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Emmy Noether, 1882-1935

> symmetry <> conservation law
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Emmy Noether, 1882-1935

> symmetry <> conservation law

invited in Gottingen by Oscar Klein and David
Hilbert to elucidate the issue of energy conserva-
tion in general relativity
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Emmy Noether, 1882-1935

> symmetry <> conservation law

o

invited in Gottingen by Oscar Klein and David
Hilbert to elucidate the issue of energy conserva-
tion in general relativity

some conservation laws were known to rely on specific
invariances since Lagrange, but Noether's results were
much more general
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Noether's 1st Theorem
In (classical) field theory

S = /d4x£(q§,8¢,...,x)

let the Lagrangian density be invariant under rigid infinitesimal
transformation ¢(x) — ¢(x) + €70,0[¢, x],

0=oc="Es,61 25 5.0,0=0, (‘5‘53«5) - [8 ‘M—M] 520

oo 00,0 00,0 "0, ¢
Then, by e.o.m., there are conserved currents
Ji = 0L ——0,0, 0,J5 =0

2 50,0 °

whence t-independent charges that generate the symmetry

Q, = /d3ng(x)
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Noether’'s 2nd Theorem

When the transformation is local,

P(x) = B(x) + € (x)da0p + €% (x)04 ¢

oL oL oL oL
— 5 — 86 851/ = 85/1 3611
0=46L= 5¢6 a¢+58ﬂ¢ (0,785 9) + 50 ¢+58ud> (0,785 9)
she finds relations among the e.o.m.
oL oL oL oL
vi|ic, Yu 61/ a® =
0[5~ w50+ 55 ~Onsg w0 =0

corresponding to redundant degrees of freedom in gauge theories
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Hermann Weyl, 1885-1955

» 1918, a geometrization of electromagnetism

He introduced the concept of parallel transportation of
vectors seeking a truly infinitesimal geometry
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Hermann Weyl, 1885-1955

» 1918, a geometrization of electromagnetism

He introduced the concept of parallel transportation of
vectors seeking a truly infinitesimal geometry

A in the presence of curvature the
~ shift is path-dependent
R

e
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Connections

What is the shift of a vector v® along an infinitesimal path dx*?
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Connections

What is the shift of a vector v® along an infinitesimal path dx*?
> it is not dv® = (J,v*)dx*!

under general x — y(x), we have v*(x) — g;—;vﬁ(y), so

Ox& 8yl/ ayu aZXu
—_ =29, VP 4 AN
AyB Oxt OxH QyvOyP

Ouv® —
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Connections

What is the shift of a vector v® along an infinitesimal path dx*?

> it is not dv® = (J,v*)dx*!
under general x — y(x), we have v*(x) — g;—(;vﬁ(y), so

Ox& 8)/1/ s ayy aZXu,

oV — — ¥ —
o AyB Oxt Vit o Oy”0yP Y

> the intrinsic geometric object is v = (D,,v*)dx* with
Dv® = 0,v* + I'fjﬂ Vo
and the connection rgﬂ transforming as

o Ox“ ayu’ ayﬁ/ o +% a2yl/
wET gye” axk OxB T gy Oxirdxv
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Curvature

The shift of vectors depends on the path and
defines the curvature

dx#

Av® = RY, gdxox"vP . R%, 5 =[D,, D)%
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Curvature

The shift of vectors depends on the path and
defines the curvature

dx#

Av® = RY, gdxox"vP . R%, 5 =[D,, D)%

Weyl's insight was to free these concepts from the underlying metric

ds® = g, dx"dx”

by abandoning a global definition of a magnitude ds?, the resulting

non-integrable factors allowed the interpretation of electromagnetic field,
whence the name gauge
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Curvature

The shift of vectors depends on the path and
defines the curvature

dx#

Av® = RY, gdxox"vP . R%, 5 =[D,, D)%

Weyl's insight was to free these concepts from the underlying metric

ds® = g, dx"dx”

by abandoning a global definition of a magnitude ds?, the resulting
non-integrable factors allowed the interpretation of electromagnetic field,
whence the name gauge

Unfortunately, rigid rods and clocks do not show evidence for such
non-integrable electromagnetic factors...
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Reintepretation in quantum mechanics

Fritz London, 1927: the gauge freedom concerns the
phase of the quantum mechanical wave function
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Reintepretation in quantum mechanics

Fritz London, 1927: the gauge freedom concerns the
phase of the quantum mechanical wave function

non-integrable electromagnetic factors do affect
the phases of wavefunction
Aharonov-Bohm effect, 1959

