Concept of spectral function and

 applications to scattering in nuclear physicsCarlo Barbieri - University of Surrey

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena

- ~3,200 known isotopes
- ~7,000 predicted to exist
- Correlation characterised in full for ~283 stable

Nature 473, 25 (2011); 486, 509 (2012)

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena

I) Understanding the nuclear force QCD-derived; 3-nucleon forces (3NFs) First principle (ab-initio) predictions
III) Interdisciplinary character

Astrophysics
Tests of the standard model Other fermionic systems: ultracold gasses; molecules;

Definition of one-body GF

With explicit time dependence:

$$
\begin{aligned}
g_{s s^{\prime}}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t-t^{\prime}\right)= & -\frac{i}{\hbar} \theta\left(t-t^{\prime}\right)\left\langle\Psi_{0}^{N}\right| \psi_{s}(\mathbf{r}) e^{-i\left(H-E_{0}^{N}\right)\left(t-t^{\prime}\right) / \hbar} \psi_{s^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right)\left|\Psi_{0}^{N}\right\rangle \\
& \mp \frac{i}{\hbar} \theta\left(t^{\prime}-t\right)\left\langle\Psi_{0}^{N}\right| \psi_{s^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right) e^{i\left(H-E_{0}^{N}\right)\left(t-t^{\prime}\right) / \hbar} \psi_{s}(\mathbf{r})\left|\Psi_{0}^{N}\right\rangle
\end{aligned}
$$

$t>t^{\prime}$
adds a particle

UNIVERSITY OF
SURREY

Example of spectral function ${ }^{56} \mathrm{Ni}$

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$
g_{\alpha \beta}(E)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{n}^{A+1}-E_{0}^{A}\right)+i \eta}+\sum_{k} \frac{\left\langle\Psi_{0}^{A}\right| c_{\beta}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle\left\langle\Psi_{k}^{A-1}\right| c_{\alpha}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{0}^{A}-E_{k}^{A-1}\right)-i \eta}
$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Spectroscopy via knock out reactions-bssisic icless

Use a probe (ANY probe) to eject the particle we are

Basic idea:

- we know, e, é and p
- "get" energy and momentum of $p_{i}{ }^{\prime} p_{i}=k_{e}^{\prime}+k_{p}-k_{e}$

Better to choose large transferred

$$
E_{i}=E_{e}^{\prime r}+E_{p}-E_{e}
$$

momentum and weak probes!!!

Concept of correlations

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

$$
\left.\underset{\text { NVERSITY OF }}{S_{m}^{(h)}}\left(p_{m}, E_{m}\right)=\sum_{n}\left|\left\langle\Psi_{n}^{A-1}\right| c_{\overrightarrow{p_{m}}}\right| \Psi_{0}^{A}\right\rangle\left.\right|^{2} \delta\left(E_{m}-\left(E_{0}^{A}-E_{n}^{A-1}\right)\right)
$$

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

Concept of correlations
\qquad stable isotopes... $52,377(2004)$]

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

Understood for a few stable closed shells:
[CB. and HWH. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Fragmentation of ${ }^{208} \mathrm{~Pb}$ [from (e, e'p)]

also $n(3 s / 2)=0.75$
NIKHEF, 1988

UNURRSEY

Mean field orbits in nuclei [from (e, e'p)]

L.Lapikás, Nucl. Phys A553, 273c (1993)

Experimental spectroscopic factors

Stable nuclei,
From (e,e'p)

One-hole spectral function

Spectral function of infinite fermion systems

Spectral function in asymm. matter

A. Carbone, priv. comm.

Angle Resolved Photon Emission Spectroscopy (ARPES)

An ARPES setup - spectroscopy at the Fermi surface

Photoemission geometry

FIG. 4. Temperature dependence of the photoemission data from $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8+\delta}\left(T_{c}=87 \mathrm{~K}\right)$: (a) ARPES spectra measured at $\mathbf{k}=\mathbf{k}_{F}$ (point 1 in the Brillouin-zone sketch); (b) integrated intensity. From Randeria et al., 1995.

