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Current Status of low-energy nuclear physics
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Definition of one-body GF
With explicit time dependence:
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removal
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addition

scattering

56Ni

One-body Green’s function (or propagator) describes the motion of quasi-
particles and holes:

…this contains all the structure information probed by nucleon transfer 
(spectral	
  function):

2

15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

⟨ΨA
0 |cα|Ψ
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k )− iη
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where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n ⟩, |ΨA−1
k ⟩ are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
⟨ΨA+1

n |c†α|Ψ
A
0 ⟩, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 ⟩ ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 ⟩
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ⋆
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ⋆(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ⋆(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ⋆(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves (ℓ, j, τ) are
decoupled, where ℓ,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ⋆(x,x′;E) =
∑

ℓjmjτ

Iℓjmj
(Ω,σ)

×

[

∑

na,nb

Rnaℓ(r)Σ
⋆
ab(E)Rnbℓ(r

′)

]

(Iℓjmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, ℓ, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rnℓ(r),
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Use a probe (ANY probe) to eject the particle we are 
interested to:

Basic idea:
• we know, e, e’ and p 
• “get” energy and momentum of pi: pi = ke’ + kp – ke

Ei = Ee’ + Ep - Ee

Target,  N-body
system N-1 particles

e

e’

pq,w

pi

Better to choose
large transferred 

momentum and weak 
probes!!!

Spectroscopy via knock out reactions-basic idea



Concept of correlations
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10-50

Spectral  function:  distribution  of
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Saclay data  for  16O(e,e’p)
[Mougey et  al.,  Nucl.  Phys.  A335,  35  (1980)]
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Fragmentation of 208Pb [from (e,e’p)]

Strong	
  fragmentation	
  of
deeply-­‐bound	
  states

NIKHEF,	
  1988



Mean field orbits in nuclei [from (e,e’p)]

L.Lapikás, Nucl. Phys A553, 273c (1993)



Experimental spectroscopic factors 

Nucl. Phys. A553 (1993) 297c

NIKHEF

Stable	
  nuclei,
From	
  (e,e’p)



One-hole spectral function
Spectral function of infinite fermion systems

[Picture credit: A. Damascelli, Rev. Mod. Phys. 75, 473 (2003)]



Spectral function in asymm. matter

A.  Carbone,  priv.  comm.

Spectral function, Log[A(p,ω)]
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Angle Resolved Photon Emission Spectroscopy (ARPES)

An ARPES setup – spectroscopy at the Fermi surface

[Pictures credit: A. Damascelli, et. al, Rev. Mod. Phys. 75, 473 (2003)]

•Incoming beam of real 
photons
•Measure the emitted 
electron
•From angle and energy 
recover the momentum 
of the ejected particle 
+ separation energy



Angle Resolved Photon Emission Spectroscopy (ARPES)

An ARPES setup – spectroscopy at the Fermi surface

[Rev. Mod. Phys. 75, 473 (2003)]

à can “see” the Fermi surface!!



Calculating spectral functions in 
finite (and exotic) nuclei



Spectral Function of 56Ni

neutron	
  
removal

neutron	
  
addition

scattering

56Ni

[CB,	
  M.Hjorth-­‐Jensen,	
  Pys.	
  Rev.	
  C79,	
  064313	
  (2009)
CB,	
  Phys.	
  Rev.	
  Lett.	
  103,	
  202502	
  (2009)]

Faddeev-­‐RPA (FRPA)	
  calculations



Dyson equation
Dyson equation:

Diagrammatically:

= + S« +

S«

= + +S«

S«

S«

S«

S«

S«

+	
  …

S«

S«

S«

+



The FRPA Method in Two Words
Particle vibration coupling is the main cause driving the distribution of 
particle strength—on both sides of the Fermi surface…

n p

º particle º hole

…these modes are all resummed
exactly and to all orders in a 

ab-initio many-body expansion.

“Extended”
Hartree Fock

R(2p1h)S«(w) = R(2h1p)

•A complete expansion requires all 
types of particle-vibration coupling

•The Self-energy S«(w) yields both
single-particle states and scattering

CB  et  al.,  
Phys.  Rev.  C63,  034313 (2001)
Phys.  Rev.  A76,  052503  (2007)
Phys.  Rev.  C79,  064313  (2009)



Particle vibration coupling is the main cause driving the distribution of 
particle strength—a least close to the Fermi surface…

n p

º
particle

º hole

…these modes are all resummed exactly and
to all orders in a ab-initio many-body expansion.

Faddeev-RPA in two words…



• Global picture of nuclear dynamics
• Reciprocal correlations among effective modes
• Guaranties macroscopic conservation laws

gII(w)

pp/hh-RPA; two-nucleon transfer

Π(ph)(w)
ph-RPA; response, giant resonances

optical potential

Dyson
Eq.

Single-
particle
motion

S(r,w)

Self-Consistent Green’s Function Approach



gII(w)

Π(ph)(w)

Dyson
Eq.

Ionization energies/
affinities, in atoms

[CB, D. Van Neck,
AIP Conf.Proc.1120,104 (‘09) & in prep]

Isovector response
for 32Ar, 34Ar
Proton 
Pygmy

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]

IVGDR
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1
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p1

p2

16O(e,e’pn)14N @ MAINZ

[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]

Self-Consistent Green’s Function Approach
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Optical potential

Binding energies
[PRL. 111, 062501 (2013),
PRC 92, 014306 (2015), PRC89, 061301R (2014)]
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Truncation
scheme:

Dyson formulation
(closed shells)

Gorkov formulation
(semi-magic)

1st order: Hartree-Fock HF-Bogolioubov

2nd order: 2nd order 2nd order (w/ pairing)

.	
  .	
  .	
   .	
  .	
  .

3rd and all-orders 
sums,
P-V coupling:

ADC(3)
FRPA
etc…

G-ADC(3)
…work in progress

Approaches in GF theory



Ab-initio Nuclear Computation & BcDor code 
BoccaDorata code:
(C.  Barbieri 2006-­16
V.  Somà 2010-­15
A.  Cipollone 2011-­14)

Code history:

- Provides a C++ class library for handling many-body
propagators (≈40,000  lines, MPI&OpenMP based).

- Allows to solve for nuclear spectral functions, many-body 
propagators, RPA responses, coupled cluster equations and 
effective interaction/charges for the shell model.

new Gorkov formalism for 
open-shell nuclei (at 2nd order)

Three-nucleon forces (≈60 cores, 
35 Gb but on the rise…)

Su
rr

ey

2006

2010

2012

2013

2014

2017

core functions and FRPA

Coupled clusters equations

RI
KE

N
GS

I

…  applications  … 

shell model charges&interactions (lowest order)

massively parallel…)
Gorkov at 3rd order (will become



Ab-initio Nuclear Computation & BcDor code 

  From here you can download a public version of my self-consistent Green’s function (SCGF) code for
nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle
propagators (a.k.a. one-body Green’s functions) and other many-body properties of spherical nuclei.
   This version allows to:

- Perform Hartree-Fock calculations.
- Calculate the the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
- Solve coupled cluster CCD (doubles only!) equations.

  When using this code you are kindly invited to follow the creative commons license agreement, as
detailed at the weblinks below.  In particular, we kindly ask you to refer to the publications that led the
development of this software.

Relevant references (which can also help in using this code) are:
   Prog. Part. Nucl. Phys. 52, p. 377 (2004),
   Phys. Rev. A76, 052503 (2007),
   Phys. Rev. C79, 064313 (2009),
   Phys. Rev. C89, 024323 (2014).

Welcome

Download

Documentation

 This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Computational Many-Body Physics
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Carlo Barbieri
Department of Physics, FEPS
University of Surrey
Guildford GU2 7XH
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E-mail :  C.Barbieri@surrey.ac.uk

Computational Many-Body Physics http://personal.ph.surrey.ac.uk/~cb0023/bcdor/bcdor/Comp_...
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Spectroscopic factors



Concept of correlations

Em [MeV] 

sred » S(h)

10-50
0p1/2
0p3/2

0s1/2

Spectral  function:  distribution  of
momentum (pm) and  energies  (Em)

independent
particle  picture

Saclay data  for  16O(e,e’p)
[Mougey et  al.,  Nucl.  Phys.  A335,  35  (1980)]

Understood	
  for	
  a	
  few	
  stable	
  closed	
  shells:
[CB	
  and	
  	
  W.	
  H.	
  Dickhoff,	
  Prog.	
  Part.	
  Nucl.	
  Phys 52,	
  377	
  (2004)]



Quenching of SF in stable nuclei
Nucl. Phys. A553 (1993) 297c

NIKHEF: A common misconception about SRC:

”The quenching is constant over all 
stable nuclei, so it must be a short-
range effect”

Actually,  NO!
All calculations show that SRC have 
just a small effect at the Fermi 
surface. And the correlation to the 
experimental p-h gap is much more 
important.

[W. Dickhoff, CB, Prog. Part. Nucl. Phys. 52, 377 (2004)]



• Short-­range correlations
oriented  methods:
– VMC  [Argonne,  ’94]
– GF(SRC) [St.Louis-­Tübingen ‘95]
– FHNC/SOC  [Pisa  ‘00]

• Including  particle-­phonon
couplings:
– GF(FRPA) [St.Louis ‘01]

[CB  et  al.,  Phys.  Rev.  C65,  (02)]

• Experiment:

Sp1/2 Sp3/2

0.90
0.91

0.77 0.72

0.89
0.90

0.63 0.67±0.07
(estimated 

uncertainty)

Quenching of SF in stable nuclei
Nucl. Phys. A553 (1993) 297c
NIKHEF:

SRC are present and verified experimentally

BUT the are NOT the dominant mechanism for quenching SF!!!



