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Neutron-induced nuclear reactions

� =
hp
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• Reaction notations:
10B + 1n ® 7Li + 4He 238U + n ® 239U*
10B + n ® 7Li + a 238U + n ® 239U + g
10B(n,a) 238U(n,g)

• Neutron induced nuclear reactions:
• elastic scattering (n,n)
• inelastic scattering (n,n’)
• capture  (n,g)
• fission (n,f)
• particle emission (n,a), (n,p), (n,xn) 
• total cross section stot: sum of all partial reactions

• Cross section  s, expressed in barns,  1 b = 10–28 m2

Neutron-induced nuclear reactions
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• neutron reaction  X(a,b)Y    

• neutron cross section:
function of the kinetic energy of the particle a

• differential cross section:
function of the kinetic energy of the particle a
and function of the kinetic energy or the angle
of the particle b

• double differential cross section:
function of the kinetic energy of the particle a
and function of the kinetic energy and the angle
of the particle b

Neutron-induced nuclear reactions

®
a

X Y b
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Maxwell-Boltzmann distribution

• Maxwell-Boltzmann statistics describe neutron spectra from
• thermal-neutron induced fission
• water moderated neutrons (infinite moderator)
• stellar spectra (sources 22Ne(a,n)25Mg, 13C(a,n)16O )

• Velocity distribution at temperature T

has maximum at 

• At velocity v = 2200 m/s  (used as thermal neutron reference)
Emax = 25.3 meV,    T = 293.6 K,    l = 0.18 nm

nv(v) = 4⇡
⇣ m

2⇡kT

⌘3/2
v2 exp

⇣
� mv2

2kT

⌘

v
max

=
p

2kT/m
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Maxwell-Boltzmann distribution

• Distributions of kinetic energy, wavelength or time-of-flight can   
be converted into each other

• For neutron beams, a “flux”-like distribution is more appropriate

with conversions

nv(v)dv = nE(E)dE = nt(t)dt = n�(�)d�

'v(v) / v ⇥ nv(v)

'v(v)dv = 'E(E)dE = 't(t)dt = '�(�)d�
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Neutron cross sections
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Neutron cross sections
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Neutron cross sections
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Neutron cross sections
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Neutron cross sections
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Applications of neutron-induced reactions

Different fields for applications

• Stellar nucleo-synthesis, neutron capture, elements > Fe

• Nuclear technology, reactors, fuel cycles, waste transmutation

• Resonance spectroscopy, level densities

• Reaction mechanisms (fission) and model development

• Others

Need for ”evaluated” data for simulations

• Historically developed for nuclear reactors

• Nowadays general purpose (Nuclear Data)
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Evaluated nuclear data libraries

Libraries:
• JEFF - Europe
• JENDL - Japon
• ENDF/B - US
• BROND - Russia
• CENDL - China

Common format: 
ENDF-6

Contents:
Data for particle-induced reactions (neutrons, protons, gamma, other)
but also radioactive decay data

Data are indentified by “materials” 
(isotopes, isomeric states, (compounds) )
ex. 16O: mat =  825

natV: mat = 2300
242mAm: mat = 9547
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Files for a material
from report ENDF-102

1 General information                                                         
2 Resonance parameter data                                                    
3 Reaction cross sections                                                     
4 Angular distributions for emitted particles                                 
5 Energy distributions for emitted particles                                  
6 Energy-angle distributions for emitted particles                            
7 Thermal neutron scattering law data                                         
8 Radioactivity and fission-product yield data                                
9 Multiplicities for radioactive nuclide production                           

10 Cross sections for photon production                                        
12 Multiplicities for photon production                                        
13 Cross sections for photon production                                        
14 Angular distributions for photon production                                 
15 Energy distributions for photon production                                  
23 Photo-atomic interaction cross sections                                     
27 Atomic form factors or scattering functions for photo-atomic interactions                                                   
30 Data Covariances obtained from parameter covariances and sensitivities      
31 Data covariances for nubar
32 Data covariances for resonance parameters                                   
33 Data covariances for reaction cross sections                                
34 Data covariances for angular distributions                                  
35 Data covariances for energy distributions                                   
39 Data covariances for radionuclide production yields                         
40 Data covariances for radionuclide production cross sections                 
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Example: part of an evaluated data file
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The library JEFF-3.1
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Nuclear Data

General 
purpose

Evaluated
Nuclear Data 

Library

for example:
JEFF

JENDL
ENDF/B
BROND
CENDL

Measurements

Models
Theory

Evaluation
Validation

Applications

• reactors,
GEN IV

• safety
• criticality
• fuel cycles
• design 
• transmutation
• ADS
• dosimetry
• health
• fusion
• nuclear structure
• astrophysics

UsersProducers

Need for standards
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Chart of nuclides

stable
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Nuclei of interest for neutron induced reactions

