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1 INTRODUCTION

• Strong interactions are described by the Lagrangian

of QCD:

L = −1

4
F a
µνF

aµν + Ψ̄ (iγµDµ −m) Ψ− θq(x)

Mass matrix can always be put in a diagonal form

mij = miδij ; i, j = 1 . . . Nf

Topological charge density

q(x) =
g2

32π2
FµνF̃

µν ; F̃ µν =
1

2
εµνρσFρσ

Topological charge∫
d4x q(x) = n = integer

For instanton configurations n 6= 0.

Physics is invariant under θ → θ + 2π.

• Gauge theory with SU(3) color gauge group: Nc = 3.

• It depends on the following parameters:

g → ΛQCD, θ ; mi , Nc ; Nf = 2, 3

Dimensional transmutation: Λ ∼ 250MeV instead of g.

Only dimensional parameter for massless quarks.
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• If the quarks are massless the transformations (A and

B are Nf ×Nf unitary matrices)

Ψi
R → AijΨj

R ; Ψi
L → BijΨj

L ; ΨR,L =
1± γ5

2
Ψ

are a symmetry of the QCD Lagrangian:

U(Nf)× U(Nf) chiral invariance

• This symmetry is spontaneously broken to the vecto-

rial U(Nf) generated by the transformations for which

A = B.

• Pseudoscalar mesons are Goldstone bosons associated

to the spontaneous breaking of chiral symmetry.

• They get a non-zero mass from the quark mass matrix

(m 6= 0).

• But the split in the quark masses:

mu

md
= 0.56 ;

ms

md
= 20.1 ; m̄d|µ=2GeV = (3.1± 1)MeV

is not sufficient to explain the mass spectrum of the

pseudoscalar mesons:

mπ = 139MeV ; mη = 547MeV ; mη′ = 957MeV ; mK = 498MeV

This problem was called U(1)-problem.

• U(1) axial anomaly:

∂µ
[
Ψ̄γµγ5Ψ

]
= 2Nfq(x) + Mass Matrix

• How can we incorporate the effect of the anomaly in

the meson mass matrix?
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2 Effective Lagrangian for the light d.o.f

• At low energy (E << Λ) and low quark masses (mi <<

Λ) we can neglect all degrees of freedom except the

Goldstone bosons (pseudoscalar mesons).

• They are described by the following chiral Lagrangian:

L =
1

2
Tr(∂µU∂µU

†) +
Fπ

2
√

2
Tr
(
M(U + U †)

)
; UU † =

F 2
π

2

• The constraint implies:

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ ; Φ(x) = Πaτ a +
S√
Nf

; Tr[τ aτ b] = δab

• For Nf = 3 Φ corresponds to the octet of pseudoscalar

mesons:

Πaτ a =
1√
2

 π0 + η8/
√

3
√

2π+
√

2K+
√

2π− −π0 + η8/
√

3
√

2K0
√

2K−
√

2K̄0 −2η8/
√

3


• As the quark mass matrix, also M can be chosen to

be diagonal:

Mij = µ2
i δij

• Gell-Mann-Oakes-Renner relation

µ2
iF

2
π = −2mi < Ψ̄iΨi >

In first approximation the ratio mi/µ
2
i is independent

on i.
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• If M = 0 the previous Lagrangian is invariant under

U(Nf)× U(Nf) transformations:

U → AUB† ; U † → BU †A† ; A−1 = A† ; B−1 = B†

• It has the same global symmetries as QCD with mass-

less quarks,

but it does not take care of the U(1) axial anomaly !!

• We have to add a term that is invariant under SU(Nf)×
SU(Nf)×U(1)V and trasforms under the U(1)A to repro-

duce the axial anomaly:

L→ L + 2Nfq(x)α ; U → e−2iαU

• This brings us to the following modified Lagrangian:

L =
1

2
Tr(∂µU∂µU

†) +
Fπ

2
√

2
Tr
(
M(U + U †)

)
+

+
i

2
q(x)Tr

(
logU − logU †

)
• In general we could add a generic term of the form:

∞∑
i=0

L2i(U,U
†)[q(x)]2i

preserving parity and U(Nf)× U(Nf).

• It turns out that, for large Nc, only one term of the

previous sum contributes.