0s

0p

1s-0d

0f-1p

…
.

s-d-g

…

pf

Particle-vibration coupling dominates the 
quenching of spectroscopic factors

Relative strength among fragments requires
shell-model approach

Quenching of absolute spectroscopic factors



Quenching of absolute spectroscopic factors

Overall quenching of spectroscopic 
factors is driven by:
SRC à ~10%
part-vibr. coupling à dominant
“shell-model“ à in open shell

[CB,	
  Phys.	
  Rev.	
  Lett. 103,	
  202520	
  
(2009)]
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2 PARTICLE-VIBRATION
COUPLING

1  SHORT RANGE
CORRELATIONS

57Ni

55Ni

31
2   +  3

…with analogous conclusions for 48Ca



Ab-initio calculations explain (a very weak) the Z/N dependence but the 
effect is much lower than suggested by direct knockout

Rather the quenching is high correlated to the gap at the Femi surface.

Spectroscopic factor are strongly
correlated to p-h gaps:

Z/N asymmetry dependence of SFs - Theory

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap "Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄$ = 10 or 18 MeV). The gap "Eph
increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of "Eph
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∆Ep-h [MeV]

0.65

0.7
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
"Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄$ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l ! 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.
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FIG. 4. (Color online) Dependence of the neutron 1p3/2 particle
energy and the 0f7/2 hole energy with respect to the oscillator
frequency and the size of the model space.
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and    CB,  unpublished  (2016)

56Ni

CB,  M.  Hjorth-­Jensen,
Phys.  Rev.  C 79,  064313  (2009)

0 5 10 15 20 25 30
50

60

70

80

90

100
No COM, prot O14,22,24

No COM, neut O14,22,24

SF
/(2
j+
1)

 [%
]

Sp,n [MeV]

17F

29F

25F
23F

28O24O

22O
14O

16O
24O

23O
22O

15O

17O

16O

NNLO-sat

SCGF/Dys-ADC(3)

protons
neutrons

14O



Z/N asymmetry dependence of SFs

14O(d,t)13O and 14O(d,3He)13N 
transfer reactions @ SPIRAL

Calculated spectroscopic factors are - correlated to p-h gaps
found to be:  - independent of asymmetry

- consistent with experimental data

[F.  Flavigny et  al,    PRL110,  122503  (2013)]

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
The authors thank N. T. Timofeyuk and N. Alamanos for

enlightening discussions and P. Navrátil for providing
evolved two- and three-body interactions relevant to this
study. This work was supported by LIA COPIGAL and
POLONIUM PHC under Grant No. 22470XA. Theoretical
work was supported by the UK’s STFC Grant No. ST/
J000051/1.
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FIG. 4 (color online). Reduction factors Rs obtained with (a) a
WS OF and the SLy4 interaction [31], averaged over four
entrance and two exit potentials, and compared to shell-model
calculations performed with the WBT interaction [37] in the
0pþ 2@! valence space; (b) a microscopic (SCGF) form factor
[30]. The detail of error bars is given in text.
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AO(p,2p)A-1N  at GSI (R3B-LAND)
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TABLE I: Measured inclusive cross sections for the oxygen isotopes from the quasi-free (p,2p) reaction. The second and third
columns show the neutron and proton separation energies of the residual A�1N fragments, respectively. In the fourth column,
the mean beam energy in the middle of the CH2 target is given. In the fifth column, the inclusive cross sections are listed along

with the statistical (round brackets) and systematic uncertainties (square brackets). The predictions from eikonal theory
are shown for the 0p1/2 protons, except the projectile 16O, in the sixth column. For the 16O(p,2p)15N reaction, the theoretical
cross section is given as the sum of both orbits, 0p1/2 and 0p3/2. The last column gives the resulting reduction factors relative

to the IPM with its total uncertainty.
Reaction Sn (A�1N) Sp (A�1N) Energy �

exp

�
theo

R
(MeV) (MeV) (AMeV) (mb) (mb)

13O(p,2p)12N 15.0 0.60 401 5.78(0.91)[0.37] 18.96 -
14O(p,2p)13N 20.1 1.94 351 10.23(0.80)[0.65] 15.09 0.68(7)
15O(p,2p)14N 10.6 7.55 310 18.92(1.82)[1.20] 12.19 -
16O(p,2p)15N 10.9 10.2 451 26.84(0.90)[1.70] 38.34 0.70(5)
17O(p,2p)16N 2.49 11.5 406 7.90(0.26)[0.50] 12.23 0.65(5)
18O(p,2p)17N 5.89 13.1 368 17.80(1.04)[1.13] 9.95 -
21O(p,2p)20N 2.49 11.5 449 5.31(0.23)[0.34] 9.16 0.58(4)
22O(p,2p)21N 4.59 19.6 415 5.93(0.39)[0.40] 8.54 -
23O(p,2p)22N 1.28 21.2 448 5.01(0.97)[0.33] 8.06 0.62(13)
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FIG. 4: Reduction factors, R, obtained from quasi-free one-
proton knockout from different projectiles and shown as a
function of the difference in the separation energies S

p

� S
n

.
The full black circles show the full proton strength for the
0p1/2 orbit. For 16O(p,2p)15N the reduction factor of the
combined 0p1/2 and 0p3/2 protons is displayed by the red
square. The error bars show the statistical uncertainty and
the horizontal square bracket mark the total uncertainty. The

blue triangles are the SFs calculated with SCGF theory.

on isospin asymmetry. Note that continuum effects can
further affect the quenching of SP strength in 22O but not
to the extent of altering this trend [20]. Thus, ab initio

results do not support a significant dependence on isospin
asymmetry, in agreement with the experimental results
presented in this letter.
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Spectroscopic factor Asymmetry puzzle

A. GADE et al. PHYSICAL REVIEW C 77, 044306 (2008)
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FIG. 6. (Color online) Reduction of the measured nucleon knock-
out cross sections (spectroscopic strength) relative to theoretical
values as a function of the difference in separation energies of
the two nucleon species, !S (see text). The data points are from
Refs. [5,13–16,19,24]. Those from the present work, labeled 24Si and
28S, appear on the extreme left- and right-hand sides of the figure.
Only experimental uncertainties are included.

of the differences in separation energies of the deficient and
excess nucleon species in the projectile, !S. For proton
removal we define !S = Sp − Sn and for neutron removal
!S = Sn − Sp, where Sn and Sp are the effective nucleon
separation energies. The quantity !S is a measure of the
asymmetry of the Fermi surfaces in each nucleus. !S takes
on large negative values for reactions where a weakly bound
nucleon of the excess species is removed and large positive
values for reactions where a strongly bound nucleon of the
deficient species is removed.

The plot includes data points from both heavy-ion-induced
one-proton and one-neutron knockout reactions and from
the electron-induced proton removal from stable nuclei.
Unlike the earlier comparisons of the (e, e′p) spectroscopic
strengths with the extreme independent-particle model, that
yield factors Rs ≈ 0.6-0.7, here we compare with shell-model
spectroscopic factors, as was carried out in Ref. [24]. Near
!S = 0 — the stable and well-bound systems — the values
cluster around reduction factors Rs ≈ 0.5–0.7, with heavy-ion
and electron-induced knockout in agreement. At the extremes
of nuclear binding, reduction factors Rs ≈ 0.25–0.40 are
found in the removal of a nucleon of the deficient species [e.g.,
the results from the present study of (24Si,23Si) and (28S,27S),
whereas the reduction factors are much closer to unity, with
Rs ≈ 0.80–1.0, when the removed nucleon is in excess (e.g.,
the results from the present study of (24Si,23Al) and (28S, 27P)].
The results of the present work fit nicely into the existing
systematics and give additional support to the suggestion
that the strength of correlation effects, missing to an (as yet)
unknown extent from effective interaction theories — here the
shell model — depend on the asymmetry of the two nucleon
Fermi surfaces. The present work suggests an enhancement of
the correlation effects experienced by strongly bound valence
nucleons of the deficient type and weakened correlations of
the excess nucleons at the weakly bound Fermi surface.
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FIG. 7. (Color online) Deduced values of Rs for the reactions
9Be(24Si,23Al)X and 9Be(24Si,23Si)X as obtained using different
Skyrme parametrizations as input to the HF calculations used for
the reaction methodology. The Rs factors obtained when using the
Skm∗, Sly4, Bsk9, Skxs15, Skxs20, and Skxs25 interactions agree
within the quoted uncertainties on the value deduced using the SkX
Skyrme parametrization used here. The SkX values are indicated by
the horizontal lines.

Finally, we address the sensitivity of the reaction method-
ology to details of the Skyrme interaction used to constrain
the residue densities and the rms radii rsp of the wave
functions of the removed nucleons. Figure 7 shows the
deduced suppression factors Rs for the reactions 9Be (24Si,
23Al)X and 9Be(24Si, 23Si)X for several different Skyrme
parametrizations, including the SkX model, favored here.