• actinides

• s-process isotopes 
• fission products 
• structure materials

stable
b–

EC, b+

a

Nuclear data for 
• astrophysics
• nuclear technology
• nuclear physics 



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 29

Stellar nucleosynthesis (s-, r-process)

fusion neutron capture

s-only isotope
r-only isotope
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Stellar nucleosynthesis (s-, r-process)

s-only

r-only
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Russell, Nature 93 (1914) 252

Hertzsprung-Russell diagram

or color
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Russell, Nature 93 (1914) 252

Hertzsprung-Russell diagram
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NVTN 83:5 (2016)

106 stars observed so far with GAIA satellite
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Actinide build-up in reactors (‘’w’’ - process)
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U (94.5%)

Pu (1%)
other actinides (0.5%)
fission products (4%)

spent fuel

238U (97%)

235U (3%)

fresh fuel

nuclear waste from spent fuel
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Fission yield and fission product half lifes
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Fission yield and fission product half lifes
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99Tc

b– (2x105 y)
99Ru

100Tc

b– (15.8 s)
100Ru

(n,g)

g

100Tc*

Transmutation of long-lived fission products
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99Tc

b– (2x105 y)
99Ru

100Tc

b– (15.8 s)
100Ru

(n,g)

g

100Tc*

b– (12 h)
130Xe

129I

130I

b– (1.6x107 y)
129Xe

(n,g)

g

130I*

Transmutation of long-lived fission products
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A+1X

Jπ

J–π

Parity non-conservation

transmission of polarized neutrons

neutron detector
sample of target nuclei
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Parity non-conservation

• Parity non-converation observed in neutron resonances
(TRIPLE Collaboration)

• Helicity dependence of transmission of polarized neutrons
Observed asymmetries up to several percent.

• CPT invariance

• Asymmetries due to weak interaction

with

• Amplification of 106 due to factors

 =  ⇡ + F �⇡

F ⇠ 10�7
s

�n,s

�n,p

1

Es � Ep

A =
�+ � ��
�+ + ��

=
2V J

sp

Es � Ep
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�n,s
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Nuclear level densities

low-lying levels:
Count levels, all Jπ

level density 
model

neutron resonances:
Count levels, selected Jπ, 
extract D0

• All level density models reproduce the low-lying levels and D0 at Sn

neutron binding 
energy



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 42

197Au

neutron energy (eV)

to
ta

l 
c
ro

s
s
 s

e
c
ti

o
n

 (
b

) thermal RRR URR

resonances, R-matrix

OMP

Nuclear level densities



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 43

neutron energy (eV)

to
ta

l 
c
ro

s
s
 s

e
c
ti

o
n

 (
b

) thermal RRR URR

resonances, R-matrix

OMP

Count the number of levels
in the energy interval à level density

197Au

Nuclear level densities
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Level spacing D0
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neutron energy (eV)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

n
u

m
b

e
r 

o
f 

re
s

o
n

a
n

c
e

s

0

50

100

150

200

250

Level density by counting levels: missing levels

197Au + n

JEFF3.1:
–– L=0
RIPL2:
–– D0



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 48

What is the statistical model for a nucleus

• Neutron resonances correspond to states in a compound nucleus, which 
is a nucleus in a highly excited state above the neutron binding energy.

• The compound nucleus corresponds to a very complex particle-hole 
configuration.

à Gaussian Orthogonal Ensemble (GOE)

• The transition probability between two levels is related to the matrix 
elements of the interaction between two levels. 

• Matrix elements (amplitudes g) are Gaussian random variables with zero 
mean.
Observables are widths G ~ g2.
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The statistical model 

The nucleus at energies around Sn can be 
described by the
Gaussian Orthogonal Ensemble (GOE)

The matrix elements governing the nuclear 
transitions are random variables with a 
Gaussian distribution with zero mean.

• Consequences:
• The partial widths have a Porter-Thomas
distribution.  

• The spacing of levels with the same 
Jπ have approximately a  Wigner
distribution.
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Resolved resonances of 197Au s-waves (J=2)
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Resolved resonances of 197Au s-waves (J=2)
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Resolved resonances of 197Au s-waves (J=2)
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Chi-square distribution

x =
�

2

< �

2
>

PPT(x) =
1p
2⇡x

exp

�
� x

2

�

For neutron widths (s-waves), use the effective reduced neutron width

x =
g�0

n

< g�0
n >

�0
n = �n/

p
(E)

and

and for easy handling use
Z 1

xt

PPT(x)
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Missing level correction

N(Γt ) = N(0) P(x)dx
Γt

∞

∫

threshold gGn (eV)
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Introduction R-matrix theory

• Formalism to decribe (neutron) reactions

• For resolved resonances, full cross sections can be constructed
from only a few resonance parameters

• Standard way of storage for evaluated nuclear data
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Decay of a (nuclear) quantum state

state with a life time t:

definition (Heisenberg):

Fourier transform gives energy profile:

eigen state,
transitition E0®Ef
life time t

Γ

E
0 E

I(E) = Γ / 2π
(E − E0 )