FIG. 6. Generic beamline equipped with a plane grating monochromator and a Scienta electron spectrometer (Color).
-Incoming beam of real photons

- Measure the emitted electron - From angle and energy recover the momentum of the ejected particle + separation energy
\qquad

Angle Resolved Photon Emission Spectroscopy (ARPES)

An ARPES setup - spectroscopy at the Fermi surface

FIG. 9. Photoemission results from $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$: ARPES spectra and corresponding intensity plot along (a) Γ - M and (b) $M-X$; (c) measured Fermi surface; (d) calculated Fermi surface (Mazin and Singh, 1997). From Damascelli et al., 2000 (Color).

\rightarrow can "see" the Fermi surface!!

[Rev. Mod. Phys. 75, 473 (2003)]

Calculating spectral functions in finite (and exotic) nuclei

Spectral Function of ${ }^{56} \mathrm{Ni}$

Faddeev-RPA (FRPA) calculations

[CB, M.Hjorth-Jensen, Pys. Rev. C79, 064313 (2009)
CB, Phys. Rev. Lett. 103, 202502 (2009)]
UNIVERSITY OF
SURREY

Dyson equation

Dyson equation:

$g_{\alpha \beta}\left(t-t^{\prime}\right)=g_{\alpha \beta}^{(0)}\left(t-t^{\prime}\right)+g_{\alpha \gamma}^{(0)}\left(t-t_{\gamma}\right) \Sigma_{\gamma \delta}^{\star}\left(t_{\gamma}, t_{\delta}\right) g_{\delta \beta}\left(t_{\gamma}-t^{\prime}\right)$
Diagrammatically:

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313(2009)
```

- A complete expansion requires all types of particle-vibration coupling ...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Faddeev-RPA in two words...

Particle vibration coupling is the main cause driving the distribution of particle strength-a least close to the Fermi surface...

these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.

Self-Consistent Green's Function Approach

- Global picture of nuclear dynamics
- Reciprocal correlations among effective modes
- Guaranties macroscopic conservation laws

Self-Consistent Green's Function Approach

Binding energies
[PRL. 111, 062501 (2013)
PRC 92, 014306 (2015), PRC89, 061301R (2014)]
[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004) D. Middelton, et al. arXiv:0907.1758; EPJA in print]

$\Pi^{(p h)}(\omega)$
Isovector response

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]
DUKIEKY

Ionization energies/ affinities, in atoms
[CB, D. Van Neck,
AIP Conf.Proc.1120,104 ('09) \& in prep]

		Hattre-Fock	FRPAc	Experiment [16, 17]
He:	1 s	0.918 (+14)	0.9008 (-2.9)	0.9037
Be^{2+};	Is	5.6672 (+116)	5.6551 (-0.5)	5.6556
Be:	2 s	0.3093 (-34)	0.3224(-20.2)	0.3426
	1 s	4.733 (+200)	$4.5405(+8)$	4.533
Ne :	2 p	0.852 (+57)	0.8037 (+11)	0.793
	1 s	1.931 (+149)	1.7967 (+15)	1.782
$\mathrm{Mg}^{\text {+ }}$:	2 p	3.0068 (+56.9)	2.9537 (+3.8)	2.9499
	1 s	4.4827	4.3589	
Mg:	3 s	$0.253(-28)$	0.280 (-1)	0.281
	2p	2.282 (+162)	$2.137(+17)$	2.12
Ar:	3 p	0.591 (+12)	0.579 (00)	0.579
	3 s	1.277 (+202)	1.065 (-10)	1.075
	3 s		1.544	
	2 p	9.571 (+411)	9.219 (+59)	9.160

Approaches in GF theory

Truncation scheme:
 $1^{\text {st }}$ order: $2^{\text {nd }}$ order: $3^{\text {rd }}$ and sums, P-V coupling

Gorkov formulation (semi-magic)

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code:
(C. Barbieri 2006-16
V. Somà 2010-15
A. Cipollone 2011-14)

- Provides a C++ class library for handling many-body propagators ($\approx 40,000$ lines, MPI\&OpenMP based).
- Allows to solve for nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:

2006
2010
2012
2013
2014

core functions and FRPA
shell model charges\&interactions (lowest order)
new Gorkov formalism for open-shell nuclei (at $2^{\text {nd }}$ order)

Coupled clusters equations
Three-nucleon forces (≈ 60 cores, 35 Gb but on the rise...)

Gorkov at $3^{\text {rd }}$ order (will become massively parallel...)

Ab-initio Nuclear Computation \& BcDor code

http://personal.ph.surrey.ac.uk/~cb0023/bcdor/

Computational Many-Body Physics

Download

Documentation

Welcome

From here you can download a public version of my self-consistent Green's function (SCGF) code for nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle propagators (a.k.a. one-body Green's functions) and other many-body properties of spherical nuclei.
This version allows to:

- Perform Hartree-Fock calculations.
- Calculate the the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
- Solve coupled cluster CCD (doubles only!) equations.

When using this code you are kindly invited to follow the creative commons license agreement, as detailed at the weblinks below. In particular, we kindly ask you to refer to the publications that led the development of this software.

Relevant references (which can also help in using this code) are:
Prog. Part. Nucl. Phys. 52, p. 377 (2004),
Phys. Rev. A76, 052503 (2007),
Phys. Rev. C79, 064313 (2009),
Phys Rev C.8.9 n24.323 (2014)

Spectroscopic factors

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

Understood for a few stable closed shells:
[CB. and HWH. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Quenching of SF in stable nuclei

Nucl. Phys. A553 (1993) 297c
NIKHEF:

A common misconception about SRC:
"The quenching is constant over all stable nuclei, so it must be a shortrange effect"

Actually, NO!
All calculations show that SRC have just a small effect at the Fermi surface. And the correlation to the experimental p-h gap is much more important.

Quenching of SF in stable nuclei

NIKHEF:
Nucl. Phys. A553 (1993) 297c
$\mathrm{S}_{\mathrm{p} 1 / 2} \quad \mathrm{~S}_{\mathrm{p} 3 / 2}$
Short-range correlations oriented methods:

- VMC ${ }_{\text {[Argonne, '94] }} 0.90$
- GF(SRC) [st.Louis-Tübingen '95] 0.91
- FHNC/SOC [Pisa $\left.{ }^{\circ} 00\right]$
0.77
0.72
[CB et al., Phys. Rev. C65, (02)]
Experiment:
0.67 ± 0.07 (estimated uncertainty)

SRC are present and verified experimentally
BUT the are NOT the dominant mechanism for quenching SF!!!

Quenching of absolute spectroscopic factors

Particle-vibration coupling dominates the quenching of spectroscopic factors

Relative strength among fragments requires shell-model approach

Quenching of absolute spectroscopic factors

[CB, Phys. Rev. Lett. 103, 202520

Overall quenching of spectroscopic factors is driven by:
SRC \rightarrow ~10\% part-vibr. coupling \rightarrow dominant "shell-model" \rightarrow in open shell
... with dzeq(i)gous conclusions for ${ }^{48} \mathrm{Ca}$

| | 10 osc. shells | | Exp. [30] | $1 p 0 f$ space | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | FRPA | full | FRPA | | | | |
| (SRC) | FRPA | $+\Delta Z_{\alpha}$ | | FRPA | SM | ΔZ_{α} | |
| ${ }^{5} \mathrm{Ni}:$ | | | | | | | |
| $v 1 p_{1 / 2}$ | 0.96 | 0.63 | 0.61 | | 0.79 | 0.77 | -0.02 |
| $v 0 f_{5 / 2}$ | 0.95 | 0.59 | 0.55 | | 0.79 | 0.75 | -0.04 |
| $v 1 p_{3 / 2}$ | 0.95 | 0.65 | 0.62 | $0.58(11)$ | 0.82 | 0.79 | -0.03 |
| ${ }^{55} \mathrm{Ni}:$ | | | | | 0.89 | 0.86 | -0.03 |
| $v 0 f_{7 / 2}$ | 0.95 | 0.72 | 0.69 | | | 3 | |

Z/N asymmetry dependence of SF's - Theory

Ab-initio calculations explain (a very weak) the Z / N dependence but the effect is much lower than suggested by direct knockout

Rather the quenching is high correlated to the gap at the Femi surface.

CB, M. Hjorth-Jensen,
Phys. Rev. C 79, 064313 (2009)

A. Cipollone, CB, P Navrátil,Phys. Rev. C92, 014306 (2015) and CB, unpublished (2016)

Z/N asymmetry dependence of SFs

Calculated spectroscopic factors are	- correlated to p-h gaps
found to be:	- independent of asymmetry
	- consistent with experimental data

${ }^{14} \mathrm{O}(\mathrm{d}, \mathrm{t})^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

[F. Flavigny et al, PRL110, 122503 (2013)]
${ }^{A} O(p, 2 p)^{A-1} N$ at GSI ($\left.R^{3} B-L A N D\right)$

Proton SF for ${ }^{16} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}$:

$$
\begin{array}{lll}
p_{1 / 2}: & 0.78 \text { (SCGF) } & 0.80 \text { (exp.) } \\
p_{3 / 2}: & 0.80 \text { (SCGF) } & 0.65 \text { (exp. }- \text { up to cont.) }
\end{array}
$$

L. Atar, et al., in preparation (2017) - see talk by T. Aumann

Spectroscopic factor Asymmetry puzzle

 transfer reactions @ SPIRAL

Dependence on proton-neutron difference is still unresolved...

- Missing many-body correlations?
- Reaction mechanism?

Short-range correlations (SRC)

Are there signatures??

High momentum components - where are they?

Momentum distribution:

$$
n(k)=\int_{-\infty}^{\varepsilon_{\bar{R}}} d \omega S^{(h)}(k, \omega)
$$

- High k components are found at high missing energies
- Short-range repulsion in r-space $\leftrightarrow \rightarrow$ strong potential at large momenta
- A complication: the nuclear interaction includes also a tensor term (from Yukawa's meson meson exchange):

$$
S_{12}=3\left(\vec{\sigma}_{1} \cdot \hat{r}\right)\left(\vec{\sigma}_{2} \cdot \hat{r}\right)-1
$$

\rightarrow interaction amog 2 dipoles!!!!!!!

Distribution of (AII) the Nuclear Strength