As mentioned in Sec. III, we use the SkX Skyrme inter-
action [35] for the nuclear densities and single-particle rms
radii because it has been extensively tested with regard to size
and binding energy observables [36–38]. But there are other
Skyrme parameter sets available. The main difference between
them can be related to the nuclear-matter incompressibility K
and the slope of the neutron equation-of-state near nuclear-
matter density Pn. Pn is correlated with the neutron-skin
thickness in nuclei with N ̸= Z [52] and hence can be a
source of uncertainty for the densities and single-particle radii
in nuclei far from stability. The SkX interaction has a relatively
large incompressibility, K = 270 MeV, and a neutron skin of
T = rn − rp = 0.16 fm for 208Pb, where rp/n is the rms radius
for protons/neutrons. Thus, we need to test the sensitivity of
our results to reasonable variations in the Skyrme parameters
related to these quantities. The results for one-proton and
one-neutron removal from 24Si are shown in Fig. 7. Skm∗ [53]
is used because it gives a slightly better surface diffuseness for
the charge density [37,54] compared to SkX. This change can
be traced to a smaller nuclear matter incompressibility, which
is smaller for Skm∗ (K = 215 MeV) compared to SkX. The
recent Skxs15, Skxs20, and Skxs25 Skyrme interactions [54]
represent a reasonable variation of neutron-skin thickness in
208Pb [52], with T = 0.15, 0.20, and 0.25 fm, respectively,
and all have K = 200 MeV. We also compare to results
with the widely used Sly4 interaction [55] (K = 230 MeV
and T = 0.16 fm) and with the Bsk9 interaction [56] ob-
tained from a recent global fit to binding energies together
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radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
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evolved two- and three-body interactions relevant to this
study. This work was supported by LIA COPIGAL and
POLONIUM PHC under Grant No. 22470XA. Theoretical
work was supported by the UK’s STFC Grant No. ST/
J000051/1.

[1] W.H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52,
377 (2004).

[2] S. Boffi et al., Electromagnetic Response of Atomic
Nuclei, Oxford Studies in Nuclear Physics Vol. 20
(Clarendon Press, Oxford, 1996).

[3] M. Bernheim et al., Nucl. Phys. A375, 381 (1982).
[4] L. Lapikas, Nucl. Phys. A553, 297 (1993).
[5] M. Leuschner et al., Phys. Rev. C 49, 955 (1994).
[6] C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009).
[7] Ø. Jensen, G. Hagen, M. Hjorth-Jensen, B. A. Brown, and

A. Gade, Phys. Rev. Lett. 107, 032501 (2011).
[8] G. J. Kramer, H. P. Blok, and L. Lapikás, Nucl. Phys.

A679, 267 (2001).
[9] J. P. Schiffer et al., Phys. Rev. Lett. 108, 022501 (2012).
[10] A. Gade et al., Phys. Rev. C 77, 044306 (2008).
[11] C. Louchart, A. Obertelli, A. Boudard, and F. Flavigny,

Phys. Rev. C 83, 011601(R) (2011).
[12] F. Flavigny, A. Obertelli, A. Bonaccorso, G. F. Grinyer, C.

Louchart, L. Nalpas, and A. Signoracci, Phys. Rev. Lett.
108, 252501 (2012).

[13] J. Lee et al., Phys. Rev. C 83, 014606 (2011).

0,2

0,4

0,6

0,8

1

R
s =

 σ
ex

p(θ
) /

 σ
th

(θ
)

14O data
16O data
18O data

-20 -10 0 10 20

∆S = ε (Sp - Sn) (MeV)

0,2

0,4

0,6

0,8

1

R
s =

 σ
ex

p(θ
) /

 σ
th

(θ
)

14O(d, t)

14O(d, 3He)

(b) SCGF

(a) WS + SM

FIG. 4 (color online). Reduction factors Rs obtained with (a) a
WS OF and the SLy4 interaction [31], averaged over four
entrance and two exit potentials, and compared to shell-model
calculations performed with the WBT interaction [37] in the
0pþ 2@! valence space; (b) a microscopic (SCGF) form factor
[30]. The detail of error bars is given in text.

PRL 110, 122503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 MARCH 2013

122503-4

6

TABLE I: Measured inclusive cross sections for the oxygen isotopes from the quasi-free (p,2p) reaction. The second and third
columns show the neutron and proton separation energies of the residual A�1N fragments, respectively. In the fourth column,
the mean beam energy in the middle of the CH2 target is given. In the fifth column, the inclusive cross sections are listed along

with the statistical (round brackets) and systematic uncertainties (square brackets). The predictions from eikonal theory
are shown for the 0p1/2 protons, except the projectile 16O, in the sixth column. For the 16O(p,2p)15N reaction, the theoretical
cross section is given as the sum of both orbits, 0p1/2 and 0p3/2. The last column gives the resulting reduction factors relative

to the IPM with its total uncertainty.
Reaction Sn (A�1N) Sp (A�1N) Energy �

exp

�
theo

R
(MeV) (MeV) (AMeV) (mb) (mb)

13O(p,2p)12N 15.0 0.60 401 5.78(0.91)[0.37] 18.96 -
14O(p,2p)13N 20.1 1.94 351 10.23(0.80)[0.65] 15.09 0.68(7)
15O(p,2p)14N 10.6 7.55 310 18.92(1.82)[1.20] 12.19 -
16O(p,2p)15N 10.9 10.2 451 26.84(0.90)[1.70] 38.34 0.70(5)
17O(p,2p)16N 2.49 11.5 406 7.90(0.26)[0.50] 12.23 0.65(5)
18O(p,2p)17N 5.89 13.1 368 17.80(1.04)[1.13] 9.95 -
21O(p,2p)20N 2.49 11.5 449 5.31(0.23)[0.34] 9.16 0.58(4)
22O(p,2p)21N 4.59 19.6 415 5.93(0.39)[0.40] 8.54 -
23O(p,2p)22N 1.28 21.2 448 5.01(0.97)[0.33] 8.06 0.62(13)

 [MeV]n - SpS
30− 20− 10− 0 10 20

R

0.2

0.4

0.6

0.8

1

p1/2

p1/2 + p3/2 pol1 fit
pol0 fitSCGF

O14

O16

O17

O21

O22 O23

FIG. 4: Reduction factors, R, obtained from quasi-free one-
proton knockout from different projectiles and shown as a
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.
The full black circles show the full proton strength for the
0p1/2 orbit. For 16O(p,2p)15N the reduction factor of the
combined 0p1/2 and 0p3/2 protons is displayed by the red
square. The error bars show the statistical uncertainty and
the horizontal square bracket mark the total uncertainty. The

blue triangles are the SFs calculated with SCGF theory.

on isospin asymmetry. Note that continuum effects can
further affect the quenching of SP strength in 22O but not
to the extent of altering this trend [20]. Thus, ab initio

results do not support a significant dependence on isospin
asymmetry, in agreement with the experimental results
presented in this letter.
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Peripheral knockout on 9Be

Dependence on proton-neutron difference is still 
unresolved…
- Missing many-body correlations?
- Reaction mechanism?

14O(d,t)13O and 14O(d,3He)13N 
transfer reactions @ SPIRAL

AO(p,2p)A-1N  at GSI (R3B-LAND)



Short-range correlations (SRC)

Are there signatures??



High momentum components – where are they?

Momentum  distribution:

• High  k components  are  found  
at  high  missing  energies  
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Interest in short range correlations:
• a fraction of the total number of nucleons:

- ~10% in light nuclei (VMC, FHNC, Green’s function)
- 15-20% in heavy systems (CBF, Green’s function)

• can explain up to 2/3 of the binding energy [see ex. PRC51, 3040 (’95) for 
16O]
• influence NM saturation properties [see ex. PRL90, 152501 (’03)]

strength: ~85% ~15%
~100MeV ~300MeV

Em

~800MeV/c
pmLRC	
  (particle-­‐

phonon	
  couplings)

SRC
(binding)

(Recent  review:   Prog.  Part.  Nucl.  Phys.  52 (2004)  337.)

Distribution of (All) the Nuclear Strength
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Spectral strength of 12C from exp. E97-006 
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• About	
  0.6	
  protons	
  are	
  found	
  in	
  the	
  correlated	
  region:

àin	
  good	
  agreement	
  
with	
  early	
  theoretical	
  
predictions!

• what	
  about	
  the	
  
position	
  of	
  the	
  peak?

Theory vs. measured strength - I 

into account according to [25]. The approach has been
verified on special sets of data where radiative corrections
are large. The other is based on a bin-by-bin comparison
of experimental and Monte Carlo yield, where the Monte
Carlo program simulates the known radiative processes,
multiple scattering, and energy loss of the particles, spec-
trometer transfer matrices, focal plane detector efficien-
cies, the software cuts applied, etc. The parameters of the
model spectral function then are iterated to get agreement
between data and simulation. We have found good agree-
ment between the two procedures.

The resulting S!k; E" at low k; E shows the familiar
features known from low-q !e; e0p" experiments [26]. At
large k; E, we observe the tail resulting from SRC. At very
large missing energy Em, the peak due to multistep inter-
actions involving pion emission from the various nucleon
resonances, appears. The data taken in perpendicular
kinematics lead to a 3 times larger strength compared to
the parallel kinematics, which makes it clear that the
cross sections measured in perpendicular kinematics re-
ceive dominant contributions from multistep reactions
(the most important ones being knockout of another
nucleon by the outgoing proton, and processes involving
meson production); such data then are hardly usable to
determine the correlated strength, but can serve to check
our ability to predict multistep processes.