2 + Γ2 / 4

  Ψ(t) = Ψ0e
− iE0t /he−t / 2τ E0

Ef

� =
~
⌧
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Neutron-nucleus reactions

Solve Schrödinger equation of system to get cross sections.
Shape of wave functions of in- and outgoing particles are known, 
potential is unknown. Two approaches:

• calculate potential (optical model calculations, smooth cross section)
• use eigenstates (R-matrix, resonances)   

Conservation of probability density:
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Quantum system: the finite well

Solve Schrödinger equation in two regions: 
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a

Now the wave function exists also outside the well at x<0 and x>a

V0

V=0

x=0 x=a

� ~2
2m

d

2
 (x)

dx

2
+ V (x) (x) = E (x)

0 < x < a � ~2
2m

d

2
 (x)

dx

2
+ V0 (x) = E (x)

x < 0, x > a � ~2
2m

d

2
 (x)

dx

2
= E (x)
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Quantum system: the finite well

Solve Schrödinger equation in two regions: 
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a

Now the wave function exists also outside the well at x<0 and x>a

V0

V=0

x=0 x=a

match value 
and 
derivative

� ~2
2m

d

2
 (x)

dx

2
+ V (x) (x) = E (x)

0 < x < a � ~2
2m

d

2
 (x)

dx

2
+ V0 (x) = E (x)

x < 0, x > a � ~2
2m

d

2
 (x)

dx

2
= E (x)
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Quantum system: the finite well

Solve Schrödinger equation in two regions: 
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a

Now the wave function exists also outside the well at x<0 and x>a

V0

V=0

x=0 x=a

match value 
and 
derivative

In general, a generic state can be written 
as a linear expansion of it eigenstates:

 (x) =
X

k

ck k(x)
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Quantum system: the potential barrier

Solve Schrödinger equation in three regions: 
• free travelling particle of energy E
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a
• transmission and reflection

V=V0

x=0 x=a
V=0
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Quantum system: the potential barrier

Solve Schrödinger equation in three regions: 
• free travelling particle of energy E
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a
• transmission and reflection

V=V0

x=0 x=a

Match value 
and derivative

V=0
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Quantum system: the potential barrier

Solve Schrödinger equation in three regions: 
• free travelling particle of energy E
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a
• transmission and reflection

 1(x) = Ae

ik(x)x +Be

�ik(x)x

 2(x) = Ce

ik(x)x +De

�ik(x)x

 3(x) = Ee

ik(x)x + Fe

�ik(x)x

k(x) =
p

2m(E � V0)/~2

V=V0

x=0 x=a

Match value 
and derivative

V=0
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Quantum system: the potential barrier

Solve Schrödinger equation in three regions: 
• free travelling particle of energy E
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a
• transmission and reflection

 1(x) = Ae

ik(x)x +Be

�ik(x)x

 2(x) = Ce

ik(x)x +De

�ik(x)x

 3(x) = Ee

ik(x)x + Fe

�ik(x)x

k(x) =
p

2m(E � V0)/~2

V=V0

x=0 x=a

Match value 
and derivative

V=0
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Quantum system: the potential barrier

Solve Schrödinger equation in three regions: 
• free travelling particle of energy E
• inside and outside the well
• normalize solutions to match value and derivative and borders x=0 and x=a
• transmission and reflection

 1(x) = Ae

ik(x)x +Be

�ik(x)x

 2(x) = Ce

ik(x)x +De

�ik(x)x

 3(x) = Ee

ik(x)x + Fe

�ik(x)x

k(x) =
p

2m(E � V0)/~2

j =
~

2mi
( ⇤r �r ⇤ )

V=V0

x=0 x=a

Match value 
and derivative

V=0

transmission T = |F |2/|A|2 = jtrans/jinc
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Quantum systems

Other interesting excercises in 1D:
• barrier potential
• finite potential well
• harmonic oscillator

More complicated in 3D, V=V(r), more particles, degeneracy:
• cartesian well
• spherical well
• harmonic oscillator
• realistic potentials (Wood-Saxon),

àNo analytical solution possible, 
numerical solutions

Apply to real quantum systems:
atoms (hydrogen) but also to nuclei.



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 68

The nucleus as a quantum system

neutrons protons

16
8O

neutrons protons neutrons protons

17
8O

15
8O
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neutrons protons
–V0

0

level scheme representation:
excited states of a nucleus
(shell model and other states)
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shell model representation:
configuration of nucleons in their 
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The nucleus as a quantum system
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The nucleus as a quantum system
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The nucleus as a quantum system
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The nucleus as a quantum system

neutrons protons
–V0

0

AX

nuclear state

level scheme representation:
excited states of a nucleus
(shell model and other states)

shell model representation:
configuration of nucleons in their 
potential
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The nucleus as a quantum system

7Li

1
CITATION :
Nuc lear Physics (2002 )

From NNDC (BNL )
program ENSDAT

  
 
