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Outline

I Emmy Noether: symmetries and physics

I Hermann Weyl: the gauge principle

I Hidden gauge symmetries

I QCD discrete symmetries: the strong CP problem

I QCD global symmetries: spontaneous chiral symmetry breaking

I ChEFT and the modern understanding of nuclear forces
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Emmy Noether, 1882-1935

I symmetry ↔ conservation law

invited in Gottingen by Oscar Klein and David
Hilbert to elucidate the issue of energy conserva-
tion in general relativity

some conservation laws were known to rely on specific
invariances since Lagrange, but Noether’s results were
much more general
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Noether’s 1st Theorem
In (classical) field theory

S =

∫
d4xL(φ, ∂φ, ..., x)

let the Lagrangian density be invariant under rigid infinitesimal
transformation φ(x)→ φ(x) + εaδaφ[φ, x ],

0 = δL =
δL
δφ
δaφ+

δL
δ∂µφ

δa∂µφ = ∂µ

(
δL
δ∂µφ

δaφ

)
−
[
∂µ

δL
δ∂µφ

− δL
δφ

]
δaφ

Then, by e.o.m., there are conserved currents

Jµa =
δL
δ∂µφ

δaφ, ∂µJµa = 0

whence t-independent charges that generate the symmetry

Qa =

∫
d3xJ0

a (x)
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Noether’s 2nd Theorem

When the transformation is local,

φ(x)→ φ(x) + εa(x)δaφ+ ∂µε
a(x)δµaφ

0 = δL =
δL
δφ
εaδaφ+

δL
δ∂µφ

∂µ(∂νε
aδνaφ) +

δL
δφ
εaδµaφ+

δL
δ∂µφ

∂µ(∂νε
aδνaφ)

she finds relations among the e.o.m.

∂ν

[
δL
δφ
− ∂µ

δL
δ∂µφ

]
δνaφ+

[
δL
δφ
− ∂µ

δL
δ∂µφ

]
δaφ = 0

corresponding to redundant degrees of freedom in gauge theories
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Hermann Weyl, 1885-1955

I 1918, a geometrization of electromagnetism

He introduced the concept of parallel transportation of
vectors seeking a truly infinitesimal geometry

A

B

A’

B’

in the presence of curvature the
shift is path-dependent
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Connections

What is the shift of a vector vα along an infinitesimal path dxµ?

I it is not dvα = (∂µvα)dxµ!
under general x → y(x), we have vα(x)→ ∂xα

∂yβ vβ(y), so

∂µvα → ∂xα

∂yβ
∂yν

∂xµ
∂νvβ +

∂yν

∂xµ
∂2xα

∂yν∂yβ
vβ

I the intrinsic geometric object is δvα = (Dµvα)dxµ with

Dµvα = ∂µvα + Γαµβvβ

and the connection Γαµβ transforming as

Γαµβ →
∂xα

∂yα′
∂yµ

′

∂xµ
∂yβ

′

∂xβ
Γα

′
µ′β′ +

∂xα

∂yν
∂2yν

∂xµ∂xν
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Curvature

dx

µδx

µ

The shift of vectors depends on the path and
defines the curvature

∆vα = Rα
µνβdxµδxνvβ, Rα

µνβ = [Dµ,Dν ]αβ

Weyl’s insight was to free these concepts from the underlying metric

ds2 = gµνdxµdxν

by abandoning a global definition of a magnitude ds2, the resulting
non-integrable factors allowed the interpretation of electromagnetic field,
whence the name gauge
Unfortunately, rigid rods and clocks do not show evidence for such
non-integrable electromagnetic factors...
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Reintepretation in quantum mechanics

Fritz London, 1927: the gauge freedom concerns the
phase of the quantum mechanical wave function

non-integrable electromagnetic factors do affect
the phases of wavefunction
Aharonov-Bohm effect, 1959

Weyl’s geometrization of electromagnetism was recovered, but in a more
abstract way
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A symmetry that generates interactions

start from a free Dirac theory

L = ψ̄(i /∂ −m)ψ

and perform a local phase redefinition ψ → eiΛ(x)ψ

=⇒ δL = ψ̄(−/∂Λ)ψ

The shift may be compensated by a connection Γµ

∂µ → Dµ = (∂µ + Γµ), Γµ → Γµ − i∂µΛ

Interpretation as QED, and emergence of a massless photon, follows from

Γαµβ → −ieAµ, Rα
µνβ = [Dµ,Dν ]→ −ieFµν

and adding a gauge-invariant kinetic term −1
4 FµνFµν
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Non-abelian generalization
SU(N) extension was accomplished by Yang and
Mills in 1954