Weyl's geometrization of electromagnetism was recovered, but in a more
abstract way
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A symmetry that generates interactions

start from a free Dirac theory

L =i — m)yp
and perform a local phase redefinition 1) — e/ *)q)
= 0L = P(=PN)Y
The shift may be compensated by a connection ',
Oy —=Dy=0u+Ty,), T,—=T,—i0,A

Interpretation as QED, and emergence of a massless photon, follows from

Ms — —i€Au, Risg= [Dy, D] — —ieF,,
and adding a gauge-invariant kinetic term —%FWF‘“’
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Non- abellan generalization
. SU(N) extension was accomplished by Yang and
Mills in 1954

| L= 2R + 7 (1D~ m) v
N fermion species formmg a SU(N) multiplet

Y1
= |, v UK=Yy
VN

the covariant derivative includes the gauge field A,
(D)= 0,65+ T, Tl =To(T°)=—ig(A)} a=1,.,N—1
and the curvature

Fuw = [Dy, D)) = 0,A, — 0,A, — iglAu, All,  Fuy — UF,UT
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Hidden gauge structure
It was tempting to interpret the weak and strong nuclear interaction as

gauge theories but no massless gauge bosons were around

Two phenomena hid the gauge symmetry
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Hidden gauge structure

It was tempting to interpret the weak and strong nuclear interaction as
gauge theories but no massless gauge bosons were around

Two phenomena hid the gauge symmetry

D.+)

spontaneous symmetry breaking,
Higgs mechanism
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Hidden gauge structure

It was tempting to interpret the weak and strong nuclear interaction as
gauge theories but no massless gauge bosons were around

Two phenomena hid the gauge symmetry

spontaneous symmetry breaking,
Higgs mechanism

asymptotic freedom
confinement
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Spontaneous breaking of gauge symmetry

08

06

L=—>F"F, +D'¢*Dup+ V(¢]?) .

shift the field variable ¢(x) = [v + h(x)]e’?™)
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Spontaneous breaking of gauge symmetry

08

06

1 . E
L= =7 F"Fu +D"¢"Dup+ V(9) -

shift the field variable ¢(x) = [v + h(x)]e’**)
» mass term for the gauge field q2v2A/‘AN

» the (massless) field §(x) can be “gauged away”

[m] = = =
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Spontaneous breaking of gauge symmetry

1 .
E = _ZFHVF,U,I/ + D“<Z5 D,u(z) + V(‘(ﬁ’z)

shift the field variable ¢(x) = [v + h(x)]e??*)
» mass term for the gauge field g° v2A“AM
» the (massless) field 6(x) can be “gauged away”

The interaction becomes short-ranged
Same mechanism at the basis of the electroweak unification giving masses
to the W* and Z°
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Asymptotic freedom and confinement

The (non-abelian) gauge principle generates gauge § £ ef

self-interactions 2 Y
. o 5t

— big differences compared to QED! oSy
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Asymptotic freedom and confinement

The (non-abelian) gauge principle generates gauge g o, ef
. . 2,
self-interactions - &
. . N Y
— big differences compared to QED! oSy
Q%) S Interactions become so strong
03 o G LT Sopes e nLo) that quarks and gluons are
® e.w. precision fits (N3LO) . . .
o PP > jets (NLO) confined in (massive) bound
v pp —> tt (NNLO)
02 states
o :
o oo s a mass gap is generated
= "D 0x(M,) =0.1181 £ 0.0011
QCD (M) = 01181 =0.00 — short-range
1 100 1000

" QlGev]
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QCD

A gauge theory based on color SU(3)
1, . -~
L= —Z<F“ Fu) + Zf:lbf(llzj — mg)ir

once the gauge assignments are done, all other symmetries of QCD
emerge from:
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QCD

A gauge theory based on color SU(3)

L= —%(F”"Fyﬁ + Zf:if(ilzj — mg)ir

once the gauge assignments are done, all other symmetries of QCD
emerge from:

» the gauge principle
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QCD

A gauge theory based on color SU(3)

L= —%(F‘“’Fyﬁ + Zf:lzf(ilzj — mg)ir

once the gauge assignments are done, all other symmetries of QCD
emerge from:

» the gauge principle

» the renormalizability condition, d < 4 <> new physics very far away
(e.g. quark substructure)
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QCD

A gauge theory based on color SU(3)

L= —%(F‘“’Fyﬁ + Zf:lzf(ilzj — mg)ir

once the gauge assignments are done, all other symmetries of QCD
emerge from:

» the gauge principle

» the renormalizability condition, d < 4 <> new physics very far away
(e.g. quark substructure)