7
3Li4–1   

 
7
3Li4–1

    Adopted  Leve ls ,  Gammas    1988Aj01 ,2002Ti10   

3 /2– 0.0 stable

1 /2– 477.612 73 fs

7 /2– 4630 93 keV

5 /2– 6680 0.88 MeV

7 /2– 9670 �400 keV

14700 �700 keV

  Level  Scheme  
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7
3Li4

1
CITATION :
Nuc lear Physics (1990 )

From NNDC (BNL )
program ENSDAT

 1
 
2
6C6–1  1

 
2
6C6–1

    Adopted  Leve ls ,  Gammas    1990Aj01    

0+ 0.0 stable

2+ 4438.91 10.8!10–3 eV

0+ 7654.20 8.5 eV

3– 9641 34 keV

(0+ ) 10300 3.0 MeV

1– 10844 315 keV

2– 11828 260 keV

1+ 12710 18.1 eV

(2– ) 13352 375 keV

4+ 14083 258 keV

1+ 15110 43.6 eV

2+ 16105.8 5.3 keV

2– 16570 300 keV

33470 1.93 MeV

  Level  Scheme  
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Level schemes from ENSDF
www.nndc.bnl.gov/ensdf
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CITATION :
Nuc lear Data Sheets (2009 )

From NNDC (BNL )
program ENSDAT

19
7

8
9Au119–1 19

7
8
9Au119–1

    Adopted  Leve ls ,  Gammas    

2– 0.0 2.6947 d

1– 55.1800 0.28 ns

0– 91.0040

1– 192.9427 0.7 ns

3– 236.0441 �0.15 ns

1– 259.3382 �0.2 ns

2– 261.4033 �0.2 ns

3– 328.4800 �0.15 ns

2– 362.8972 �0.15 ns

1– 368.2529 �0.15 ns

1– 495.5091

3– 529.1671

4– 544.0081

2– 548.9326

3– 625.4276

1–,2– 632.4792

2– 702.4785

1– 703.7274

4+ 758.395

4– 764.478

2– 786.5336

1– 789.2954

2– 800.0380

3– 835.362

3– 894.2527

1–,2– 896.5651

1–,2– 918.5862

1–,2– 956.9448

3– 987.5714

2– 1056.714

1–,2–,3– 1075.533

2– 1124.877

3– 1157.2356

1+,2+,3+ 1191.558

1–,2– 1256.005

3– 1272.1312

1–,2–,3– 1335.535

1–,2– 1371.475

1–,2– 1402.084

2–,3– 1431.638

3– 1472.091

1–,2– 1505.164

3– 1542.775

1–,2– 1554.423

3– 1560.399

  Level Scheme  

Intensities :  relative photon branching from each level

&  Multiply placed ;  undivided intensity given
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The nucleus as a quantum system

208Pb1
CITATION :
Nuc lear Data Sheets (2007 )

From NNDC (BNL )
program ENSDAT

20
8

8
2Pb126–1 20

8
8
2Pb126–1

    Adopted  Leve ls ,  Gammas    

0+ 0.0 stable

3– 2614.522 16.7 ps

5– 3197.711 294 ps

4– 3475.078 4 ps

4– 4261.871 >520 fs

4+ 4323.946 11.7 ps

4– 4358.670 194 fs

4– 5968.55 7.6 fs

12+ 6100.69

(13– ) 6448.40

14– 6743.42

6920.7

2– 6929.6

2– 6969.3

1,2+ 6980 �1.8 fs

7001.0

(3– ) 7020.2

1– 7063.53 0.025 fs

1– 7083.2 0.050 fs

3–,4– 7137.3

1 7177.0 �0.57 fs

7196.6

1 7206.9 �0.51 fs

7218.6

1– 7240 �0.24 fs

7264.4

1+ 7278.68 0.585 fs

2+ 7315.4

1– 7332.4 0.016 fs

3– 7389.0

1– 7415 �0.17 fs

7528.79

1– 7548.6 �0.35 fs

1– 7631 �0.57 fs

1,2+ 7685.4

1 7722.6 �0.62 fs

1 (– ) 7913 �0.48 fs

(15– ) 7974.04

(14– ) 8026.95

8264.38

(15– ) 8350.79

(16– ) 8562.94

8723.50

(14–,15,16– ) 8812.70

(17+ ) 9061.2

9103.1

9394.4

10136.8

10196.1

10342.0

10357.4

10372.2

10552.4

11361.0

11958.1

  Level Scheme  

Intensities :  relative photon branching from each level
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The nucleus as a quantum system

239U1
CITATION :
Nuc lear Data Sheets (2003 )