Interest in short range correlations:

- a fraction of the total number of nucleons:
- ~10\% in light nuclei (VMC, FHNC, Green's function)
- 15-20\% in heavy systems (CBF, Green's function)
- can explain up to $2 / 3$ of the binding energy [see ex. PRC51, 3040 (' 95) for ${ }^{16} \mathrm{O}$]
- inftuence NM saturation properties [see ex. PRL90, 152501 ('03)]

SURREY

Spectral strength of ${ }^{12} \mathrm{C}$ from exp. E97-006

Theory vs. measured strength - I

- About 0.6 protons are found in the correlated region:

TABLE I. Correlated strength, integrated over shaded area of
Fig. 2 (quoted in terms of the number of protons in ${ }^{12} \mathrm{C}$.)

Theory vs. measured strength - II

-Theory reproduces the total amount of correlated strength and its shape
-The exact position of the correlated peak depends on the particular many-body approach and (NN interaction?) used.

Phys. Rev. C70, 0243909 (2004)

Two-nucleon pair and SRC in nuclei

Two-nucleon emission at Jlab

High-momentum proton-neutron pairs dominate over $\mathrm{p}-\mathrm{p}$ and $\mathrm{p}-\mathrm{n}$...

High-k protons even in asymmetric nuclei?
Science 320, 1476 (2008)
Science 346, 614 (2014)

Ab initio studies along the oxygen chain

Nuclear forces in exotic nuclei

Nucleon interactions are very complex and difficult to handle

Change of regime from stable to dripline isotopes !

Neutron-rich matter ($\mathrm{N} \gg \mathrm{Z}$):

- Neutron star matter EoS
- Symmetry energy
- New shell closures

Driplines of nitrogen and fluorine isotopes
Three-nucleon Force (3NF)
[A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)]

Modern realistic nuclear forces

Chiral EFT for nuclear forces:

	2 N forces	3 N forces	4 N forces
$\mathrm{LO} \mathcal{O}\left(\frac{Q^{0}}{\Lambda^{0}}\right)$			
$\mathrm{NLO} \mathcal{O}\left(\frac{Q^{2}}{\Lambda^{2}}\right)$	 		

(3NFs arise naturally at N2LO)

Single particle spectrum at $E_{\text {fermi }}$:

[T. Otsuka et al., Phys Rev. Lett 105, 032501 (2010)]

Need at LEAST 3NF!!!

("cannot" do RNB physics without...)

Chiral Nuclear forces - SRG evolved

Benchmark of ab-initio methods in the oxygen isotopic chain

Neutron spectral function of Oxygens

A. Cipollone, CB, P. Navrátil, Phys. Rev. C 92, 014306 (2015)

Oxygen puzzle...

The oxygen dripline is at ${ }^{24} \mathrm{O}$, at odds with other neighbor isotope chains.

Phenomenological shell model interaction reflect this in the s.p. energies but no realistic NN interaction alone is capable of reproducing this...

The fujita-Miyazawa 3NF provides repulsion through Pauli screening of other 2NF terms:

(b)

(c)

Neutron Number (N)

[T. Otsuka et al., Phys Rev. Lett 105, 32501 (2010)]
UNIVERSIY OF
SURREY

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

[^0]
NNLO-sat : a global fit up to A*24

A. Ekström et al. Phys. Rev. C91, 051301(R) (2015)

- Constrain NN phase shifts
- Constrain radii and energies up to $A \leq 24$
\rightarrow Provides saturation up to large masses!

From SCGF:

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
V. Lapoux, ${ }^{1, *}$ V. Somà, ${ }^{1}$ C. Barbieri, ${ }^{2}$ H. Hergert, ${ }^{3}$ J. D. Holt, ${ }^{4}$ and S. R. Stroberg ${ }^{4}$

- New fits of chiral interactions (NNLOsat) highly improve comparison to data
- Deficiencies remain for neutron rich isotopes

FIG. 1. Oxygen binding energies. Results from SCGF and IMSRG calculations performed with EM [20-22] and $\mathrm{NNLO}_{\text {sat }}$ [26] interactions are displayed along with available experimental data.

Elastic scattering

Elastic scattering of one particle

- The self-energy is an optical potential foe elastic scattering acting on both particle and hole spaces. See for example:
- F. Capuzzi and C. Mahaux, Ann. Phys. (NY) 245, 147 (1996) (for proof).