• The one with i = 1 and L2 = 1
aF 2

π
.
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• This brings us to:

L(U,U †, q) =
1

2
Tr(∂µU∂µU

†) +
Fπ

2
√

2
Tr
(
M(U + U †)

)
+

+
i

2
q(x)Tr

(
logU − logU †

)
+

q2

aF 2
π

− θq(x)

Added also the θ parameter for studying the depen-

dence of physical quantities on θ.

• The equation of motion for q gives:

q(x) =
aF 2

π

2

[
θ − i

2
q(x)Tr

(
logU − logU †

)]

• When inserted back into the Lagrangian it gives:

L =
1

2
Tr(∂µU∂µU

†) +
Fπ

2
√

2
Tr
(
M(U + U †)

)
+

−aF
2
π

4

[
θ − i

2
Tr
(
logU − logU †

)]2

• Our aim in the following is

1. to show how the U(1) problem is solved

2. to determine the dependence of physical quantities

on the θ parameter
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3 Finding the minimum

• We have to find the value of < U > that minimizes the

potential that follows from the previous Lagrangian.

• Since UU † ∼ 1 and the meson mass matrix is diagonal

we can take:

< Uij >= e−iφiδij
Fπ√

2

• It is convenient to introduce the following quantity:

Uij = Vije
−iφi ; < Vij >=

Fπ√
2
δij

• and one obtains (Mij(φi) = µ2
i cosφiδij) :

L =
1

2
Tr(∂µV ∂µV

†) +
aF 2

π

16

[
Tr
(
log V − log V †

)]2
+

+
Fπ

2
√

2
Tr

(
M(φi)

[
(V + V †)− 2Fπ√

2

])
+

+
F 2
π

2

Nf∑
i=1

µ2
i cosφi −

aF 2
π

4

θ − Nf∑
i=1

φi

2

+

+i

θ − Nf∑
i=1

φi

 aFπ

2
√

2
Tr

[
Fπ√

2
(log V − log V †)− (V − V †)

]

• The parametrs φi are determined by minimizing the

potential:

V =
F 2
π

2

a
2

(θ −
Nf∑
i=1

φi)
2 −

Nf∑
i=1

µ2
i cosφi


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• This implies the following equations:

µ2
i sinφi = a

θ − Nf∑
i=1

φi

 ; i = 1 . . . Nf

• Finally in terms of Φ we get:

L =
1

2
Tr(∂µV ∂µV

†)−aNf

2
S2+

F 2
π

2
Tr

[
M(θ)

(
cos

√
2Φ

Fπ
− 1

)]
+

+
aFπ√

2

θ − Nf∑
i=1

φi

Tr

[
Fπ√

2
sin

√
2Φ

Fπ
− Φ

]

where

V =
Fπ√

2
ei
√

2Φ(x)/Fπ ; Φ = τ aΠa +
S√
Nf

; Mij(θ) = µ2
i cosφiδij

• We proceed as follows:

1. First we solve the minimization equations that de-

termine φi as functions of θ, a and µ2
i .

2. Then we insert them in L that will in general be a

function of θ, a and µ2
i .

• Physical quantities are invariant under θ → θ + 2π !!

If we have found a solution φi(θ) of the minimization

equations, then the following is also a solution:

φ1(θ + 2π) = φ1(θ) + 2π ; φi(θ + 2π) = φi(θ) ; i = 2 . . . Nf

But the physical quantities depend only on eiφi and

therefore are invariant under a shift of 2π of θ.
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4 Spectrum of pseudoscalar mesons

• The quadratic part of the previous Lagrangian is:

L2 =
1

2
Tr (∂µΦ∂µΦ)− a

2
Tr (Φ)Tr (Φ)− 1

2
Tr
(
M(θ)Φ2

)
• It is convenient to decompose the matrix Φ as follows:

Φij = Π̃αβ τ̃αβij + viδij

τ̃αβij are the Nf(Nf−1) non-diagonal generators of SU(Nf).

• One gets:

< Π̃αβ(x)Π̃γδ(y) >F.T.=
iδαγδβδ

p2 −M 2
αβ

; M 2
αβ =

µ2
α(θ) + µ2

β(θ)

2

< vi(x)vj(y) >F.T.= iA−1
ij (p2)

Aij(p
2) = (p2 − µ2

i (θ))δij − a


1 1 . . . 1 1

1 1 . . . 1 1

1 1 . . . 1 1

. . . . .