L = −1

2
〈FµνFµν〉+ ψ̄

(
i /D −m

)
ψ

N fermion species forming a SU(N) multiplet

ψ =

 ψ1
...
ψN

 , ψ → U(x)ψ = e−iθ
a(x)T a

ψ

the covariant derivative includes the gauge field Aµ

(Dµ)ij = ∂µδ
i
J + Γi

µj , Γi
µj = Γa

µ (T a)ij = −ig(Aµ)ij a = 1, ...,N2 − 1

and the curvature

Fµν = [Dµ,Dν ] = ∂µAν − ∂νAµ − ig [Aµ,Aν ], Fµν → UFµνU†
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Hidden gauge structure

It was tempting to interpret the weak and strong nuclear interaction as
gauge theories but no massless gauge bosons were around

Two phenomena hid the gauge symmetry

I
spontaneous symmetry breaking,
Higgs mechanism

I
asymptotic freedom
confinement
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Spontaneous breaking of gauge symmetry

L = −1

4
FµνFµν + Dµφ∗Dµφ+ V (|φ|2)
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	1

V

(r2-1)2

x

y

V

shift the field variable φ(x) = [v + h(x)]eiθ(x)

I mass term for the gauge field q2v 2AµAµ
I the (massless) field θ(x) can be “gauged away”

The interaction becomes short-ranged
Same mechanism at the basis of the electroweak unification giving masses
to the W± and Z 0
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Asymptotic freedom and confinement

The (non-abelian) gauge principle generates gauge
self-interactions
=⇒ big differences compared to QED!

Interactions become so strong
that quarks and gluons are
confined in (massive) bound
states

a mass gap is generated
=⇒ short-range
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QCD

A gauge theory based on color SU(3)

L = −1

4
〈FµνFµν〉+

∑
f

ψ̄f (i /D −mf )ψf

once the gauge assignments are done, all other symmetries of QCD
emerge from:

I the gauge principle

I the renormalizability condition, d ≤ 4 ↔ new physics very far away
(e.g. quark substructure)

In particular all (at least classically) all discrete symmetries of QCD find a
natural explanation, they are accidental
the same is true for flavour conservation
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian

L = Z 〈FµνFµν〉+ ZLψ̄Li /DψL + ZR ψ̄R i /DψR − ψ̄LMψR − ψ̄RM†ψL

suitable (chiral) field redefinition can be used to bring it in the standard
form

There is an extra term allowed by the above principles:

−θQCD
g 2

32π2
εµναβ〈FµνFαβ〉

I it has the form E · B and so it violates P and T

I it is a pure divergences and contributes a surface term to the action,
which is non-zero due to topologically non-trivial gauge configurations

I it would be the source of unwanted CP violation, e.g. in the form of
an electric dipole moment ∝ E · S

current limits on the neutron electric dipole moment severely restrict
|θQCD| < 10−10 (strong CP problem)
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Quark mass pattern and flavour symmetries

with no natural explanation (flavour problem) we have

mu ∼ 2 MeV ∼ md ∼ 5 MeV� ms ∼ 100 MeV� ΛQCD � mc ,mb,mt

I mu ∼ md explains the (approximate) isospin symmetry

I but mu ∼ md −mu ∼ 0, so an equally good approximation must be
mu ∼ md ∼ 0

I mu,md ,ms � ΛQCD explains the SU(3) GellMann’s “eightfold way”

I as before, also the limit mu ∼ md ∼ ms ∼ 0 must be reasonably close
to reality

The limit of massless quarks is called chiral limit
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Chiral symmetry

For massless quarks

ψ =
(

u
d
s?