The !e; e0p" data at low momentum transfer (leading to
knockout protons with low momenta k0) have generally
been analyzed using a distorted-wave Born approxima-
tion (DWBA) description for the outgoing proton. At very
large k0, the effect of the real part of the optical potential
is small, particularly for the continuum strength, where a
small shift in k0 is of little concern due to energy/mo-
mentum dependences which are weak as compared to the
ones in the IP region. The main final state interaction
effect is the absorption of the outgoing proton, which is

taken into account via the transparency factor [23]. For
the analysis of the carbon data, we use T # 0:60. Also
important at large E is the consideration of recoil protons,
which result from two-step processes (see below).

Results.— Here, we concentrate on the overall strength
in the correlated region. Figure 2 gives, for Correlated
Basis Function theory (CBF), a schematical breakdown of
the various regions of interest in the missing energy Em
and the missing momentum pm plane, the quantities that
are experimentally defined and identifiable —in PWIA—
with k; E. The strength corresponding to the IP motion at
low k; E amounts to $80% for the CBF calculation [3]. In
some of the regions, IP and SRC strength overlap and
cannot be separated. In the shaded region, the strength
from SRC is measurable with the kinematics employed in
the present experiment. The shaded region at large Em is
bounded by a cut that excludes unwanted contributions
from ! excitation and ! production. These processes have
been modeled using MAID [27] to study possible contri-
butions in our region of interest.

In this shaded region, we find the strength listed in
Table I. It is compared to the strength predicted by theory
and integrated over the same region of k; E. This com-
parison is slightly dependent on the limits of the shaded
area as the k and E dependence of experimental and
theoretical S!k; E" are not the same (Fig. 3); for the
present comparison, we will ignore this minor effect.

The result shown in Table I has been obtained using the
off-shell e-p cross section "CC [21]; for this treatment,
the best agreement of the resulting S!k; E" from different
kinematics (kin3, kin4, kin5) is found. The uncertainty
quoted includes an estimate for the uncertainty due to the
off-shell cross section (judging from difference of
strength obtained using the cross sections "CC1 and
"CC2 of [29]). The error does not contain an uncertainty
for the transparency factor used to correct for final-state
interactions (FSI) because this value is commonly ac-
cepted and in agreement with the Glauber calculations
of several authors. The statistical error is negligible.

For the kinematics of Fig. 1, the dominant multistep
process is rescattering of the knocked out nucleon by
another nucleon. Barbieri [30,31] has calculated this pro-
cess using Glauber theory and an in-medium N-N cross
section accounting for Pauli blocking. He finds, in agree-
ment with our data, that the multistep contribution is
much smaller for parallel kinematics. For the experimen-
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TABLE I. Correlated strength, integrated over shaded area of
Fig. 2 (quoted in terms of the number of protons in 12C.)

Experiment 0:61% 0:06

Greens Function Theory [28] 0.46
CBF Theory [3] 0.64
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Two-nucleon pair and SRC in nuclei

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
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(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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tail with equal numbers of majority and minority
fermions, thereby leaving a larger fraction of majo-
rity fermions in low-momentumstates (k< kF) (see
Fig. 1). In neutron-rich nuclei, this increases the
average protonmomentumandmay even result in
protons having higher average momentum than
neutrons, inverting the momentum sharing in im-
balanced nuclei from that in noninteracting sys-
tems. Theoretically, this can happen because of
the tensor part of the nucleon-nucleon interac-
tion, which creates predominantly spin-1, isospin-
0 neutron-proton (np) SRC pairs (17, 18).

Here we identify SRC pairs in the high-
momentum tail of nuclei heavier than carbonwith
more neutrons (N) than protons (Z) (i.e., N > Z).
The data show the universal nature of SRC pairs,
which even in lead (N/Z = 126/82) are still pre-
dominantly np pairs. This np-pair dominance
causes a greater fraction of protons than neutrons
to have high momentum in neutron-rich nuclei.
The data presented here were collected in 2004

in Hall B of the Thomas Jefferson National Ac-
celerator Facility using a 5.014-GeV electron beam
incident on 12C, 27Al, 56Fe, and 208Pb targets. We

measured electron-induced two-proton knockout
reactions (Fig. 2). The CEBAF Large Acceptance
Spectrometer (CLAS) (20) was used to detect the
scattered electron and emitted protons. CLAS uses
a toroidal magnetic field and six independent
sets of drift chambers, time-of-flight scintillation
counters, Cerenkov counters, and electromag-
netic calorimeters for charged-particle identifi-
cation and trajectory reconstruction (Fig. 2) (16).
We selected events in which the electron in-

teracts with a single fast proton from an SRC pair
in the nucleus (9, 16) by requiring a large four-
momentumtransferQ2 ¼ q→2−ðw=cÞ2 > 1:5 GeV2/c2

[where q→ and w are the three-momentum and
energy, respectively, transferred to the nucleus
and c is the speed of light] and Bjorken scaling
parameter xB ¼ Q2=ð2mN ⋅ wÞ > 1:2 (wheremN

is the nucleonmass). To ensure selection of events
in which the knocked-out proton belonged to
an SRC pair, we further required missing mo-
mentum 300 < jp→missj < 600 MeV/c, where
p→miss ¼ p→p − q→ with p→p the measured proton
momentum. We suppressed contributions from
inelastic excitations of the struck nucleon by lim-
iting the reconstructed missing mass of the two-
nucleon systemmmiss < 1.1 GeV/c2. In each event,
the leading proton that absorbed the transferred
momentum was identified by requiring that its
momentum p→p is within 25° of q→ and that
jp→pj=jq

→j ≥ 0:6 (16, 21).
When a second proton was detected with mo-

mentum greater than 350 MeV/c, it was emitted
almost diametrically opposite to p→miss (see fig. S19).
The observed backward-peaked angular distribu-
tions are very similar for all four measured

SCIENCE sciencemag.org 31 OCTOBER 2014 • VOL 346 ISSUE 6209 615

Fig. 2. Illustration of the CLAS detector with
a reconstructed two-proton knockout event.
For clarity, not all CLAS detectors and sectors
are shown.The inset shows the reaction in which
an incident electron scatters fromaproton-proton
pair via the exchange of a virtual photon. The
human figure is shown for scale.

Fig. 1. Schematic
representation
of the momentum
distribution, n(k), of
two-component
imbalanced Fermi
systems. Red and blue
dashed lines show the
noninteracting system,
whereas the solid
lines show the effect of
including a short-range
interaction between
different fermions.
Such interactions create
a high-momentum tail
(k > kF, where kF is the
Fermi momentum of
the system). This is
analogous to a dance
party with a majority of girls, where boy-girl interactions will make the average boy dance more than the
average girl.
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High-momentum proton-neutron
pairs dominate over p-p and p-n…

High-k protons even in asymmetric nuclei?
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tems. Theoretically, this can happen because of
the tensor part of the nucleon-nucleon interac-
tion, which creates predominantly spin-1, isospin-
0 neutron-proton (np) SRC pairs (17, 18).

Here we identify SRC pairs in the high-
momentum tail of nuclei heavier than carbonwith
more neutrons (N) than protons (Z) (i.e., N > Z).
The data show the universal nature of SRC pairs,
which even in lead (N/Z = 126/82) are still pre-
dominantly np pairs. This np-pair dominance
causes a greater fraction of protons than neutrons
to have high momentum in neutron-rich nuclei.
The data presented here were collected in 2004

in Hall B of the Thomas Jefferson National Ac-
celerator Facility using a 5.014-GeV electron beam
incident on 12C, 27Al, 56Fe, and 208Pb targets. We

measured electron-induced two-proton knockout
reactions (Fig. 2). The CEBAF Large Acceptance
Spectrometer (CLAS) (20) was used to detect the
scattered electron and emitted protons. CLAS uses
a toroidal magnetic field and six independent
sets of drift chambers, time-of-flight scintillation
counters, Cerenkov counters, and electromag-
netic calorimeters for charged-particle identifi-
cation and trajectory reconstruction (Fig. 2) (16).
We selected events in which the electron in-

teracts with a single fast proton from an SRC pair
in the nucleus (9, 16) by requiring a large four-
momentumtransferQ2 ¼ q→2−ðw=cÞ2 > 1:5 GeV2/c2

[where q→ and w are the three-momentum and
energy, respectively, transferred to the nucleus
and c is the speed of light] and Bjorken scaling
parameter xB ¼ Q2=ð2mN ⋅ wÞ > 1:2 (wheremN

is the nucleonmass). To ensure selection of events
in which the knocked-out proton belonged to
an SRC pair, we further required missing mo-
mentum 300 < jp→missj < 600 MeV/c, where
p→miss ¼ p→p − q→ with p→p the measured proton
momentum. We suppressed contributions from
inelastic excitations of the struck nucleon by lim-
iting the reconstructed missing mass of the two-
nucleon systemmmiss < 1.1 GeV/c2. In each event,
the leading proton that absorbed the transferred
momentum was identified by requiring that its
momentum p→p is within 25° of q→ and that
jp→pj=jq

→j ≥ 0:6 (16, 21).
When a second proton was detected with mo-

mentum greater than 350 MeV/c, it was emitted
almost diametrically opposite to p→miss (see fig. S19).
The observed backward-peaked angular distribu-
tions are very similar for all four measured
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a reconstructed two-proton knockout event.
For clarity, not all CLAS detectors and sectors
are shown.The inset shows the reaction in which
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Nuclear forces in exotic nuclei
Nucleon  interactions  are  very  
complex  and  difficult  to  handle
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Fig. 1. Central (S = 0 and 1), tensor and spin–orbit potentials in parity-odd sector obtained by lattice QCD (left), and their enlargements (right). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

In our simulation, the dispersion relation for the nucleon 
can be fitted well with α = 0.88(1) (χ2/d.o.f. = 2.6) at mN =
2152(3) MeV, showing no sign of higher order contributions in 
k2 for k2 ≤ 1.25 [GeV2] (ka ≤

√
5 × 2π/L) within statistical errors.