From NNDC (BNL )
program ENSDAT

23
9

9
2U147–1 23

9
9
2U147–1

    Adopted  Leve ls ,  Gammas    

5 /2+ 0.0 23.45 min

(5 /2+ ) 0.0+x >0.25 µs

7 /2+ 42.543

1 /2+ 133.7990 0.78 µs

3 /2+ 145.769

174.0+x

5 /2+ 193.987

(7 /2– ) 292.5872

(11 /2– ) 372.7

(3 /2– ) 477.8+x

5 /2– 539.290

(1 /2 )+ 687.880

3 /2+ 715.834

1 /2– 815.181

3 /2– 823.718

(3 /2 )+ 853.24

5 /2+ 893.28

(1 /2 )– 932.88

(3 /2 )– 961.88

3 /2+ 965.638

(5 /2 )+ 988.07

3 /2+,5 /2+ 990.504

5 /2+ 1062.49

1 /2,3 /2 1066.82

(1 /2+,5 /2+ ) 1083.4+x

1149.8

(3 /2+ ) 1152.79

1 /2+ 1155.01

3 /2+ 1167.14

(1 /2 )– 1194.61

5 /2+ 1201.0

(3 /2– ) 1223.31

1 /2–,3 /2– 1241.99

1 /2–,3 /2– 1306.22

(1 /2–,3 /2– ) 1360.98

1399.6

1436.90

1481.60

1 /2–,3 /2– 1520.40

1 /2,3 /2+ 1573.3

(1 /2–,3 /2– ) 1626.9+x

(3 /2– ) 1630.6+x

3 /2, (1 /2 ) 1717.1

(1 /2–,3 /2– ) 1767.5+x

1776.5+x

1808.2+x

(1 /2+ ) 3107.0+x

  Level Scheme  

@  Multiply placed ;  intensity suitably divided

Intensities :  relative photon branching from each level

12
7.

30
1 

 8
3

66
9.

5 
 3

3

68
1.

45
 E

1 
 1

00

62
9.

72
1 

E
1 

 1
00

69
0.

03
 E

1 
 5

9

85
3.

23
 M

1+
E

2 
 1

00

89
3.

3 
M

1+
E

2 
 1

00

78
7.

16
 (E

1)
  1

00

79
8.

9 
 4

0

76
8.

0 
(E

1)
  8

3

82
7.

9 
(E

1)
  1

00

81
9.

7 
 1

9

83
1.

83
8 

M
1+

E
2 

 1
00

79
4.

06
 M

1+
E

2 
 8

3

84
2.

50
 M

1+
E

2 
 1

00

45
1.

21
5 

 1
00

99
0.

2 
M

1+
E

2 
 1

00

10
62

.4
8 

E
0+

M
1+

E
2 

 1
00

10
66

.8
2 

M
1+

E
2 

 1
00

60
5.

6

11
49

.8
  1

00

10
07

.0
3 
@

 E
0+

M
1+

E
2 

 8
0

11
10

.2
  1

00

11
52

.9
  1

00

96
1.

1 
 4

0

10
21

.2
5 
@

 E
0+

M
1 

 8
0

11
54

.9
  1

00

97
2.

8 
 1

0

10
21

.2
5 
@

 E
0+

M
1+

E
2 

 4
0

11
67

.0
  1

00

47
8.

81
 (E

1)
  7

5

10
48

.8
  7

5

10
60

.6
  1

00

10
07

.0
3 
@

 E
0+

M
1+

E
2 

 1
00

53
5.

42
 (E

1)
  7

4

10
29

.3
5 
(E

1)
  1

00

10
89

.6
0 
(E

1)
  3

7

55
4.

10
 E

1 
 1

00

59
0.

39
 E

1 
 1

00

53
7.

26
  1

00

54
9.

8

12
98

.8

12
98

.8

13
39

.5

14
76

.4

14
80

.1

29
33

.0

31
07

.0

23
9

9
2U147



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 77

D =100 keV
Sn =10 MeV

D =10 eV

Nuclear levels

ground-state

neutron separation energy

nuclear levels (238U: 400000)
level density = 
number of levels per unit energy
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D =100 keV
Sn =10 MeV

A+1X

AX

D =10 eV
n + s

En

En

Compound neutron-nucleus reactions
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R-matrix formalism

+

entrance channel

+

exit channelcompound nucleus

partial incoming wave functions:

partial outgoing wave functions:

related by collision matrix:

cross section:

Internal region (r<ac compound nucleus):
• wave function is expansion of eigenstates l.

External region (r>ac, well separated particles):
• no interaction, Schrödinger equation solvable.
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separation distance

external region

internal region

match value and derivate of
Y

Internal region: very difficult, Schrödinger equation cannot be solved directly
solution: expand the wave function as a linear combination of its eigenstates.
using the R-matrix:

External region: easy, solve Schrödinger equation
central force, separate radial and angular parts.
solution: solve Schrödinger equation of relative motion:

• Coulomb functions 
• special case of neutron particles (neutrons): fonctions de Bessel


d2

dr2
� `(`+ 1)

r2
� 2mc

~2 (V � E)

�
rR(r) = 0

R-matrix formalism
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r

(r)c!

ca

internal external region

0

match value and derivative

The R-matrix formalism
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r

(r)c!