)
L = ψ̄i /Dψ = ψ̄Li /DψL + ψ̄R i /DψR

the flavour conserving group enlarges to U(N)L×U(N)R global symmetry,

ψL → ULψL, ψR → URψR

with associated conserved Noether currents

Ja
µ = ψ̄γµλ

aψ, Ja
5µ = ψ̄γµγ5λ

aψ

corresponding to physical currents =⇒ very relevant phenomenologically
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The fate of chiral symmetry

the symmetries of the chiral group G follows three different destinies

G = U(N)L × U(N)R ∼ U(1)V × U(1)A × SU(N)V × SU(N)A

I the vector U(N)V is realized à la Wigner-Weyl

I the axial SU(N)A is realized à la Nambu-Goldstone

I the axial U(1)A is broken by quantum effects (anomalies)
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Wigner-Weyl realization

I symmetric ground state (“the invariance of the vacuum is the
invariance of the world”)

The time-independent charges ([Qa,H] = 0), that generate the symmetry,
annihilate the vacuum

Qa|0〉 = 0

=⇒ the states form degenerate multiplets

H|ψ〉 = E |ψ〉 =⇒ HQa|ψ〉 = EQa|ψ〉

This corresponds e.g. to the existence of isospin multiplets of hadrons:
deuteron (0), nucleons (1/2), pions (1), Delta’s (3/2), ...
forming SU(2) [or SU(3)] irreducible representations
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Nambu-Goldstone realization

I asymmetric ground state (“the symmetry of the Lagrangian is not the
symmetry of the world”)

[Qa,H] = 0, Qa|0〉 6= 0

no degenerate multiplets but...

Goldstone’s theorem: there exists a massless boson for each broken
generator, coupled to the corresponding current

〈0|Ja
5µ(x)|πb(p)〉 = iF δabe−ip·xpµ

furthermore these particles interact weakly at low energy (“soft pions
theorems”)
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Explicit chiral symmetry breaking

in reality chiral symmetry is only approximate
The pions acquire a mass Mπ 6= 0,

F 2
πM2

π = −(mu + md)〈0|q̄q|0〉+ ...

which is small compared to all other handrons
Chiral symmetry protects its mass =⇒ separation of scales

I Chiral effective field theory framework: a perturbative expansion in
powers of the small parameters p/Λ, Mπ/Λ
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Weinberg’s folk theorem

[S. Weinberg, Physica A96 (1979) 327]
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Effective theories and separation of scales
a probe of wavelength λ is insensible to details at short distances
−→ replace the true short distance structure with a tower of simpler terms
(cfr. multipole expansion)
Consider e.g.

V (r) = Vlong(r) + Vshort(r)

to build an EFT:

I introduce a cutoff Λ, and retain only states with k < Λ

I add local interaction terms which mimic the short-range physics

Veff = V Λ
long(r)+cδΛ(r) + d1∇2δΛ(r) + d2∇δΛ(r) ·∇ + ...

vshort(q2) = v(0) + v ′(0)q2 + ...

c , d1,2 are LECs to be fixed from data
At a given order only a finite number of LECs =⇒ predictions
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Predictive power and cutoff dependence

changing Λ amount to include/neglect states with k ∼ Λ

I to the extent that these states are highly virtual =⇒ local corrections

I all possible local operators (compatible with underlying symmetries)
are already present in the effective theory =⇒ shift of LECs

LECs become running coupling constants c(Λ) and predictions should be
independent of Λ

I Λ-dependence arises from stopping the low-energy expansion at some
order - smaller and smaller as the order increases =⇒ theoretical
uncertainty

I LECs proliferate, as the order is increased =⇒ less predictive power

I check convergence of the expansion

a good compromise can be found within the range of applicability of the
effective theory
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Including the ∆

I realistic NN interaction, χ2 ∼ 1

(a) (b) (e) (f) (g)(c) (d)

(h) (i) (j) (k) (l) (m) (n) (o) (p)

M. Piarulli et al., Phys. Rev. C 91 (2015) 024003

I associated three-nucleon interaction, fitted to B(3H) and a2
nd

M. Piarulli et al., arXiv:1707.02883
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Conclusions

I spacetime continuous symmetries, and associated energy, momentum,
angular momentum conservation

I general coordinate transformations, and associated geometrization of
gravity

I internal symmetries, local and global ones, spontaneously and/or
explicitly broken or not

I discrete symmetries, P, T , C , their combinations, CPT and the
identical particle statistics

I useful symmetries, besides beautiful, that provide a systematic
calculational scheme of nuclear interactions

I Physics and geometry: a longstanding symbiosis since Galileo
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thank you!
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