In particular all (at least classically) all discrete symmetries of QCD find a
natural explanation, they are accidental
the same is true for flavour conservation
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian

L=Z(F'F) + Ziriby, + ZrOriDyr — b Mg — prMyy,

suitable (chiral) field redefinition can be used to bring it in the standard
form
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian

L=Z(F'F) + Ziriby, + ZrOriDyr — b Mg — prMyy,

suitable (chiral) field redefinition can be used to bring it in the standard
form There is an extra term allowed by the above principles:
2

g vaf
—QQCDWG“ (FuvFap)
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian

L=Z(F'F) + Ziriby, + ZrOriDyr — b Mg — prMyy,

suitable (chiral) field redefinition can be used to bring it in the standard
form There is an extra term allowed by the above principles:
2

g vaf
—QQCDWG“ (FuvFap)

» it has the form E - B and so it violates P and T
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian
L= Z(F" Fu) + ZupriPr + ZRURIPYR — b Myr — DrMT4y
suitable (chiral) field redefinition can be used to bring it in the standard
form There is an extra term allowed by the above principles:
2

g vaf
—QQCDWG“ (FuvFap)

» it has the form E - B and so it violates P and T

> it is a pure divergences and contributes a surface term to the action,
which is non-zero due to topologically non-trivial gauge configurations
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian

L=Z(F'F) + Ziriby, + ZrOriDyr — b Mg — prMyy,

suitable (chiral) field redefinition can be used to bring it in the standard
form There is an extra term allowed by the above principles:

2

g vaf
—QQCDWG“ (FuvFap)

» it has the form E - B and so it violates P and T

> it is a pure divergences and contributes a surface term to the action,
which is non-zero due to topologically non-trivial gauge configurations

> it would be the source of unwanted CP violation, e.g. in the form of
an electric dipole moment < E - S
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starting from the (al)most general gauge-invariant, renormalizable
Lagrangian

L=Z(F'F) + Ziriby, + ZrOriDyr — b Mg — prMyy,

suitable (chiral) field redefinition can be used to bring it in the standard
form There is an extra term allowed by the above principles:

2

g vaf
—QQCDWG“ (FuvFap)

> it has the form E - B and so it violates P and T
> it is a pure divergences and contributes a surface term to the action,
which is non-zero due to topologically non-trivial gauge configurations
> it would be the source of unwanted CP violation, e.g. in the form of
an electric dipole moment < E - S
current limits on the neutron electric dipole moment severely restrict
0qcn| < 10719 (strong CP problem)

L. Girlanda (Univ. Salento) Symmetries and fundamental interactions Pisa Summer School - 2017 16



Quark mass pattern and flavour symmetries

with no natural explanation (flavour problem) we have

my ~ 2 MeV ~ mg ~ 5 MeV < mg ~ 100 MeV < Agcp < me, mp, m;
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Quark mass pattern and flavour symmetries

with no natural explanation (flavour problem) we have

my ~ 2 MeV ~ mg ~ 5 MeV < mg ~ 100 MeV < Agcp < me, mp, m;

» m, ~ my explains the (approximate) isospin symmetry
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Quark mass pattern and flavour symmetries

with no natural explanation (flavour problem) we have

my ~ 2 MeV ~ mg ~ 5 MeV < mg ~ 100 MeV < Agcp < me, mp, m;

» m, ~ my explains the (approximate) isospin symmetry

» but my, ~ mg — my ~ 0, so an equally good approximation must be
my~mg~0
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Quark mass pattern and flavour symmetries

with no natural explanation (flavour problem) we have

my ~ 2 MeV ~ mg ~ 5 MeV < mg ~ 100 MeV < Agcp < me, mp, m;

» m, ~ my explains the (approximate) isospin symmetry

» but my, ~ mg — my ~ 0, so an equally good approximation must be
my ~ mg ~0

> my, my, ms < Nqep explains the SU(3) GellMann's “eightfold way”
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Quark mass pattern and flavour symmetries

with no natural explanation (flavour problem) we have

my ~ 2 MeV ~ mg ~ 5 MeV < mg ~ 100 MeV < Agcp < me, mp, m;

» m, ~ my explains the (approximate) isospin symmetry
» but my, ~ mg — my ~ 0, so an equally good approximation must be
my~mg~0
> my, my, ms < Nqep explains the SU(3) GellMann's “eightfold way”
> as before, also the limit m, ~ my ~ ms ~ 0 must be reasonably close
to reality
The limit of massless quarks is called chiral limit
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Chiral symmetry