4.3. Extractions of potentials

The potential for the spin-singlet sector at NLO can be easily 
extracted from the equation

V I=0
C,S=0(r)

〈
R(r⃗, t;J ),R(r⃗, t;J )

〉

=
〈
R(r⃗, t;J ), (Dt − H0)R(r⃗, t;J )

〉
(18)

for J = J (T −
1 ), dominated by 1 P1, where αDt = 1

4mN

∂2

∂t2 − ∂
∂t , 

and we define an inner product with an average over the cubic 
group as ⟨F (r⃗), H(r⃗)⟩ ≡ ∑

g∈O F ∗
βα(gr⃗)Hαβ(gr⃗), which reduces sta-

tistical noises of potentials. Note that here and in the following we 
use the fact that local potentials, V I

C,S , V I
T and V I

LS, are invariant 
under the rotation g in the cubic group. The result for V I=0

C,S=0(r) is 
plotted in Fig. 1 by green circles, which shows a strong repulsion 
at short distances.

For the spin-triplet sector, three unknown functions up to NLO 
can be determined from the equation

V I=1
C;S=1(r)F

J
C (r) + V I=1

T (r)F
J
T (r) + V I=1

LS (r)F
J
LS (r) = K J (r)

(19)

for three different sources, J = J (A−
1 ), J (T −

1 ), J (E−) (or 
J (T −

2 )), dominated by 3 P0, 3 P1 and 3 P2–3 F2, respectively, where

F
J
C (r) ≡

〈
R(r⃗, t;J ),R(r⃗, t;J )

〉
,

F
J
T (r) ≡

〈
R(r⃗, t;J ), S12R(r⃗, t;J )

〉
,

F
J
LS (r) ≡

〈
R(r⃗, t;J ), L⃗ · S⃗R(r⃗, t;J )

〉
,

K J (r) ≡
〈
R(r⃗, t;J ), (Dt − H0)R(r⃗, t;J )

〉
.

In Fig. 1, we also plot V I=1
C;S=1(r) (red), V I=1

T (r) (black) and V I=1
LS (r)

(blue), obtained from A−
1 , T −

1 , E− sources. (The result obtained 
form A−

1 , T −
1 , T −

2 sources instead does not show a significant dif-
ference.) We observe that (i) the central potential V I=1

C;S=1(r) is re-
pulsive, (ii) the tensor potential V I=1

T (r) is positive and weak com-
pared to V I=1

C;S=1(r) and V I=1
LS (r), and (iii) the spin–orbit potential 

V I=1
LS (r) is negative and strong. These features agree qualitatively 

well with those of the phenomenological potential in Ref. [27].
For both spin-singlet and spin-triplet central potentials, there 

may be a very weak attractive pocket of less than a few MeV at 
medium distance (r ≃ 1 fm). However, considering the statistical 
and systematic errors, its existence should be carefully examined 
in future studies.

We make a technical comment. We sometimes observe large 
condition numbers for Eq. (19) (with three sources) near the spa-
tial boundaries, which gives rise to points with large statistical 
errors at r ≃ 1–1.5 fm in Fig. 1.

4.4. Scattering phase shifts and effective potentials

For quantitative studies of the interactions, it is desirable to cal-
culate not only the potential but also scattering phase shifts, since 
the potential is not a physical observable as mentioned above. In 
this section, we therefore investigate a nature of interactions, by 
calculating scattering phase shifts from the obtained potentials. In 
particular, we study whether the LS potential of Fig. 1 leads to at-
tractive behaviors in the scattering phase shifts in the 3 P2 channel.

We calculate the scattering phase shifts by solving the Schrö-
dinger equation with the above potentials, parameterized with 
multi-Gaussian forms, v(r) ≡ ∑Ngauss

i=1 ai exp(−νi(r/b)2) with
Ngauss = 3 for the central and spin–orbit potentials, whereas 
v(r) ≡ a1(r/b) exp(−ν1(r/b)2) + a2(r/b)3 exp(−ν2(r/b)2) for the 
tensor potential to mimic the short distance behavior, as shown 
in Fig. 1. Here, a scaling parameter b ≡ 0.1555 fm is introduced 
to simplify the notation. The uncorrelated fits are performed rea-
sonably. The resultant fit parameters and χ2/d.o.f. are given in 
Table 1.

The scattering observables are obtained from the long distance 
behaviors of linearly independent regular solutions, and are shown 
in Fig. 2. The inner error is statistical, while the outer one is statis-
tical and systematic combined in quadrature. Here, to estimate the 
systematic error, we take into account the uncertainty arising from 
the truncation of the derivative expansion and from the choice of 
fitting functions for the potentials. To estimate systematic errors 
associated with the truncation of the derivative expansion, we cal-
culate phase shifts also at t − t0 = 7, and take differences of central 
values between t −t0 = 8 and 7 as systematic errors. A dependence 
of phase shifts on a choice of fitting functions for the potentials 
is estimated by changing the fitting function to a Yukawa-type. It 
turns out that the former dominates the systematic error except 
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

⟨jm j′m′|V |jm j′m′⟩
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces:

Need at LEAST 3NF!!!
(“cannot” do RNB physics without…)

Single particle spectrum at Efermi:

Saturation of nuclear matter:

[T. Otsuka et al.,
Phys Rev. Lett 105, 
032501 (2010)]

[A. Carbone et al., 
Phy.s Rev. C 88, 044302	
   (2013)]

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the
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FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and
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FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons
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in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD
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Oxygen puzzle…

Three-Body Forces and the Limit of Oxygen Isotopes

Takaharu Otsuka,1,2,3 Toshio Suzuki,4 Jason D. Holt,5 Achim Schwenk,5 and Yoshinori Akaishi6

1Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
2Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan

3National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
4Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3, Tokyo 156-8550, Japan

5TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
6RIKEN Nishina Center, Hirosawa, Wako-shi, Saitama 351-0198, Japan

(Received 17 August 2009; published 13 July 2010)

The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass

nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-

model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic

explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body

systems. This leads to repulsive contributions to the interactions among excess neutrons that change the

location of the neutron drip line from 28O to the experimentally observed 24O. Since the mechanism is

robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of

heavy elements in neutron-rich environments.

DOI: 10.1103/PhysRevLett.105.032501 PACS numbers: 21.10.!k, 21.30.!x, 21.60.Cs, 27.30.+t

One of the central challenges of nuclear physics is to
develop a unified description of all nuclei created in the
laboratory and the cosmos based on the underlying forces
between neutrons and protons (nucleons). This involves
understanding the sequences of isotopes in the nuclear
chart, Fig. 1, from the limits of proton-rich nuclei to the
neutron drip line. These limits have been established ex-
perimentally up to oxygen with proton number Z ¼ 8.
Mapping out the neutron drip line for larger Z [1] and
exploring unexpected structures in neutron-rich nuclei are
a current frontier in the physics of rare isotopes. The years
of discovery in Fig. 1 highlight the tremendous advances
made over the last decade.

Figure 1 shows that the neutron drip line evolves regu-
larly with increasing proton number, with an odd-even
bound-unbound pattern due to neutron halos and pairing
effects. The only known anomalous behavior is present in
the oxygen isotopes, where the drip line is strikingly close
to the stability line [2]. Already in the fluorine isotopes,
with one more proton, the drip line is back to the regular
trend [3]. In this Letter, we discuss this puzzle and show
that three-body forces are necessary to explain why 24O
[4,5] is the heaviest oxygen isotope.

Three-nucleon (3N) forces were introduced in the pio-
neering work of Fujita and Miyazawa (FM) [6] and arise
because nucleons are composite particles. The FM 3N
mechanism is due to one nucleon virtually exciting a
second nucleon to the !ð1232 MeVÞ resonance, which is
deexcited by scattering off a third nucleon, see Fig. 3(e).

Three-nucleon interactions arise naturally in chiral ef-
fective field theory (EFT) [7], which provides a systematic
basis for nuclear forces, where nucleons interact via pion
exchanges and shorter-range contact interactions. The re-
sulting nuclear forces are organized in a systematic expan-

sion from leading to successively higher orders, and
include the! excitation as the dominant part of the leading
3N forces [7]. The quantitative role of 3N interactions has
been highlighted in recent ab initio calculations of light
nuclei with A ¼ N þ Z & 12 [8,9].
We first discuss why the oxygen anomaly is not repro-

duced in shell-model calculations derived from micro-
scopic NN forces. This can be understood starting from
the stable 16O and adding neutrons into single-particle
orbitals (with standard quantum numbers nlj) above the
16O core. We will show that correlations do not change this
intuitive picture. Starting from 16O, neutrons first fill the
0d5=2 orbitals, with a closed subshell configuration at 22O
(N ¼ 14), then the 1s1=2 orbitals at 24O (N ¼ 16), and
finally the 0d3=2 orbitals at 28O (N ¼ 20). For simplicity,
we will drop the n label in the following.

FIG. 1 (color online). Stable and unstable nuclei with Z & 14
and neutron number N [35]. The oxygen anomaly in the location
of the neutron drip line is highlighted. Element names and years
of discovery of the most neutron-rich nuclei are given. The axis
numbers indicate the conventional magic numbers.