- L. S. Cederbaum, Ann. Phys. (NY) 291, 169 (2001) (for extensions to inelastic scattering).
- One can unse the knowledge of the self energy (in particular the dispersive relation) to constrain optical models.
- For the "dispersive optical model" see:
- C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).
- R. J. Charity et al., Phys. Rev. Lett. 97, 162503 (2006).
- R. J. Charity et al., Phys. Rev. C 76, 044314 (2007).
- Chapter 23, of Dickhoff and Van Neck book (2nd edition).

Elastic scattering of one particle

- Feshbach projection formalism:
- At time $\dagger \rightarrow-\infty$ and $\dagger \rightarrow+\infty$ the system is a particle separated and far away from the rest of the system.
- Then, one is interested in initial and final states that look like:

$$
\begin{gathered}
a^{\dagger}(\mathbf{r})\left|\psi_{A}^{0}\right\rangle \\
a^{\dagger}\left(\mathbf{r}^{\prime}\right)\left|\psi_{A}^{0}\right\rangle
\end{gathered}
$$

$\left|\psi_{A}^{0}\right\rangle$ is the state n in which the target system is prepared (usually the ground state).
\rightarrow we look at elastic scattering, so this does not change!

Elastic scattering of one particle

- Feshbach projection formalism:
- At time $\dagger \rightarrow-\infty$ and $\dagger \rightarrow+\infty$ the system is a particle separated and far away from the rest of the system.
- Then, one is interested in initial and final states that look like:

$$
\begin{array}{r}
a^{\dagger}(\mathbf{r})\left|\psi_{A}^{0}\right\rangle \\
a^{\dagger}\left(\mathbf{r}^{\prime}\right)\left|\psi_{A}^{0}\right\rangle
\end{array}
$$

$\left|\psi_{A}^{0}\right\rangle$ is the state n in which the target system is prepared (usually the ground state).
\rightarrow we look at elastic scattering, so this does not change!
but these do not cover the full $N+1$ body Hilbert space!
\rightarrow must work in a subspace

Elastic scattering of one particle

- Feshbach projection formalism:
- At time $\dagger \rightarrow-\infty$ and $\dagger \rightarrow+\infty$ the system is a particle separated and far away from the rest of the system.
- Then, one is interested in initial and final states that look like:

$$
\begin{array}{r}
a^{\dagger}(\mathbf{r})\left|\psi_{A}^{0}\right\rangle \\
a^{\dagger}\left(\mathbf{r}^{\prime}\right)\left|\psi_{A}^{0}\right\rangle
\end{array}
$$

One-body subset 'P' of the whole space
but these do not cover the full $\mathrm{N}+1$ body Hilbert space!
\rightarrow must work in a subspace

Elastic scattering of one particle

Feshbach projection formalism:

$$
\begin{aligned}
& \text { After some Math: } \\
& \left.\begin{array}{rl}
E_{m}^{A+1} \phi_{n m}^{A+1}(\mathbf{r})=\int d \mathbf{r}^{\prime} d \mathbf{r}^{\prime \prime}\left\langle\Psi_{A}^{n}\right| a(\mathbf{r})\left(H+H Q_{n}^{p}\right. & \frac{1}{E_{m}^{A+1}-Q_{n}^{p} H Q_{n}^{p}} Q_{n}^{p} H
\end{array}\right) a^{\dagger}\left(\mathbf{r}^{\prime}\right)\left|\Psi_{A}^{n}\right\rangle \\
& \\
& \times \mathcal{N}^{A}\left(n, \mathbf{r}^{\prime}, n, \mathbf{r}^{\prime \prime}\right)^{-1} \phi_{n m}^{A+1}\left(\mathbf{r}^{\prime \prime}\right)
\end{aligned} \quad \begin{aligned}
& E_{m}^{A+1} \phi_{n m}^{A+1}(\mathbf{r})=\int d \mathbf{r}^{\prime} \mathcal{H}_{n}^{p}\left(\mathbf{r}, \mathbf{r}^{\prime} ; E_{m}^{A+1}\right) \phi_{n m}^{A+1}\left(\mathbf{r}^{\prime}\right) \begin{array}{l}
\rightarrow \text { Equation for the } \\
\text { overlap amplitudes!! }
\end{array}
\end{aligned}
$$

where:

$$
\left\langle\Psi_{A}^{n}\right| a(\mathbf{r}) P_{n}^{p}\left|\Psi_{A+1}^{m}\right\rangle=\left\langle\Psi_{\substack{n \\ \text { target } \\ \text { (usually } n=0)}}^{\langle }\right| a(\mathbf{r})\left|\Psi_{A+1}^{m}\right\rangle={\underset{\nwarrow}{n m}}_{A+1}^{\phi_{n}}(\mathbf{r})