1 1 . . . 1 1


• The masses M 2

i (θ) of the physical states are determined

by the following equation:

detA =

Nf∏
i=1

(p2 −M 2
i (θ)) =

Nf∏
i=1

(p2 − µ2
i )

1− a
Nf∑
j=1

1

p2 − µ2
j

 = 0

• In the case with three flavours and in the limit µ2
1, µ

2
2 <<

µ2
3 one gets the following masses for η and η′:

M 2
± = m2

K +
3

2
a± 1

2

√
(2m2

K − 2m2
π − a)2 + 8a2
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tanφ =
√

2− 3

2
√

2
·
m2
η −m2

π

m2
K −m2

π

; |η〉 = cosφ|8〉 + sinφ|1〉

• We get a from the sum of the masses:

a =
m2
η + m2

η′ − 2m2
K

3
∼ 0.24(GeV )2

• Using this value of a and neglecting the square term

in the square root we get:

m2
η ∼ m2

K +
3− 2

√
2

2
a = 0.27(GeV )2 ; [Exp. 0.30]

m2
η′ ∼ m2

K +
3 + 2

√
2

2
a = 0.95(GeV )2 ; [Exp. 0.92]

and

φ ∼ 14 [Exp. 11]

• a is a parameter that appears in the effective La-

grangian as the coefficient of the q2 term:

L(U,U †, q) =
1

2
Tr(∂µU∂µU

†) +
Fπ

2
√

2
Tr
(
M(U + U †)

)
+

+
i

2
q(x)Tr

(
logU − logU †

)
+

q2

aF 2
π

− θq(x)

• How can we extract it from the underlying QCD?

• In the large Nc limit quark loops can be neglected

and this corresponds, in the effective Lagrangian, to

neglect the dependence on U .
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• Therefore, for large Nc, a can be extracted from the

topological susceptibility of pure Yang-Mills theory:

lim
q→0

(−i)
∫
d4y eiqx < q(x)q(y) >YM=

1

2
aF 2

π ∼ (180MeV )4

[Exp. Lattice] = (194(5)MeV )4

• This has to be distinguished from the topological sus-

ceptibility computed in large Nc QCD or, equivalently,

from the previous effective Lagrangian:

lim
q→0

(−i)
∫
d4xeiqx〈q(x)q(0)〉QCD ≡ χQCD =

χYM

1 + a
∑Nf

i=1
1
µ2i

• It follows from the fact that there is a two-point cou-

pling between the singlet S(x) and q(x) and from the

mixing of S(x) with the octect through the mass term.

• It vanishes in the chiral limit, when at least one of the

µ2
i = 0, for reasons that will become clear soon.

• Using

µ2
1 = 0.7m2

π ; µ2
2 = 1.3m2

π ; a =
m2
η + m2

η′ − 2m2
K

3
= 0.24(GeV )2

we get

χQCD = (78.5MeV )4
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5 The Witten-Veneziano relation

• In order to get the WV relation we have to consider

the theory without quarks:

Lnoferm. =
q2

aF 2
π

− θq − iqJ

with a source term J.

• From it we can compute the partition function:

Z(J, θ) ≡ e−iW (J,θ) = e−iV4aF
2
π (θ+iJ)2/4

and the vacuum energy:

E(θ) ≡ W (0, θ)

V4
=
aF 2

π

4
θ2

• From it we get:

d2E(θ)

dθ2
|θ=0 =

aF 2
π

2
; M 2

S = aNf

• They imply the WV relation:

M 2
S =

2Nf

Fπ

d2E(θ)

dθ2
|θ=0
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6 Strong CP violating mesonic amplitudes

• CP is conserved if θ−
∑Nf

i=1 φi = 0. This happens when:

1. θ = 0 that implies that φi = 0

2. the mass of a quark flavour is zero

3. and also sometimes if θ = π

• Consider the minimization equations for two flavours

with a >> µ2
1, µ

2
2:

θ = φ1 + φ2 ; µ2
1 sinφ1 = µ2

2 sin(θ − φ1)

• Their solution:

sinφ1 =
µ2

2 sin θ√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

; sinφ2 =
µ2

1 sin θ√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

and

cosφ1 =
µ2

1 + µ2
2 cos θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

; cosφ2 =
µ2

2 + µ2
1 cos θ√

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

• The corresponding potential

V (θ) = −F
2
π

2

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

• For equal masses (µ1 = µ2 = µ) we get:

V (θ) = −F 2
πµ

2

∣∣∣∣cos
θ

2

∣∣∣∣
Notice that both Eq.s are periodic of period 2π in θ.
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• Expanding around the previous solution and including

terms of order µ1µ2
a

φ1,2 = φ̄1,2 + εδφ1,2 +O(ε2) ; ε =
µ1µ2

a

in the minimization equations

µ2
1 sinφ1 = µ2

2 sinφ2 = a(θ − φ1 − φ2)

• One gets:

φ1 = φ̄1 − ε
sin θ

R3

(
µ2

2 + µ2
1 cos θ

µ2
1

)
; φ2 = φ̄2 − ε

sin θ

R3

(
µ2

1 + µ2
2 cos θ

µ2
2

)
where

φ̄1 + φ̄2 = θ ; R =

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

µ2
1µ

2
2

• Compute the coefficient of the CP violating term:

θ − φ1 − φ2 = ε
sin θ

R
=

µ2
1µ

2
2 sin θ

a
√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

• It is vanishing if θ = 0 or if µ2
1 and/or µ2

2 are equal to

zero.

If µ1 6= µ2 it is also zero for θ = π. But if µ1 = µ2 ≡ µ we

get:

θ − φ1 − φ2 =
µ2

a
6= 0

In conclusion if µ1 = µ2 then CP is violated at θ = π.

• From the CP violating term extract a cubic term in

the fields of the pseudoscalar mesons:

−
a
(
θ −

∑Nf
i=1 φi

)
3
√

2Fπ
Tr(Φ3) =⇒ −

a
(
θ −

∑Nf
i=1 φi

)
√

3Fπ
π+π−η8
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• Decay amplitude η8 → Π+Π− given by:

T (η → π+π−) =
a
(
θ −

∑Nf
i=1 φi

)
√

3Fπ
=

2m2
π(θ)√
3Fπ

· µ2
1µ

2
2 sin θ

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

m2
π(θ) =

µ2
1 cosφ1 + µ2

2 cosφ2

2
=

1

2

√
µ4

1 + µ4
2 + 2µ2

1µ
2
2 cos θ

• For small values of θ we get

T (η → π+π−) ∼ 2m2
π√

3Fπ

θ(√
m1
m2

+
√

m2
m1

)2

m1,m2 are the quark masses.

• This implies that

Γ(η → π+π−)) = θ2 · (135 KeV ) :
Γ(η → π+π−)

Γtot
= 159 θ2

From experiments we get:

Γ(η → π+π−)

Γtot
< 3 · 10−4

that gives an upper limit to the value of θ < 10−3

• The decay amplitude of η → π+π− is zero for θ = 0, π if

µ2
1 6= µ2

2

if µ2
1 = µ2

2 it is not vanishing anymore at θ = π.
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• Masses of the pseudoscalar mesons as a function of the

angle θ:

m2
π0,π± =

µ2
1 cosφ1 + µ2

2 cosφ2

2
; m2

k± =
µ2

1 cosφ1 + µ2
3 cosφ3

2

and

m2
k0;k̄0 =

µ2
2 cosφ1 + µ2

3 cosφ3

2

• They imply:

R(θ) ≡
m2
k0
−m2

k+ −m
2
π0

+ m2
π+

m2
π

=
µ2

2 cosφ2 − µ2
1 cosφ1

µ2
2 cosφ2 + µ2

1 cosφ1
=

=
(µ2

2 − µ2
1)(µ2

2 + µ2
1)

µ4
1 + µ4

2 + 2µ2
1µ

2
2 cos θ

and in particular

R(θ = 0) =
µ2

2 − µ2
1

µ2
2 + µ2

1

; R(θ = π) =
µ2

2 + µ2
1

µ2
2 − µ2

1

• Experimentally R = 0.3 that is consistent with θ = 0.
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7 Strong CP violating amplitudes with baryons

• The baryons belong to an octet of SU(3):
Σ0
√

2
+ Λ√

6
Σ+ p

Σ− −Σ0
√

2
+ Λ√

6
n

Ξ− Ξ0 2 Λ√
6


• Under the chiral U(3)× U(3) the baryons transform as

follows:

R ≡ 1 + γ5

2
B → ARB† ; L ≡ 1− γ5

2
B → BLA†

• The Lagrangian involving baryons can be written as

follows:

Lbar = Tr
[
B̄iγµ∂µB

]
−
√

2α

Fπ
Tr
[
L̄URU + R̄U †LU †

]
+

+δTr
[
L̄URM + R̄U †LM †] + γTr

[
L̄MRU + R̄M †LU †

]
• As before we introduce

Vij = Uije
iφj ; Rij = eiφiR′ij ; L̄ij = eiφiL̄′ij

• We get

Lbar = Tr
[
B̄′iγµ∂µB

′]− i√2α

Fπ
Tr
[
L̄′V R′V + R̄′V †L′V †

]
+

+δTr
[(
L̄′V R′ + R̄′V †L′

)
M(θ)

]
+γTr

[
L̄′M(θ)R′V + R̄′M(θ)L′V †

]
+

+i

(
θ −

∑
i

φi

)[
δTr

(
L̄′V R′ − R̄′V †L′

)
+ γTr

(
L̄′R′V + R̄′L′V †

)]
Same structure as before + CP violating term.
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• Determine α, γ and δ in terms of the baryon masses:

mN =
Fπ√

2

(
α− δµ2

3 − γµ2
)

; mΣ =
Fπ√

2

(
α− (γ + δ)µ2

)
mΞ =

Fπ√
2

(
α− δµ2 − γµ2

3

)
; mΛ =

Fπ√
2

(
α− 1

3
(γ + δ)(µ2 + 2µ2

3)

)

• We get

α =

√
2

Fπ

[
mΣ +

3µ2

2(µ2
3 − µ2)

(mΣ −mΛ)

]

γ =

√
2

2Fπ(µ2
3 − µ2)

[
3

2
(mΣ −mΛ)− (mΞ −mN)

]

δ =

√
2

2Fπ(µ2
3 − µ2)

[
3

2
(mΣ −mΛ) + (mΞ −mN)

]

• The baryon masses satisfy the Gell-Mann-Okubo mass

formula:

3mΛ + mΣ = 2(mΞ + mN)

• Introduce the octet of baryons, couple them with the

mesons and extract the πN coupling constants:
√

2N̄ [iγ5gπNN + ḡπNN ] πiτ iN

obtaining the Goldeberger-Treiman relation

FπgπNN = mN

and the CP violating pion-nucleon coupling constant

ḡπNN =
m1m2θ

2Fπ(m1 + m2)(m3 −m)
×

×
[

3

2
(mΣ −mΛ)− (mΞ −mN)

]
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• They can be used to estimate the electric dipole mo-

ment of the neutron (CP violating):

Dn =
1

4π2mN
· gπNN ḡπNN log

mN

mπ
= 3.6 · 10−16θcm

in units where the electric charge e = 1.

• The experimental limit is:

Dn < 6 · 10−26 =⇒ θ < 10−9
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8 Including the axion

• θ is very small and actually consistent with zero.

• Can we make it to be zero in a natural way?

• The vanishing of mu would be a way because it allows

to rotate θ away.

But mu seems to be 6= 0.

• The Peccei-Quinn solution of the strong CP problem

uses a similar mechanism.

• It includes in the matter sector of QCD some new

d.o.f. with an extra U(1)PQ symmetry that is broken

by an anomaly exactly as U(1)A.

• The would be Goldstone boson gets a mass with the

same mechanism as the singlet.

• Denoting with αPQthe coefficient of the U(1)PQ anomaly

and with Fα the scale of its spontaneous breaking, we

can extend our previous Lagrangian as follows:

L =
1

2
Tr(∂µU∂µU

†)+
1

2
Tr(∂µN∂µN

†)+
Fπ

2
√

2
Tr
(
M(U + U †)

)
+

−θq +
q2

aF 2
π

+
i

2
q(x)

(
Tr(logU − logU †) + aPQ(logN − logN †)

)
where

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ ; N(x) =
Fα√

2
ei
√

2α(x)/Fα

• Under the two U(1) transformations:

U → eiβU ; N → eiγN ,

the effective Lagrangian transforms as follows:

L→ L− (Nfβ + aPQγ) q(x)
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• It is invariant if we choose Nfβ + aPQγ = 0.

This is an anomaly-free U(1) subgroup, whose sponta-

neous and explicit breaking (by quark masses) implies

a new, pseudo-Goldstone boson, the (Peccei-Quinn-

Weinberg-Wilczek) axion.

• Proceeding as before

< Uij >= e−iφiδijFπ/
√

2 ; < N >= e−iφFα/
√

2

we have to minimize the potential

V =
F 2
π

2

a
2

(θ −
Nf∑
i=1

φi − φ)2 −
Nf∑
i=1

µ2
i cosφi


• We get

a

θ − Nf∑
i=1

φi − φ

 = µ2
i sinφi ; θ − φ−

Nf∑
i=1

φi = 0

• They imply:

φi = 0 , i = 1 . . . Nf ; θ − φ = 0

No dependence on θ and no CP violation in analogy

with the case mu = 0.