PRL 105, 032501 (2010) P HY S I CA L R EV I EW LE T T E R S
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[T. Otsuka et al., Phys Rev. Lett 105, 32501 (2010)]

In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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The fujita-Miyazawa 3NF provides repulsion 
through Pauli screening of other 2NF terms:

The oxygen dripline is at 24O, at odds with 
other neighbor isotope chains. 

Phenomenological shell model interaction 
reflect this in the s.p. energies but no 
realistic NN interaction alone is capable of 
reproducing this…
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à d3/2 raised by genuine 3NF
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Results for the N-O-F chains
A.  Cipollone,  CB,  P.  Navrátil,  Phys.  Rev.  Lett.  111,  062501  (2013)

and Phys.  Rev.  C  92,  014306  (2015)



à 3NF crucial for reproducing binding energies and driplines around oxygen

à cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1)
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)

A.  Cipollone,  CB,  P.  Navrátil,  Phys.  Rev.  Lett.  111,  062501  (2013)
and   Phys.  Rev.  C  92,  014306  (2015)

Results for the N-O-F chains
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  SCGF:

- Constrain NN phase shifts

- Constrain radii and energies 
up to A≤24

è Provides saturation up to 
large masses!



- New fits of chiral interactions (NNLOsat) 
highly improve comparison to data

- Deficiencies remain for neutron rich 
isotopes

structure calculations [3, 4]. Many-body techniques have
themselves undergone major progress and extended their
domain of applicability both in mass and in terms of ac-
cessible (open-shell) isotopes for a given element [5–15].
As a result, today the structure of light and medium-
mass nuclei has become a testing ground for our basic
understanding of nuclear forces.

An emblematic case that has received considerable at-
tention is the one of oxygen binding energies, where sev-
eral calculations have established the crucial role played
by 3N forces in the reproduction of the neutron drip
line at 24O (i.e. in explaining the so-called “oxygen
anomaly”) [6, 16–19]. The excellent agreement between
experimental data and theoretical calculations based on
a next-to-next-to-next-to-leading order (N3LO) 2N and
N2LO 3N chiral interaction (EM) [20–22] was greeted as
a milestone for ab initio methods and modern models
of inter-nucleon interactions, even though a consistent
description of nuclear radii could not be achieved at the
same time [23]. Since then, this mismatch has remained a
puzzle. Subsequent calculations of heavier systems [7–9]
and infinite nuclear matter [24, 25] confirmed the system-
atic underestimation of charge radii, a sizeable overbind-
ing and too spread-out spectra, all pointing to an incor-
rect reproduction of the saturation properties of nuclear
matter. This led to the development of a novel nuclear
interaction, labelled NNLOsat [26], which includes con-
tributions up to N2LO in the chiral EFT expansion (both
in 2N and 3N sector) and di↵ers from EM in two main as-
pects. First, the optimisation of the (“low-energy”) cou-
pling constants is performed simultaneously for 2N and
3N terms [27], while EM and accompanying 3N forces are
optimised sequentially. Second, experimental constraints
from light nuclei (namely energies and charge radii in
some C and O isotopes) are included in the fit of such
low-energy constants in addition to observables from few-
body systems. This second aspect represents a departure
from the usual reductionist strategy of ab initio calcula-
tions followed by EM, in which parameters in the A-body
sector are fixed uniquely by observables in A-body sys-
tems. Although first applications point to good predic-
tive power for ground-state properties [26, 28], the per-
formance of the NNLOsat potential remains to be tested
along isotopic chains and for excited states.

In the present work we employ two di↵erent
many-body approaches, self-consistent Green’s function
(SCGF) and in-medium similarity renormalisation group
(IM-SRG). Each of them is available in two versions.
The first is based on standard expansion schemes and
thus applicable only to closed-shell nuclei. It is referred
to as Dyson-SCGF (DGF) [29] and single-reference IM-
SRG (SR-IM-SRG) [30] respectively. The second version
builds on Bogoliubov-type reference states and thus allow
for a proper treatment of pairing correlations, resulting in
the description of systems displaying an open-shell char-
acter. Such version is labelled Gorkov-SCGF (GGF) [5]
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FIG. 1. Oxygen binding energies. Results from SCGF
and IMSRG calculations performed with EM [20–22] and
NNLOsat [26] interactions are displayed along with available
experimental data.

and multi-reference IM-SRG (MR-IM-SRG) [6] respec-
tively. For the MR-IM-SRG, the reference state is first
projected on good proton and neutron numbers. Hav-
ing di↵erent ab initio approaches at hand is crucial to
benchmark theoretical results and infer as unbiased as
possible information on the input of such calculations,
i.e. inter-nucleon forces. Moreover, while DGF (here in
the ADC(3) approximation scheme), SR- and MR-IM-
SRG feature a comparable content in terms of many-body
expansion, GGF currently includes a lower amount of
many-body correlations, which allows testing the many-
body convergence [7].

We first compute total binding energies EB for oxygen
isotopes 14�24O for the two sets of 2N and 3N interactions
with the four many-body schemes. EM is further evolved
to a low-momentum scale � = 1.88�2.0 fm�1 by means of
SRG techniques [31]. Results are displayed in Fig. 1. For
both interactions, di↵erent many-body calculations yield
values of EB spanning intervals of up to 10 MeV, from 5
to 10% of the total. Compared to experimental binding
energies, EM and NNLOsat perform similarly, following
the trend of available data along the chain both in ab-
solute and in relative terms. Overall, results shown in
Fig. 1 confirm previous findings for EM and validate the
use along the isotopic chain for NNLOsat .

While nuclear masses have been experimentally deter-
mined for the majority of known light and medium-mass
nuclei, measurements of charge and matter radii are typ-
ically more challenging. Charge radii for stable isotopes
have been accessed in the past by means of electron scat-
tering [32]. In addition to charge rms radii, analytical
forms of fitted experimental charge densities can be ex-
tracted from (e,e) cross sections. Standard forms include
2- or 3-parameter Fermi (2pF or 3pF) profiles [33]. For
extended sets of (e,e) data (in terms of momentum trans-
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
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consistent inclusion of higher-body terms in the charge
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We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from
the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art
ab initio calculations along with binding energy systematics. Experimental matter radii are obtained
through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show
that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear
interactions derived within chiral effective field theory fail to provide a realistic description of charge and
matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the
simultaneous description of the three observables for stable isotopes but shows deficiencies for the most
neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

DOI: 10.1103/PhysRevLett.117.052501

Our present understanding of atomic nuclei faces the
following major questions. Experimentally, we aim (i) to
determine the location of the proton and neutron drip lines
[1,2], i.e., the limits in neutron numbers N upon which, for
fixed proton number Z, with decreasing or increasing N,
nuclei are not bound with respect to particle emission, and
(ii) to measure nuclear structure observables offering sys-
tematic tests of microscopic models. While nuclear masses
have been experimentally determined for the majority of
known light and medium-mass nuclei [3], measurements of
charge and matter radii are typically more challenging.
Charge radii for stable isotopes have been accessed in the
past bymeans of electron scattering [4]. In recent years, laser
spectroscopy experiments allow extending such measure-
ments to unstable nuclei with lifetimes down to a few
milliseconds [5]. Matter radii are determined by scattering
with hadronic probes which requires a modelization of the
reaction mechanism. Theoretically, intensive works have
also been performed towards linking a universal description
of atomic nuclei to elementary interactions [6–8] amongst
constituent nucleons and, ultimately, to the underlying
theory of strong interactions, quantum chromodynamics
(QCD). If accomplished, this ab initio description would be
beneficial both for a deep understanding of known nuclei
(stable and unstable, totalling around 3300) and to predict on
reliable bases the features of undiscovered ones (few more
thousands are expected). Many of the latter are not, in the
foreseeable future, experimentally at reach, yet they are
crucial to understanding nucleosynthesis phenomena,
modelled using large sets of evaluated data and of calculated
observables.
The reliability of first-principles calculations depends

upon a consistent understanding of fundamental

observables: ground-state characteristics of nuclei related
to their existence (masses, expressed as binding energies)
and sizes (expressed as root mean square—rms—radii).
Special interest resides in the study of masses and sizes for
a given element along isotopic chains. Experimentally, their
determination is increasingly difficult as one approaches
the neutron drip line; as of today, the heaviest element with
available data on all existing bound isotopes is oxygen
(Z ¼ 8) [3]. Using theoretical simulations, the link between
nuclear properties and internucleon forces can be explored
for different N=Z values, thus, critically testing both our
knowledge of nuclear forces and many-body theories.
In this work, we focus on oxygen isotopes for which, in

spite of the tremendous progress of recent ab initiomethods,
a simultaneous reproduction of masses and radii has not yet
been achieved. We present important findings from novel
ab initio calculations along with a complete evaluation of
matter radii, rm, for stable and neutron-rich oxygen isotopes.
Here, rm are deduced via a microscopic reanalysis of proton
elastic scattering data sets. They complement charge radii
rch, offering an extended comparison through the isotopic
chain that allows testing state-of-the-art many-body calcu-
lations. We show that a recent version of two- and
three-nucleon (2N and 3N) forces leads to considerable
improvement in the critical description of radii.
A viable ab initio strategy consists in exploiting the

separation of scales between QCD and (low-energy)
nuclear dynamics, taking point nucleons as degrees of
freedom. For decades, realistic 2N interactions were built
from fitting scattering data, see, e.g., [6]. However, model
limitations were seen through discrepancies with exper-
imental data, like underbinding of finite nuclei and inad-
equate saturation properties of extended nuclear matter.
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Elastic scattering of one particle

• The self-energy is an optical potential foe elastic scattering acting 
on both particle and hole spaces. See for example:

• F.  Capuzzi  and  C.  Mahaux,  Ann.  Phys.  (NY)  245,  147  (1996) (for  proof).
• L.  S.  Cederbaum,  Ann.  Phys.  (NY)  291,  169  (2001) (for  extensions  to  inelastic  

scattering).