$$

Note: this is not the Dyson equation, it only has particles.

Elastic scattering of one particle

Feshbach projection formalism:

Elastic scattering of one particle

Feshbach projection formalism:

In order to open the full single particle space, one needs to project on particles and holes at the same time:

$$
\begin{aligned}
& {\left[a(\mathbf{r})+a^{\dagger}(\mathbf{r})\right]\left|\Psi_{A}^{n}\right\rangle} \\
& \text { Chose the one-body 'P' so } \\
& \text { that it includes both } \\
& \text { 'particle' and 'hole' states. }
\end{aligned}
$$

With this choice, one can prove that Feshbach is the same as the mass operator for Dyson's Eq.
\rightarrow One can use ab initio theory to do scattering.

Ab initio optical potentials from propagator theory

Relation to Fesbach theory:
Mahaux \& Sartor, Adv. Nucl. Phys. 20 (1991)
Escher \& Jennings Phys. Rev. C66, 034313 (2002)
Previous SCGF work:
CB, B. Jennings, Phys. Rev. C72, 014613 (2005)
S. Waldecker, CB, W. Dickhoff, Phys. Rev. C84, 034616 (2011)
A. Idini, CB, P. Navrátil, arXiv:1612.01478v1 [nucl-th] and in prep.

Dispersive Optical Model (DOM)

Nuclear self-energy $\Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)$:

- contains both particle and hole props.
- it is proven to be a Feshbach opt. pot
\rightarrow in general it is non-local!
- must satisfy the dispersion relation:

$$
\begin{aligned}
& \Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)=\Sigma_{\alpha \beta}^{H F}- \\
& \frac{1}{\pi} \int_{\varepsilon_{T}^{>}}^{\infty} d E^{\prime} \frac{\operatorname{Im} \Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; E^{\prime}\right)}{\varepsilon-E^{\prime}+i \eta} \\
& +\frac{1}{\pi} \int_{-\infty}^{\varepsilon_{T}^{<}} d E^{\prime} \frac{\operatorname{Im} \Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; E^{\prime}\right)}{\varepsilon-E^{\prime}-i \eta} \\
& \frac{1}{x \pm i \eta}=\mathcal{P} \frac{1}{x} \mp i \pi \delta(x) \quad \\
& \theta(\pm \tau)=\mp \lim _{\eta \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{-\infty}^{+\infty} d \omega \frac{e^{-i \omega \tau}}{\omega \pm i \eta}\left[\begin{array}{c}
\text { proper boundary } \\
\text { conditions are } \\
\text { driven by the } \\
\text { causality principle }
\end{array}\right.
\end{aligned}
$$

SUNERSTITYF

Dispersive Optical Model (DOM)

The DOM is a (for now local) parameterization of the self-energy that satisfy dispersion (i.e. parameterize ONLY and $\mathcal{V}_{\mathrm{HF}}(r, E)!$! $\mathcal{W}(r, E)$
$\mathcal{U}(r, E)=\mathcal{V}(r, E)+i \mathcal{W}(r, E)$

$$
\begin{aligned}
\mathcal{V}(r, E)=\mathcal{V}_{\mathrm{HF}}(r, E)+ & \Delta \mathcal{V}(r, E) \\
& \Delta \mathcal{V}(r, E)=\frac{1}{\pi} P \int \mathcal{W}\left(r, E^{\prime}\right)\left(\frac{1}{E^{\prime}-E}-\frac{1}{E^{\prime}-E_{F}}\right) d E^{\prime}
\end{aligned}
$$

Developed by Mahaux and collaborators, in the 80s (208Pb, etc): -C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

Recent develppments: global model around ${ }^{A} \mathrm{Ca}$ chain (St.Louis): -R. J. Charity et al., Phys. Rev. Lett. 97, 162503 (2006); Phys. Rev. C 76, 044314 (2007).

DOM - more recent work

Present application of DOM to nuclei:

- Fit: ${ }^{40-48} \mathrm{Ca}$ isotopes chain ($\mathrm{Z}=20, \mathrm{~N}=20-28$)
- 81 data sets, 3569 points
- up to 200 MeV scattering
- information on radii, spectroscopic factor, etc...
- 25 parameters
- Extrapolation to ${ }^{60} \mathrm{Ca} \rightarrow$ not fully determined: need more information from neutron scattering...
- Extension to other Zs ...
R. J. Charity et al., Phys. Rev. Lett. 97, 162503 (2006); Phys. Rev. C 76, 044314 (2007). SURREY

DOM - more recent work

Most important are radii and volume integrals of the potential:

$$