ca

internal external region

0

match value and derivative

The R-matrix formalism

� =
�

c

ycIc +
�

c�

xc�O�
c

� = �(Rcc�)

Rcc� =
�

�

��c��c�

E� � E
Ic = Icr

�1⇤ci
�Y �

m�
(�,⇥)/

�
vc

Oc = Ocr
�1⇤ci

�Y �
m�

(�,⇥)/
�

vc

xc0 ⌘ �
X

c

Uc0cyc
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The R-matrix formalism

� =
�

c

ycIc +
�

c�

xc�O�
c

� = �(Rcc�)

Rcc� =
�

�

��c��c�

E� � E

Ic = Icr
�1⇤ci

�Y �
m�

(�,⇥)/
�

vc

Oc = Ocr
�1⇤ci

�Y �
m�

(�,⇥)/
�

vc

xc0 ⌘ �
X

c

Uc0cyc

The wave function of the system 
is a superposition of incoming and 
outgoing waves:

The physical interaction is 
included in the collision matrix U: 

Incoming and outgoing 
wavefunctions have form:

The wave function depends on 
the R-matrix, which depends on 
the widths and levels of the 
eigenstates. 
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The R-matrix formalism

U = �P1/2[1�R(L�B)]�1[1�R(L⇤ �B)]P�1/2�

The relation between the R-matrix and the collision matrix:

The relation between the collision matrix and cross sections:

⌅cc0 = ⇤⇥2
c |�c0c � Uc0c|2channel to one other channel:

⇤cr = ⇥�2
c(1� |Ucc|2)channel to any other channel:

⇤cc = ⇥�2
c |1� Ucc|2channel to same channel:

⇤c,T = ⇤c = 2⇥�2
c(1� ReUcc)channel to any channel (total):

Lc = Sc + iPc =

✓
�

Oc

dOc

d�

◆

r=ac

with:
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The R-matrix formalism

The Breit-Wigner Single Level approximation: 
total cross section: 

⇤c = ⇥�2
cgc

�
4 sin2⌅c +

����c cos2⌅c + 2(E � E� �⇥�)��c sin2⌅c

(E � E� �⇥�)2 + �2
�/4

⇥

⇤T (E) = 4⇥R�2 + ⇥�2g

�
4�n(E � E0)R�/� + �2

n + �n�� + �n�f

(E � E0)2 + (�n + �� + �f+)2/4

⇥

neutron channel:
only capture, scattering, fission:
other approximations:

total cross section:

c = n

sin⇥c = � = kac� = 0 cos�c = 1 �� = 0
�⇥ = � = �n + �� + �f

potential
interference elastic capture fission

total width
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Average cross sections

The relation between the energy averaged collision matrix and 
energy averaged cross sections:

average scattering:

shape elastic (potential)

compound elastic

average any reaction

average total

average single reaction

average compound nucleus
formation

�cc = ⇡�2
cgc|1� Ucc|2

�se
cc = ⇡�2

cgc|1� Ucc|2

�ce
cc = ⇡�2

cgc
⇣
|Ucc|2 � |Ucc|2

⌘

�c,T = 2⇡�2
cgc(1� ReUcc)

�cr = ⇡�2
cgc(1� |Ucc|2)

�cc0 = ⇡�2
cgc|�cc0 � Ucc0 |2

�c = ⇡�2
cgc(1� |Ucc|2)
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Average cross sections

• From optical model calculations one can calculate          but not                

• Therefore, only                                        can be calculated, of which only
the total average cross section can be compared with measurements.

• In OMP one uses transmission coefficients

• Average single reaction cross section (Hauser-Feshbach):

• Average single reaction cross section (Hauser-Feshbach):

�c,T , �se
cc, �c

Ucc |Ucc|2

Tc = 1� |Ucc|2

�cc0 = �se
cc�cc0 + ⇡�2

cgc
TcTc0

⌃Ti
Wcc0

Wcc0 =
⇣�c�c0

�

⌘ �

�c �c0
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Measured quantities for resolved resonances

• Experimental quantities are not cross sections but reaction yields and    
transmission factors

reaction yield:

transmission:

cross section:

• Cross sections are functions of the resonance parameters
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Measured quantities for unresolved resonances

• Experimental quantities are average yields and average transmission factors

reaction yield:

transmission:

• Change of parameters describing the cross section

resolved    à unresolved parameters
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Cross sections sT, sg,sn et sf
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Cross sections sT, sg,sn et sf
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Cross sections sT, sg,sn et sf
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isolated Breit-Wigner 
resonance, decaying 
quantum state with half-
life t=�/G

Measuring reaction yield for resolved resonances
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isolated Breit-Wigner 
resonance, decaying 
quantum state with half-
life t=h/G

Doppler broadened

Measured reaction yield

�D =

s
2kBT

M/m
E
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resolution broadened and
shifted

isolated Breit-Wigner 
resonance, decaying 
quantum state with half-
life t=h/G

Doppler broadened

Measured reaction yield
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real measurement 
with background