For massless quarks

v=(3) £=0iPy =i+ riDir
the flavour conserving group enlarges to U(N); xU(N)g global symmetry,
Y — U, ¢r — UrYr
with associated conserved Noether currents
B= gy X, B, = s A

corresponding to physical currents = very relevant phenomenologically
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The fate of chiral symmetry

the symmetries of the chiral group G follows three different destinies

G = U(N)L X U(N)R ~ U(].)\/ X U(l)A X SU(N)\/ X SU(N)A
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The fate of chiral symmetry

the symmetries of the chiral group G follows three different destinies

G = U(N)[_ X U(N)R ~ U(].)\/ X U(l)A X SU(N)\/ X SU(N)A

» the vector U(N)y is realized a la Wigner-Weyl
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The fate of chiral symmetry

the symmetries of the chiral group G follows three different destinies

G = U(N)[_ X U(N)R ~ U(].)\/ X U(l)A X SU(N)\/ X SU(N)A

» the vector U(N)y is realized a la Wigner-Weyl
» the axial SU(N)4 is realized a /la Nambu-Goldstone
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The fate of chiral symmetry

the symmetries of the chiral group G follows three different destinies

G = U(N)[_ X U(N)R ~ U(].)\/ X U(l)A X SU(N)\/ X SU(N)A

» the vector U(N)y is realized a la Wigner-Weyl
» the axial SU(N)4 is realized a /la Nambu-Goldstone
1

» the axial U(1)4 is broken by quantum effects (anomalies)
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Wigner-Weyl realization

» symmetric ground state ( “the invariance of the vacuum is the
invariance of the world")

The time-independent charges ([Q?, H] = 0), that generate the symmetry,
annihilate the vacuum

Q%0) =0

= the states form degenerate multiplets

Hly) = E|l¢) = HQ?|¢) = EQ?[4))
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Wigner-Wey!| realization

» symmetric ground state ( “the invariance of the vacuum is the
invariance of the world")

The time-independent charges ([Q?, H] = 0), that generate the symmetry,
annihilate the vacuum

Q?0) =0

= the states form degenerate multiplets
Hl) = Ely) = HQ?|Y) = EQ?|¢)

This corresponds e.g. to the existence of isospin multiplets of hadrons:
deuteron (0), nucleons (1/2), pions (1), Delta’s (3/2), ...
forming SU(2) [or SU(3)] irreducible representations

L. Girlanda (Univ. Salento) Symmetries and fundamental interactions Pisa Summer School - 2017
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Nambu-Goldstone realization

» asymmetric ground state (“the symmetry of the Lagrangian is not the
symmetry of the world")

..............

[Q° H] =0, Q70)#0 XYY YIRRREE,

,,,,,,,,,,,,,,,,,,,,

no degenerate multiplets but... ARAAAREALE,
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Nambu-Goldstone realization

» asymmetric ground state (“the symmetry of the Lagrangian is not the
symmetry of the world")

..............

[Q° H] =0, Q70)#0 XYY YIRRREE,

....................

no degenerate multiplets but... ARAAAREALE,

Goldstone’s theorem: there exists a massless boson for each broken
generator, coupled to the corresponding current

(0142, (x)|7(p)) = iF6°be~Pp,
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Nambu-Goldstone realization

» asymmetric ground state (“the symmetry of the Lagrangian is not the

symmetry of the world")

[Q° H] =0, Q70)#0 XYY YIRRREE,

.....................

no degenerate multiplets but... ARAAAREALE,

Goldstone’s theorem: there exists a massless boson for each broken
generator, coupled to the corresponding current

<O|J§#(X) ‘Wb(p)> _ I-/_—éabefip.xpﬂ

furthermore these particles interact weakly at low energy (“soft pions
theorems”)
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Explicit chiral symmetry breaking

in reality chiral symmetry is only approximate
The pions acquire a mass M. # 0,

Fﬁl\/lfr = —(my + m4)(0|gq|0) + ...

which is small compared to all other handrons
Chiral symmetry protects its mass = separation of scales
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Explicit chiral symmetry breaking

in reality chiral symmetry is only approximate
The pions acquire a mass M. # 0,

Fﬁl\/lfr = —(my + m4)(0|gq|0) + ...

which is small compared to all other handrons
Chiral symmetry protects its mass = separation of scales

» Chiral effective field theory framework: a perturbative expansion in
powers of the small parameters p/A\, M, /A

