

Neutron-matter interaction: nTOF for astrophysics

Pisa summer school on "Rewriting Nuclear Physics Textbooks: Basic nuclear interactions and their link to nuclear processes in the cosmos and on earth" July 1st, 2017 Pisa, Italy, July 24 –28, 2017

René Reifarth Goethe Universität Frankfurt

Nucleosynthesis – tales from the past

Human

Earth – Sand & Rost

Mars – Sand & Rost

By ESA - European Space Agency & Max-Planck Institute for Solar System Research for OSIRIS Team ESA/MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA - http://www.esa.int/spaceinimages/Images/2007/02/True-colour_image_of_Mars_seen_by_OSIRIS, CC BY-SA 3.0-igo, https://commons.wikimedia.org/w/index.php?curid=56489423

Absorption of photons

Helium – the sun's element

By NASA - http://imagine.gsfc.nasa.gov/docs/teachers/lessons/xray_spectra/worksheet-specgraph2-sol.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4158610

Solar system

A detailed view at the sun

By NASA, Nigel Sharp, National Optical Astronomical Observatories/National Solar Observatory at Kitt Peak/Association of Universities for Research in Astronomy, and the National Science Foundation.

Atomic nuclei

The chart of stable nuclei

Solar abundances

The Big Bang

First stars after 500 million years

Von Borb, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=680469

Onion structure

Massive stars – early death

By NASA

Iron – survival of the most stable

The synthesis of the elements

The nucleosynthesis of the elements

Red Giants – easy to spot

s-process in AGB stars

MASS COORDINATE (M_{\odot})

Red Giants become White Dwarfs

Ring nebula illuminated by the White Dwarf in the center.

s-process nucleosynthesis

Two components were identified and connected to stellar sites:

Main s-proce	ess 90 <a<210< th=""><th colspan="3">Weak s-process A<90</th></a<210<>	Weak s-process A<90		
TP-AGE	stars 1-3 ${ m M}_{\odot}$	massive stars > 8 M $_{\odot}$		
shell H-burning 0.9-10 ⁸ K	ell H-burning D.9-10 ⁸ K 3-3.5-10 ⁸ K		shell C-burning ~1·10 ⁹ K	
kT=8 keV 10 ⁷⁻ 10 ⁸ cm ⁻³	kT=25 keV 10 ¹⁰ -10 ¹¹ cm ⁻³	kT=25 keV 10 ⁶ cm ⁻³	kT=90 keV 10 ¹¹ -10 ¹² cm ⁻³	
¹³ C(α,n) ^{0.68} ^{0.68} H - burning	$^{22}Ne(\alpha,n)$	²² Ne(α,n) Photosphere (star's surface) Hydrogen burning in the shell		
$\begin{array}{c} 0.67 \\ 0.66 \\ 0.66 \\ 200 \\ 35000 \\ 200 \\ $	He - intershell C-O - core	Helium burning in the core		

branch point in the s-process path

s-process models - classical s-process

s-process models – T-AGB stars, ²²Ne phase

Couture & Reifarth, ADNDT, 93 (2007) 807

Neutron Captures time-of-flight technique

Reifarth et al, Journal of Physics G 41 (2014) 53101

nTOF @ CERN - spallation neutron source

- Δt = 7 ns
- 1-10 s
 between
 pulses

nTOF @ CERN : 20 m & 200 m

nTOF @ CERN -> EAR2

C. Weiß et al, NIM A 799 (2015) 90-98

nTOF @ CERN – neutron flux

¹⁵¹Sm – a s-process branch point

¹⁵¹Sm – measured at nTOF

Abbondanno et al, PRL, 93 (2004) 161103

Maxwellian Averaged Cross Section

⁶³Ni – measured at nTOF

Lederer et al, PRL, 110 (2013) 022501

Neutron flux in astrophysical region

(n,γ) experiments with unstable isotopes and fundamental stellar physics evaluations

Branch Isotope	Half- Life	Facility	Observable	Stellar Physics	Comment
¹⁵¹ Sm	93 yr	FZK, n_TOF, DANCE	 ¹⁵²Gd in solar distribution ¹⁵¹Eu/¹⁵³Eu ratio hyperfine line split 	Timescale of hot Helium-shell flash s-process in very old stars	done
¹³⁴ Cs	2 yr	DANCE, FRANZ	Ba isotope ratios from presolar grains	Sets ¹² C abundance of He-shell flash	current uncertainty: ± 30%
¹³⁵ Cs	2 Myr	everywhere	Ba isotope ratios	Amount of rotation	± 10%
⁹⁵ Zr	64 d	?inverse?	⁹⁶ /Zr/ ⁹⁴ Zr ratio presolar grains	Temperature at bottom of He- shell flash region	Current uncertainty: 20 - 80 mb

Summary

What?

How?