• One can unse the knowledge of the self energy (in particular the 
dispersive relation)  to constrain optical models.

• For the ”dispersive optical model” see:
• C.  Mahaux  and  R.  Sartor,  Adv.  Nucl.  Phys.  20,  1  (1991).
• R.  J.  Charity  et  al.,  Phys.  Rev.  Lett.  97,  162503  (2006).
• R.  J.  Charity  et  al.,  Phys.  Rev.  C  76,  044314  (2007).
• Chapter 23, of Dickhoff and Van Neck book (2nd edition).



Elastic scattering of one particle
• Feshbach projection formalism:

• At time tà-¥ and tà+ ¥ the system is a particle 
separated and far away from the rest of the system.

• Then, one is interested in initial and final states that 
look like:

ri rf

. . .

is the state n in which the target system 
is prepared (usually the ground state).

à we look at elastic scattering, so            
this does not change!  
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Elastic scattering of one particle
• Feshbach projection formalism:

• At time tà-¥ and tà+ ¥ the system is a particle 
separated and far away from the rest of the system.

• Then, one is interested in initial and final states that 
look like:

but these do not cover the full N+1 body Hilbert space!

è must work in a subspace 

is the state n in which the target system 
is prepared (usually the ground state).

à we look at elastic scattering, so            
this does not change!  …

Q

P

One-body subset ‘P’ of the whole space



Elastic scattering of one particle

à Equation for the 
overlap amplitudes!!

…

Q

P
overlap  
function!!

target
(usually n=0) scattering state

Feshbach projection formalism:

After some Math:

where:

Note: this is not the Dyson equation, it only has particles.



Elastic scattering of one particle
Feshbach  projection formalism:

à Scatters  only particles 

E

Hole states are frozen  when 
using the projector



Elastic scattering of one particle
Feshbach  projection formalism:

E In order to open the full single 
particle space, one needs to 
project on particles and holes
at the same time:

Chose the one-body ‘P’ so 
that it includes both 
‘particle’ and ‘hole’ states.

With this choice, one can prove that Feshbach is 
the same as the mass operator for Dyson’s Eq. 
à One can use ab initio theory to do scattering.



Ab initio optical potentials from 
propagator theory

Relation to Fesbach theory:
Mahaux & Sartor, Adv. Nucl. Phys. 20 (1991)
Escher & Jennings Phys. Rev. C66, 034313 (2002) 

Previous SCGF work:
CB, B. Jennings, Phys. Rev. C72, 014613 (2005)
S. Waldecker, CB, W. Dickhoff, Phys. Rev. C84, 034616 (2011)
A. Idini, CB, P. Navrátil, arXiv:1612.01478v1 [nucl-th] and in prep.



Dispersive Optical Model (DOM)

EF

A+1

A-1

E Nuclear self-energy               :
• contains both particle and hole props.
• it is proven to be a Feshbach opt. pot

à in general it is non-local !
• must satisfy the dispersion relation:

proper boundary 
conditions are 
driven by the 

causality principle



Dispersive Optical Model (DOM)
The DOM is a (for now local) parameterization of the self-energy that satisfy 
dispersion (i.e. parameterize ONLY              and               !!

Developed by Mahaux and collaborators, in the 80s (208Pb, etc):
•C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

Recent develppments: global model around ACa chain (St.Louis):
•R. J. Charity et al., Phys. Rev. Lett. 97, 162503 (2006); Phys. Rev. C 76, 044314 (2007).



DOM – more recent work

Present application of DOM to nuclei:

• Fit:  40-48Ca isotopes chain (Z=20, N=20-28)

• 81 data sets, 3569 points
• up to 200 MeV scattering
• information on radii, spectroscopic factor, etc…
• 25 parameters

• Extrapolation to 60Ca à not fully determined: need more information 
from neutron scattering…

• Extension to other Zs …

R. J. Charity et al., Phys. Rev. Lett. 97, 162503 (2006); Phys. Rev. C 76, 044314 (2007).



DOM – more recent work

Most important are radii and volume integrals of the 
potential:

and similarly for W…



DOM – more recent work

Fitted differential cross sections:



DOM – more recent work

ß Total cross sections

Fitted 
polarization 

observables à



Fit to (e,e’p) data

Fit to (e,e’p) reaction data…

One point could 
not be fitted…



Fit to (e,e’p) data

Fit to (e,e’p) reaction data…

An independent re-analysis 
of 40Ca(e,e’p) brings the 

SF in agreement with the 
DOM fit!

[L. Lapikas, priv. comm.]

One point could 
not be fitted…



DOM – more recent work

fitted

extrapolated!!

The fit made for Ca 
isotopes gives good 
predictions for Ni…
à NO refitting !!

Ca
Ar

Ni
Fe

Ti
Cr



Microscopic optical potential
Nuclear  self-­energy                              :
• contains  both particle and  hole props.
• it  is  proven  to  be  a  Feshbach opt.  pot

à in  general  it  is  non-­local !

EF

A+1

A-1

Solve  scattering  and  overlap  functions  directly  in  
momentum  space:

E
2

tral representation,

⌃?
↵�(!) = ⌃(1)

↵� +
X

i,j

M†
↵,i


1

! � (K> +C) + i⌘

�

i,j

Mj,�

+
X

r,s

N↵,r


1

! � (K< +D) � i⌘

�

r,s

N†
s,� ,

(1)

where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. The Hamiltonian used to
generate the self energy is

H(A) = T � Tc.m.(A) + V + W (2)

where Tc.m.(A) is the kinetic energy center of mass for
A particle, V and W are the two and three body in-
teractions. In the case of SRG-N3LO EM500 potential
[31] only the two body interaction has been used. For
NNLO

sat

[26], we apply the reduction of the three body
interaction to an equivalent e↵ective two–body, consid-
ering the normal ordering contribution, as demonstrated
in [25].

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(!) =
X

n

h A
0

|c↵| A+1

n ih A+1

n |c†� | A
0

i
! � EA+1

n + EA
0

+ i⌘

+
X

i

h A
0

|c†↵| A�1

n ih A�1

n |c� | A
0

i
! � EA

0

+ EA�1

i � i⌘
, (3)

the poles of the propagator EA+1

n �EA
0

indicate then the
energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A par-
ticles and the propagator contains excited states of the
A + 1 system. The center of mass separation is not triv-
ial in truncated many–body spaces, such as the SCGF or
CC. For this reason both hpsi| and |psii in the definition
of the self energy and optical potential are not eigenstates
of the total momentum. This carries an intrinsic uncer-
tainint in center of mass definition, that however is under
control in the systems in considerations (cf. Fig. 1).

To be noted that the parameter i⌘ enter in our cal-
culation only in the construction of the optical potential
spectral representation, and plays no role in the iterative
solution of the many-body problem, that comes from the
diagonalization of the equation of motion [9, 20, 30]. For

the calculation here shown put the i⌘ parameter as en-
ergy dependent 0.002MeV✏2/⇡(✏2 � (22.36MeV)2) where
✏ = ! � EF , with EF the Fermi energy, checking the
convergence of the observables under consideration. All
intermediate states in the selected space n, i must be con-
sidered in the calculation, for the basis states to be com-
plete, in the case of N

max

= 13 this corresponds to con-
sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
the continuum. We diagonalize the Schrödinger equation
in momentum space using the appropriate reduced mass
µ = A/(A + 1)m,
✓

k2

2µ
� Ec.m. +

Z
dk0k02⌃? l,j(k, k0;E)

◆
 l,j(k) = E l,j(k),

(5)
so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.

RESULTS

We start by comparing in Fig. 1 results for phase
shifts of neutrons scattering o↵ 16O, calculated with
NCSM/RGM and SCGF. These calculations [15] were
carried out using SRG-N3LO EM500 potential evolved
with � = 2.66fm1 [31]. This proof of principle calcula-
tion shows a good comparison between the two methods,
testifying to the validity of SCGF approach and the cen-
ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d

3/2 and s
1/2.