L. Girlanda (Univ. Salento) Symmetries and fundamental interactions Pisa Summer School - 2017 22



Weinberg's folk theorem

PHENOMENOLOGICAL LAGRANGIANS 9

matrix elements trom the tree graphs, without any use of operator algebra.
This remark is based on a “theorem™, which as far as | know has never
been proven, but which [ cannot imagine could be wrong. The “theorem™ says
that although indivi um field theories have of course a good deal o
content, quantum field theory itself has no content beyond analyticity, uni-
mel This can be put more precisely
in the context of perturbation theory: if one writes down the most general
possible Lagrangian, including all_terms consistent with assumedvslm_@_?t_yr
principles, and_then calculates matrix elements with this Lagrangian to any
given order of perturbation theory, the resuit will simply be the most general
possible S-malrix consistent with analyticity, perturbative unitarity, cluster

Jectinposition and the assumed symmet inciples. As 1 said, this has not
g e S e TS

been proved, but any counterexamples woul of great interest, and [ do
not kn

With this “theorem™, one can obtain and justify the results of current
atgebra simply by writing down the most general Lagrangian consistent with

[S. Weinberg, Physica A96 (1979) 327]
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Effective theories and separation of scales

a probe of wavelength ) is insensible to details at short distances

— replace the true short distance structure with a tower of simpler terms
(cfr. multipole expansion)

Consider e.g.

V(r) = Vlong(r) + Vshort(r)

to build an EFT:
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Effective theories and separation of scales

a probe of wavelength ) is insensible to details at short distances

— replace the true short distance structure with a tower of simpler terms
(cfr. multipole expansion)

Consider e.g.

V(r) = Vlong(r) + Vshort(r)

to build an EFT:

» introduce a cutoff A, and retain only states with kK < A
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Effective theories and separation of scales

a probe of wavelength ) is insensible to details at short distances

— replace the true short distance structure with a tower of simpler terms
(cfr. multipole expansion)
Consider e.g.

V(r) = Vlong(r) + Vshort(r)

to build an EFT:
» introduce a cutoff A, and retain only states with kK < A
» add /ocal interaction terms which mimic the short-range physics
Vet = Vi (1) +cd™(r) + di V26" (r) + o V™ (r) - V + ...
Vehort (6°) = v(0) + V/(0)g® + ...

c, di2 are LECs to be fixed from data
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Effective theories and separation of scales

a probe of wavelength ) is insensible to details at short distances

— replace the true short distance structure with a tower of simpler terms
(cfr. multipole expansion)
Consider e.g.

V(r) = Vlong(r) + Vshort(r)

to build an EFT:

» introduce a cutoff A, and retain only states with kK < A

» add /ocal interaction terms which mimic the short-range physics

Vet = Vi (1) +cd™(r) + di V26" (r) + o V™ (r) - V + ...
vshort(qQ) = v(0) + v'(O)q2 + ..

c, di2 are LECs to be fixed from data

At a given order only a finite number of LECs = predictions
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Predictive power and cutoff dependence

changing A amount to include/neglect states with k ~ A
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Predictive power and cutoff dependence

changing A amount to include/neglect states with k ~ A

> to the extent that these states are highly virtual = local corrections
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Predictive power and cutoff dependence

changing A amount to include/neglect states with k ~ A

> to the extent that these states are highly virtual = local corrections

» all possible local operators (compatible with underlying symmetries)
are already present in the effective theory = shift of LECs
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Predictive power and cutoff dependence

changing A amount to include/neglect states with k ~ A
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Predictive power and cutoff dependence

changing A amount to include/neglect states with k ~ A

> to the extent that these states are highly virtual = local corrections
» all possible local operators (compatible with underlying symmetries)
are already present in the effective theory = shift of LECs

LECs become running coupling constants c(A) and predictions should be
independent of A

» A-dependence arises from stopping the low-energy expansion at some
order - smaller and smaller as the order increases = theoretical
uncertainty

» LECs proliferate, as the order is increased = less predictive power

» check convergence of the expansion

a good compromise can be found within the range of applicability of the
effective theory
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Including the A

» realistic NN interaction, x? ~ 1

i
R
M. Piarulli et al., Phys. Rev. C 91 (2015) 024003

v
v
(

> associated three-nucleon interaction, fitted to B(*H) and a2,

1 X

(2) (4) (d) (e)

M. Piarulli et al., arXiv:1707.02883
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Conclusions

> spacetime continuous symmetries, and associated energy, momentum,
angular momentum conservation

» general coordinate transformations, and associated geometrization of
gravity

» internal symmetries, local and global ones, spontaneously and/or
explicitly broken or not

» discrete symmetries, P, T, C, their combinations, CPT and the
identical particle statistics

» useful symmetries, besides beautiful, that provide a systematic
calculational scheme of nuclear interactions

» Physics and geometry: a longstanding symbiosis since Galileo
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thank you!
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