \text { beam } \\ \text { energy } \\ (\mathrm{MeV}) \end{array}$	neutron target	pulse width (ns)	beam power (kW)	pulse frequency (Hz)
RPI	RPI, Troy, USA	e-	60	Ta	5	0.45	500
		e-	60	Ta	5000	>10	300
ORELA	ORNL, Oak Ridge, USA	e-	180	Ta	2-30	60	12-1000
GELINA	JRC-Geel, Belgium	e-	100	U	1	10	40-800
nELBE	FZD, Rossendorf, Germany	e-	40	L-Pb	0.01	40	500000
IREN	JINR, Dubna, Russia	e-	30	W	100	0.42	50
PNF	PAL, Pohang, Korea	e-	75	Ta	2000	0.09	12
KURRI	Kumatori Japan	e-	46	Ta	2	0.046	300
		e-	30	Ta	4000	6	100
LANSCE-MLNSC	LANL, Los Alamos, USA	p	800	W	135	800	20
LANSCE-WNR	LANL, Los Alamos, USA	p	800	W	0.2	1.44	13900
n_TOF	CERN, Geneva, Switzerland	p	20000	Pb	6	10	0.4
MLF-NNRI	J-PARC, Tokai, Japan	p	3000	Hg	1000	1000	25
ISIS	Oxfordshire, United Kingdom	p	-	W			
ESS	Lund, Sweden	p	-	W			
CSNS	Dongguan, Guangdong, China	p	1600	W	500	120	25
NFS	GANIL-SPIRAL2, Caen, France	d	40	Be	<0.5	2	150k-880k

Facility	Location	particle	$\begin{array}{r} \hline \hline \text { beam } \\ \text { energy } \\ (\mathrm{MeV}) \end{array}$	neutron target	pulse width (ns)	beam power (kW)	pulse frequency (Hz)
RPI	RPI, Troy, USA	e-	60	Ta	5	0.45	500
		e-	60	Ta	5000	>10	300
ORELA	ORNL, Oak Ridge, USA	e-	180	Ta	2-30	60	12-1000
GELINA	JRC-Geel, Belgium	e-	100	U	1	10	40-800
nELBE	FZD, Rossendorf, Germany	e-	40	$\mathrm{L}-\mathrm{Pb}$	0.01	40	500000
IREN	JINR, Dubna, Russia	e-	30	W	100	0.42	50
PNF	PAL, Pohang, Korea	e-	75	Ta	2000	0.09	12
KURRI	Kumatori Japan	e-	46	Ta	2	0.046	300
		e-	30	Ta	4000	6	100
LANSCE-MLNSC	LANL, Los Alamos, USA	p	800	W	135	800	20
LANSCE-WNR	LANL, Los Alamos, USA	p	800	W	0.2	1.44	13900
n_TOF	CERN, Geneva, Switzerland	p	20000	Pb	6	10	0.4
MLF-NNRI	J-PARC, Tokai, Japan	p	3000	Hg	1000	1000	25
ISIS	Oxfordshire, United Kingdom	p	-	W			
ESS	Lund, Sweden	p	-	W			
CSNS	Dongguan, Guangdong, China	p	1600	W	500	120	25
NFS	GANIL-SPIRAL2, Caen, France	d	40	Be	<0.5	2	150k-880k

The n_TOF facility at CERN

Pulsed white neutron source:

- $20 \mathrm{GeV} / \mathrm{c}$ protons
- neutrons from spallation
- 6 ns rms pulse width
- frequency 1 pulse/2.4 seconds
- separate cooling and moderation
- flight path length EAR1: 185 m, since 2000
- flight path length EAR2: 20 m, since 2014
- @source: 7×10^{12} protons/pulse
- @source: 2×10^{15} neutrons/pulse

- @EAR1: 5•10 ${ }^{5}$ (capture) $-5 \cdot 10^{7}$ (fission) neutrons/pulse

Main features:

- Large energy range in one experiment ($0.01 \mathrm{eV}-1 \mathrm{GeV}$)
- Favorable signal to noise ratio for capture on radioactive isotopes (actinides, fission products)

CERN accelerators

CERN accelerators

The n_TOF facility at CERN

The n_TOF facility at CERN

The n_TOF facility at CERN

The n_TOF facility

Pb spallation target

Experimental
Area 1 (EAR1)

The n_TOF neutron spectrum EAR1 and EAR2

TOF-energy relation at n_TOF

TOF-energy relation at n_TOF

TOF-energy relation at n_TOF

TOF-energy relation at n_TOF

n_TOF EAR2, constructing

n_TOF EAR2

n_TOF EAR2

EAR2 configuration

Detectors EAR2

STEFF in EAR2

Further Reading

Books/articles

- K. S. Krane, Introductory Nuclear Physics, Wiley \& Sons, (ed. 1988).
- G. F. Knoll, Radiation Detection and Measurement, Wiley \& Sons, (ed. 2000).
- J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, (ed. 1994).
- A. M. Lane, R. G. Thomas, "R-matrix theory of nuclear reactions", Rev. Mod. Phys. 30 (1958) 257.
- H. A Weidenmüller and G. E Mitchell, "Random matrices and chaos in nuclear physics: Nuclear structure", Rev. Mod. Phys. 81 (2009) 539.
- J. E. Lynn, The Theory of Neutron Resonance Reactions, Clarendon Press, Oxford, (1968).
- F. Fröhner, Evaluation and analysis of nuclear resonance data, JEFF Report 18, OECD/NEA (2000).
- C. Wagemans, The Nuclear Fission Process, CRC, (1991).
- G. Wallerstein, et al., "Synthesis of the elements in stars: forty years of progress", Rev. Mod. Phys. 69 (1997) 995.

Internet sites

http://www.oecd-nea.org/janis/
www.nndc.bnl.gov
www-nds.iaea.org
www.cern.ch/ntof
www.irmm.jrc.be