Doppler broadened

isolated Breit-Wigner 
resonance, decaying 
quantum state with half-
life t=h/G

resolution broadened and
shifted

Measured reaction yield
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Broadening components in measurement

neutron energy (eV)
1 10 210 310 410 510 610

 E
/E

δ
 (F

W
H

M
) 

−510

−410

−310

−210

−110 Doppler (A=232)
target/moderator 
pulse width (7 ns)
resonance spacing, (20 eV)
resonance widths



1  |  /(�/2*27<3(�(7�6(6�5Ê*/(6�'¶$33/,&$7,21

Frank Gunsing, CEA Saclay, Irfu Pisa Summer School, July 28, 2017 100

Neutron time-of-flight

time zero

sample

production target,
neutron source 

reaction product
detector 

flight length L

Pulse of 
charged 
particles
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sample

production target,
neutron source 

flight length L

reaction product
detector 

Pulse of 
charged 
particles

Neutron time-of-flight
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sample

production target,
neutron source 

flight length L

reaction product
detector 

Pulse of 
charged 
particles

Neutron time-of-flight
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sample

production target,
neutron source 

flight length L

time of flight t

reaction product
detector 

Pulse of 
charged 
particles

Neutron time-of-flight
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sample

production target,
neutron source 

flight length L

time of flight t

Deduce kinetic energy from 
neutron by time-of-flight:

reaction product
detector 

Pulse of 
charged 
particles

En = mc2(� � 1)

� = (1� L2

c2t2
)�1/2

Neutron time-of-flight
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time-of-flight (ns)
210 310 410 510 610 710 810 910

ne
ut

ro
n 

en
er

gy
 (e

V)

3−10
2−10
1−10
1
10
210
310
410

510
610
710

810
910

En = mc2(� � 1)

� = (1� L2

c2t2
)�1/2

Neutron time-of-flight
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time-of-flight (ns)
210 310 410 510 610 710 810 910

ne
ut
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n 

en
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gy
 (e

V)

3−10
2−10
1−10
1
10
210
310
410

510
610
710

810
910

En = mc2(� � 1)

� = (1� L2

c2t2
)�1/2

neutron with real energy 

measured 
time of flight

Neutron time-of-flight
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time-of-flight (ns)
210 310 410 510 610 710 810 910

ne
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n 
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gy
 (e

V)

3−10
2−10
1−10
1
10
210
310
410

510
610
710

810
910

En = mc2(� � 1)

� = (1� L2

c2t2
)�1/2

neutron with real energy 

measured 
time of flight

resolution
function

Neutron time-of-flight
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Time of flight

n
e
u

tr
o

n
 i
n

te
n

s
it

y

time

T0

time of flight

neutron 
energy

Neutron time-of-flight
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Time of flight

n
e
u

tr
o

n
 i
n

te
n

s
it

y

time

T0 T0 T0

repetition rate

time of flight

neutron 
energy

Neutron time-of-flight
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Time of flight

n
e
u

tr
o

n
 i
n

te
n

s
it

y

time

T0 T0 T0

Neutron time-of-flight
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Time of flight

n
e
u

tr
o

n
 i
n

te
n

s
it

y

time

T0 T0 T0

Without moderator

Neutron time-of-flight
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Time of flight

n
e
u

tr
o

n
 i
n

te
n

s
it

y

time

T0 T0 T0

Without moderator,
very high repetition
rate possible.

Neutron time-of-flight
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)
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Data acquisition

• Continuous sampling of detector output (“zero” deadtime) for each TOF cycle
during ~100 ms with sampling interval of 1 ns. Zero suppression.

• Offline event construction from timing and pulse height analysis, sometimes
pulse shape analysis (PSA) for particle identification

part of a full TOF cycle
zoom on one event
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The neutron capture detection

Sn

A+1X

En

to
ta

l e
ne

rg
y 

E
x

= 
S

n
+ 

E
n
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Simulated neutron 197Au(n,g) spectrum

0 1 2 3 4 5 6 7
gamma-ray energy (MeV)

4−10
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 / 
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V 
/ d
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+ = 2πJ
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Measuring neutron capture

Sn

A+1X

En

to
ta

l e
ne

rg
y 

E
x

= 
S

n
+ 

E
n

Four methods to measure neutron capture:
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Measuring neutron capture

Four methods to measure neutron capture:

1. Activitation
- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

Sn

En

to
ta

l e
ne

rg
y 

E
x

= 
S

n
+ 

E
n

A+1X
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Measuring neutron capture

Sn

A+1X

En

to
ta

l e
ne

rg
y 

E
x

= 
S

n
+ 

E
n

Four methods to measure neutron capture:

1. Activitation
- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

2. Level population spectroscopy 
- needs HPGe, 
- some nuclei only
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Measuring neutron capture

Sn

A+1X

En

to
ta

l e
ne

rg
y 

E
x

= 
S

n
+ 

E
n

Four methods to measure neutron capture:

1. Activitation
- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

1. Level population spectroscopy 
- needs HPGe, 
- some nuclei only

2. Total absorption technique
(TAC with for example BaF2)
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Measuring neutron capture

Sn

A+1X

En

to
ta

l e
ne

rg
y 

E
x

= 
S

n
+ 

E
n

Four methods to measure neutron capture:

1. Activitation
- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

2. Level population spectroscopy 
- needs HPGe, 
- some nuclei only

3. Total absorption technique
(TAC with for example BaF2)

4. Total energy technique
efficiency proportional to gamma-ray energy

εg = k.Eg
- Moxon-Ray detectors
- Use Weighting Function
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The neutron capture reaction
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Four methods to measure neutron capture:

1. Activitation
- no distinction of neutron energy
- count produced nuclei, (mass) spectroscopy

1. Level population spectroscopy 
- needs HPGe, 
- some nuclei only

2. Total absorption technique
(TAC with for example BaF2)

3. Total energy technique
efficiency proportional to gamma-ray energy

εg = k.Eg
- Moxon-Ray detectors
- Use Weighting Function
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• Nuclear fission reactors. Water-moderated beams.

• Accelerator-based sources (for example p + 7Li  or   d + 9Be), 
can be mono-energetic.

• pulsed white neutron sources
– electron-based machines with heavy target

Bremsstrahlung followed by (g,n) and (g,f) 
– proton-based machines with heavy target 

spallation reactions

Neutron sources
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Neutron sources

Facility Location particle beam neutron pulse beam pulse flight path neutron
energy target width power frequency lengths production
(MeV) (ns) (kW) (Hz) (m) (n/pulse)

RPI RPI, Troy, USA e- 60 Ta 5 0.45 500 15–250 3.6⇥ 109

e- 60 Ta 5000 >10 300 15, 25 4.8⇥ 1011

ORELA ORNL, Oak Ridge, USA e- 180 Ta 2–30 60 12–1000 9–200 1⇥ 1012

GELINA JRC-Geel, Belgium e- 100 U 1 10 40-800 5–400 4.3⇥ 1010

nELBE FZD, Rossendorf, Germany e- 40 L-Pb 0.01 40 500000 4 5.4⇥ 107

IREN JINR, Dubna, Russia e- 30 W 100 0.42 50 10–750 7.7⇥ 1010

PNF PAL, Pohang, Korea e- 75 Ta 2000 0.09 12 11 1.7⇥ 1010

KURRI Kumatori Japan e- 46 Ta 2 0.046 300 10, 13, 24 2⇥ 109

e- 30 Ta 4000 6 100 10, 13, 24 8⇥ 1010

LANSCE-MLNSC LANL, Los Alamos, USA p 800 W 135 800 20 7–60 7⇥ 1014

LANSCE-WNR LANL, Los Alamos, USA p 800 W 0.2 1.44 13900 8–90 8⇥ 109

n TOF CERN, Geneva, Switzerland p 20000 Pb 6 10 0.4 20, 185 2⇥ 1015

MLF-NNRI J-PARC, Tokai, Japan p 3000 Hg 1000 1000 25 30 1.2⇥ 1017

ISIS Oxfordshire, United Kingdom p - W 160 -
ESS Lund, Sweden p - W - -
CSNS Dongguan, Guangdong, China p 1600 W 500 120 25
NFS GANIL-SPIRAL2, Caen, France d 40 Be <0.5 2 150k-880k 5-30

2
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Neutron sources
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Pulsed white neutron source:
• 20 GeV/c protons
• neutrons from spallation
• 6 ns rms pulse width
• frequency 1 pulse/2.4 seconds
• separate cooling and moderation
• flight path length EAR1: 185 m, since 2000
• flight path length EAR2:  20 m, since 2014
• @source: 7x1012 protons/pulse
• @source: 2x1015 neutrons/pulse 
• @EAR1: 5.105(capture) – 5.107(fission) neutrons/pulse

Main features:
• Large energy range in one experiment (0.01 eV – 1 GeV)
• Favorable signal to noise ratio for capture 
on radioactive isotopes (actinides, fission products)

protons

neutrons

Pb

The n_TOF facility at CERN
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CERN accelerators 27/07/2017, 18)39

Page 1 of 2https://upload.wikimedia.org/wikipedia/commons/b/ba/Cern-accelerator-complex.svg
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CERN accelerators 27/07/2017, 18)39
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The n_TOF facility at CERN
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The n_TOF facility at CERN
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The n_TOF facility

Experimental
Area 1 (EAR1)

Pb spallation 
target

flight path length 185 m
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The n_TOF facility
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The n_TOF neutron spectrum EAR1 and EAR2
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n_TOF EAR2, constructing 
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n_TOF EAR2
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n_TOF EAR2
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EAR2: neutron beam

neutrons
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EAR2 configuration
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Detectors EAR2
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STEFF in EAR2
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Detectors EAR1
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MicroMegas neutron beam profiler
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