In Fig. 3 we show the result for the calculation for both
in NCSM/RGM, including the coupling with 3�, 2�, 1�

low lying states of 16O (the technical limit of 2010 [15]),

2

investigate properties of the NNLO
sat

Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W
are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g0(!) + g0(!)⌃?(!)g(!) in
the harmonic oscillator basis of N

max

+1 oscillator shells.
g0(!) is the free particle propagator, and ⌃?(!) the irre-
ducible self-energy which has the following general spec-
tral representation,
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↵�(E,�) =⌃(1)
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(2)

where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of N

max

= 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(E,�) =
X

n

h A
0

|c↵| A+1

n ih A+1

n |c†� | A
0

i
E � EA+1

n + EA
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+
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|c†↵| A�1

n ih A�1
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, (3)

the poles of the propagator EA+1

n �EA
0

indicate then the
energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for N

max

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E,�) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E,�) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,

✓
k2

2µ
� E

◆
 l,j(k)+

Z
dk0k02⌃? l,j(k, k0;E,�) l,j(k

0) = 0,

(5)
so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0

i. We fully account for the non locality
and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W
are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g0(!) + g0(!)⌃?(!)g(!) in
the harmonic oscillator basis of N

max

+1 oscillator shells.
g0(!) is the free particle propagator, and ⌃?(!) the irre-
ducible self-energy which has the following general spec-
tral representation,
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(2)

where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of N

max

= 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(E,�) =
X
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the poles of the propagator EA+1

n �EA
0

indicate then the
energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for N

max

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E,�) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E,�) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,
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2µ
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 l,j(k)+

Z
dk0k02⌃? l,j(k, k0;E,�) l,j(k

0) = 0,

(5)
so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0

i. We fully account for the non locality
and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of

mean-field
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Fig. 1. Volume integrals of the real (left) and imaginary (right) parts of the
neutron-16O optical potential calculated for di↵erent numbers oscillator shells in
the model space: N

max

= 7 (dotted), 11 (dashed) and 13 (solid lines). Note that
=m{⌃?(E=EF )=0, so JW (E=EF )=0, where EF is the Fermi energy. Thus, the
potential for particle (holes) states is above (below) the gap in the JW plot.

We use a spherical harmonic oscillator basis consisting of N
max

+1 oscil-
lator shells, so the optical potential for a given partial wave (l, j) is expressed
in terms of the oscillator radial functions Rn,l(r) as

⌃? l,j(r, r0;E) =
X

n,n0

Rn,l(r)⌃
? l,j
n,n0(E)Rn0,l(r

0) , (2)

which is non local and depends on energy, angular momentum and parity.
We solve the corresponding scattering problem in the full one-body space (so
that the kinetic energy is treated exactly, without truncations) and account
for the non locality and l, j dependence of Eq. (2). For each partial wave and
parity, the phase shifts �(E) are obtained as function of the projectile energy,
from where the di↵erential cross section is calculated. We show results for
incident energies in the laboratory frame, except for Fig. 4 below.

3. Results

In the following, we consider the volume integrals of the real and imag-
inary parts of the self-energy (i.e., the optical potential):

JV (E) = 4⇡
R
drr2

R
dr0r02

P
l,j <e{⌃? l,j(r, r0;E)} , (3)

JW (E) = 4⇡
R
drr2

R
dr0r02

P
l,j =m{⌃? l,j(r, r0;E)} , (4)

since these are strongly constrained by experimental data [6].
Fig. 1 shows the volume integrals of the neutron-16O for di↵erent model

space truncations. Both the part of the self-energy below the Fermi surface
(which describes the structure of the target) and the resonant structures for
scattering at low energy are substantially converged already for N

max

=11.
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tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. The Hamiltonian used to
generate the self energy is

H(A) = T � Tc.m.(A) + V + W (2)

where Tc.m.(A) is the kinetic energy center of mass for
A particle, V and W are the two and three body in-
teractions. In the case of SRG-N3LO EM500 potential
[31] only the two body interaction has been used. For
NNLO

sat

[26], we apply the reduction of the three body
interaction to an equivalent e↵ective two–body, consid-
ering the normal ordering contribution, as demonstrated
in [25].

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(!) =
X

n

h A
0

|c↵| A+1

n ih A+1

n |c†� | A
0

i
! � EA+1

n + EA
0

+ i⌘

+
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h A
0

|c†↵| A�1

n ih A�1

n |c� | A
0

i
! � EA

0

+ EA�1

i � i⌘
, (3)

the poles of the propagator EA+1

n �EA
0

indicate then the
energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A par-
ticles and the propagator contains excited states of the
A + 1 system. The center of mass separation is not triv-
ial in truncated many–body spaces, such as the SCGF or
CC. For this reason both hpsi| and |psii in the definition
of the self energy and optical potential are not eigenstates
of the total momentum. This carries an intrinsic uncer-
tainint in center of mass definition, that however is under
control in the systems in considerations (cf. Fig. 1).

To be noted that the parameter i⌘ enter in our cal-
culation only in the construction of the optical potential
spectral representation, and plays no role in the iterative
solution of the many-body problem, that comes from the
diagonalization of the equation of motion [9, 20, 30]. For

the calculation here shown put the i⌘ parameter as en-
ergy dependent 0.002MeV✏2/⇡(✏2 � (22.36MeV)2) where
✏ = ! � EF , with EF the Fermi energy, checking the
convergence of the observables under consideration. All
intermediate states in the selected space n, i must be con-
sidered in the calculation, for the basis states to be com-
plete, in the case of N

max

= 13 this corresponds to con-
sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
the continuum. We diagonalize the Schrödinger equation
in momentum space using the appropriate reduced mass
µ = A/(A + 1)m,
✓

k2

2µ
� Ec.m. +

Z
dk0k02⌃? l,j(k, k0;E)

◆
 l,j(k) = E l,j(k),

(5)
so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.

RESULTS

We start by comparing in Fig. 1 results for phase
shifts of neutrons scattering o↵ 16O, calculated with
NCSM/RGM and SCGF. These calculations [15] were
carried out using SRG-N3LO EM500 potential evolved
with � = 2.66fm1 [31]. This proof of principle calcula-
tion shows a good comparison between the two methods,
testifying to the validity of SCGF approach and the cen-
ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d

3/2 and s
1/2.

In Fig. 3 we show the result for the calculation for both
in NCSM/RGM, including the coupling with 3�, 2�, 1�

low lying states of 16O (the technical limit of 2010 [15]),
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Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W
are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g0(!) + g0(!)⌃?(!)g(!) in
the harmonic oscillator basis of N

max

+1 oscillator shells.
g0(!) is the free particle propagator, and ⌃?(!) the irre-
ducible self-energy which has the following general spec-
tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of N

max

= 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(E,�) =
X

n
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0
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n ih A+1
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, (3)

the poles of the propagator EA+1

n �EA
0

indicate then the
energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for N

max

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E,�) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E,�) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,

✓
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2µ
� E

◆
 l,j(k)+

Z
dk0k02⌃? l,j(k, k0;E,�) l,j(k

0) = 0,

(5)
so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0

i. We fully account for the non locality
and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W
are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g0(!) + g0(!)⌃?(!)g(!) in
the harmonic oscillator basis of N

max

+1 oscillator shells.
g0(!) is the free particle propagator, and ⌃?(!) the irre-
ducible self-energy which has the following general spec-
tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of N

max

= 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(E,�) =
X

n

h A
0

|c↵| A+1

n ih A+1

n |c†� | A
0

i
E � EA+1

n + EA
0

+ i�

+
X

i

h A
0

|c†↵| A�1

n ih A�1

n |c� | A
0

i
E � EA

0

+ EA�1

i � i�
, (3)

the poles of the propagator EA+1

n �EA
0

indicate then the
energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for N

max

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k0;E,�) =
X

n,n0

fn,l(k)⌃
? l,j
n,n0(E,�) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,
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Z
dk0k02⌃? l,j(k, k0;E,�) l,j(k

0) = 0,

(5)
so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0

i. We fully account for the non locality
and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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Fig. 1. Volume integrals of the real (left) and imaginary (right) parts of the
neutron-16O optical potential calculated for di↵erent numbers oscillator shells in
the model space: N

max

= 7 (dotted), 11 (dashed) and 13 (solid lines). Note that
=m{⌃?(E=EF )=0, so JW (E=EF )=0, where EF is the Fermi energy. Thus, the
potential for particle (holes) states is above (below) the gap in the JW plot.

We use a spherical harmonic oscillator basis consisting of N
max

+1 oscil-
lator shells, so the optical potential for a given partial wave (l, j) is expressed
in terms of the oscillator radial functions Rn,l(r) as

⌃? l,j(r, r0;E) =
X

n,n0

Rn,l(r)⌃
? l,j
n,n0(E)Rn0,l(r

0) , (2)

which is non local and depends on energy, angular momentum and parity.
We solve the corresponding scattering problem in the full one-body space (so
that the kinetic energy is treated exactly, without truncations) and account
for the non locality and l, j dependence of Eq. (2). For each partial wave and
parity, the phase shifts �(E) are obtained as function of the projectile energy,
from where the di↵erential cross section is calculated. We show results for
incident energies in the laboratory frame, except for Fig. 4 below.

3. Results

In the following, we consider the volume integrals of the real and imag-
inary parts of the self-energy (i.e., the optical potential):

JV (E) = 4⇡
R
drr2

R
dr0r02

P
l,j <e{⌃? l,j(r, r0;E)} , (3)

JW (E) = 4⇡
R
drr2

R
dr0r02

P
l,j =m{⌃? l,j(r, r0;E)} , (4)

since these are strongly constrained by experimental data [6].
Fig. 1 shows the volume integrals of the neutron-16O for di↵erent model

space truncations. Both the part of the self-energy below the Fermi surface
(which describes the structure of the target) and the resonant structures for
scattering at low energy are substantially converged already for N

max

=11.
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Low energy scattering – from SCGF
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NCSM/RGM [no core excitations]
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SCGF [Σ(∞) only]

Benchmark with NCSM-based scattering.

NN-only interaction at 𝜆SRG= 2.66 fm-1

Scattering from mean-field only:
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Low energy scattering – from SCGF
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à Dynamic correlations have a strong impact on shifting the
single-particle spectrum. 
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• Elastic neutron scattering 
derived from first principle 
calculations (no fitting!)

• Can be extended to radioactive 
isotopes and large masses

Works decently at low energies 
but improvement in theory and 
interaction are still in need…
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