R_{\mathrm{ms}}^{V}=\sqrt{\frac{\rho^{2} \mathcal{V}(r) d r}{J_{V}}} \quad J_{V}=\int \mathcal{V}(r) d r \quad \text { and similarly for } W \ldots .
$$

FIG. 2. (Color online) Energy dependence of the integrated imaginary potential determined from published opticalmodel fits to $p+{ }^{40} \mathrm{Ca}, p+{ }^{48} \mathrm{Ca}$, and $n+{ }^{48} \mathrm{Ca}$ elastic-scattering data.

FIG. 3. (Color online) (a) Integrated potentials and (b) rms radii obtained from combined fits to $p+{ }^{40} \mathrm{Ca}$ elastic-scattering data and $n+{ }^{40} \mathrm{Ca}$ total cross sections.

DOM - more recent work

Fitted differential cross sections:

DOM - more recent work

\leftarrow Total cross sections

Fitted
polarization observables \rightarrow

Fit to $(e, e p)$ data

Fit to (e, ép) reaction data...

Fit to $(e, e p)$ data

Fit to (e, e'p) reaction data...

DOM - more recent work

The fit made for Ca isotopes gives good predictions for Ni ... \rightarrow NO refitting !!

Microscopic optical potential

Nuclear self-energy $\quad \Sigma^{\star}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \varepsilon\right)$

- contains both particle and hole props.
- it is proven to be a Feshbach opt. pot
\rightarrow in general it is non-local!

Solve scattering and overlap functions directly in momentum space:

$$
\begin{aligned}
& \Sigma^{\star l, j}\left(k, k^{\prime} ; E\right)=\sum_{n, n^{\prime}} R_{n l}(k) \Sigma_{n, n^{\prime}}^{\star l, j} R_{n l}\left(k^{\prime}\right) \\
& \frac{k^{2}}{2 \mu} \psi_{l, j}(k)+\int \mathrm{d} k^{\prime} k^{\prime 2} \Sigma^{\star l, j}\left(k, k^{\prime} ; E_{c . m .}\right) \psi_{l, j}\left(k^{\prime}\right)=E_{c . m .} \psi_{l, j}(k)
\end{aligned}
$$

Overall absorption of opt. mod.

$$
J_{W}(E)=4 \pi \int \mathrm{~d} r r^{2} \int \mathrm{~d} r^{\prime} r^{\prime 2} \sum_{l, j} \Im m\left\{\Sigma^{\star l, j}\left(r, r^{\prime} ; E\right)\right\}
$$

[S. Waldecker, CB, W. Dickhoff, PRC84, 034616 (2011)
A. Idini, CB, Navratil, in prep.]

$$
\Sigma_{\alpha \beta}^{\star}(\omega)=\Sigma_{\alpha \beta}^{(\infty)}+\sum_{i, j} \mathbf{M}_{\alpha, i}^{\dagger}\left[\frac{1}{E-\left(\mathbf{K}^{>}+\mathbf{C}\right)+i \Gamma}\right]_{i, j} \mathbf{M}_{j, \beta}+\sum_{r, s} \mathbf{N}_{\alpha, r}\left[\frac{1}{E-\left(\mathbf{K}^{<}+\mathbf{D}\right)-i \Gamma}\right]_{r, s} \mathbf{N}_{s, \beta}^{\dagger}
$$

Overall absorption of opt. mod.

$$
J_{W}(E)=4 \pi \int \mathrm{~d} r r^{2} \int \mathrm{~d} r^{\prime} r^{\prime 2} \sum_{l, j} \Im m\left\{\Sigma^{\star l, j}\left(r, r^{\prime} ; E\right)\right\}
$$

[A. Idini, CB, Navrátil, in prep.]

Low energy scattering - from SCGF

[A. Idini, CB, Navratil, in prep.]
Benchmark with NCSM-based scattering.
NN -only interaction at $\lambda_{\text {SRG }}=2.66 \mathrm{fm}^{-1}$

Scattering from mean-field only:

- - - - - NCSM/RGM [no core excitations] PRC82, 034609 (2010)

SCGF [$\Sigma^{(\infty)}$ only]

Low energy scattering - from SCGF

[A. Idini, CB, Navratil, in prep.]

\rightarrow Dynamic correlations have a strong impact on shifting the single-particle spectrum.

Low energy scattering - from SCGF

[A. Idini, CB, Navratil, in prep.]

- Lister and Sayres, Phys Rev 143, 745 - This Work

- Elastic neutron scattering derived from first principle calculations (no fitting!)
- Can be extended to radioactive isotopes and large masses

$$
{ }^{40} \mathrm{Ca}(\mathrm{n}, \mathrm{n}){ }^{40} \mathrm{Ca} \quad E_{n}=3.2 \mathrm{MeV}
$$

Thank you for your attention!!!

[^0]: universiryof N3LO ($\Lambda=500 \mathrm{Mev} / \mathrm{c}$) chiral NN interaction evolved to $2 \mathrm{~N}+3 \mathrm{~N}$ forces ($2.0 \mathrm{fm}^{-1}$)
 SURREY N2LO $(\Lambda=400 \mathrm{Mev} / c)$ chiral 3 N interaction evolved $\left(2.0 \mathrm{fm}^{-1}\right)$