• The mass matrix involving the axion and the compo-

nents of Φ in the Cartan subalgebra of U(Nf) (Φij = viδij)

is given by:

−1

2

 Nf∑
i=1

µ2
iv

2
i + a

 Nf∑
i=1

vi + bα

2
 ; b ≡ aPQ

Fπ
Fα
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• The masses of the neutral mesons and of the axion

are given by setting to zero the determinant of the

following matrix:
b2a− λ ba ba ba . . . ba

ba µ2
1 + a− λ a a . . . a

ba a µ2
2 + a− λ a . . . a

. . . . . . . . . . . . . . . . . .

ba ba ba ba . . . µ2
Nf

+ a− λ


• That is by solving the equation:

λ

1

a
+

Nf∑
i=1

1

µ2
i − λ

 = b2

• Since b << 1 the lowest eigenvalue, corresponding to

the mass of the axion, is given by:

m2
α =

b2

1
a +

∑3
i=1

1
µ2i

=⇒ m2
αF

2
α =

α2
PQF

2
π

1
a +

∑3
i=1

1
µ2i

= 2α2
PQχQCD

χQCD is the topological susceptibility in QCD.

• In terms of the masses of the pseudoscalar mesons,

one gets:
1

a
∼ 4.2(GeV )−2 ;

1

µ2
1

+
1

µ2
2

= 112.1(GeV )−2 ;
1

µ2
3

= 2(GeV )−2

• Neglecting the term with 1/a, one gets the current

algebra relation:

m2
αF

2
α = 2α2

PQm
2
πF

2
π ·

m1m2

(m1 + m2)2

in terms of the mass of the up and down quarks.

• Consistency with experiments requires:

Fα ≥ 109GeV =⇒ mα < 0.01eV
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9 Conclusions

• The topological susceptibility in pure (large Nc) YM

theory determines the spectrum of the pseudoscalar

mesons:

lim
q→0

∫
d4xeiqx〈q(x)q(0)〉YM ≡ iχYM = i

aF 2
π

2

• The spectrum of the pseudoscalar mesons in (large Nc)

QCD is fixed by the vanishing of the determinant of

the mass matrix:

Nf∏
i=1

(q2 − µ2
i )

1− a
Nf∑
i=1

1

q2 − µ2
i

 =

Nf∏
i=1

(q2 −M 2
i ) = 0

Mi are the physical masses of the pseudoscalar mesons.

• Chiral limit (Nf = 3): massless octect and mS = 3a.

• Two-point correlator in (large Nc) QCD

(−i)
∫
d4xeiqx〈q(x)q(0)〉QCD =

χYM

1− a
∑Nf

i=1
1

q2−µ2i

= χYM

Nf∏
i=1

q2 − µ2
i

q2 −M 2
i

• The topological susceptibility in (large Nc) QCD de-

termines the mass of the axion:

m2
αF

2
α = 2α2

PQχQCD

• and it is related to χYM by

lim
q→0

∫
d4xeiqx〈q(x)q(0)〉QCD ≡ iχQCD = i

χYM

1 + a
∑Nf

i=1
1
µ2i

that vanishes, as expected, in the chiral limit

(no θ dependence in the chiral limit).
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• Including the axion one gets:

q2

Nf∏
i=1

(q2 − µ2
i )

1− a

 Nf∑
i=1

1

q2 − µ2
i

+
b2

q2

 =

Nf∏
i=1

(q2 −M 2
i )(q2 −m2

α) = 0

and

(−i)
∫
d4xeiqx〈q(x)q(0)〉QCDA = χYM

q2

q2 −m2
α

Nf∏
i=1

q2 − µ2
i

q2 −M 2
i

=⇒ χQCDA = 0

• In agreement with the fact that the axion is there to

eliminate the θ dependence of the physical quantities.

• Actually, the effective Lagrangian is a simple way to

implement the Ward identities of the underlying mi-

croscopic theory (QCD):

−i
∫
d4xeiqx〈qµJ (i)

5µ (x)O(y)〉 = 2

∫
d4xeiqx〈q(x)O(y)〉

+2mi

∫
d4xeiqx〈Pi(x)O(y)〉 + 〈[Q(i)

5 , O(y)]〉

where O(y) = q(x),miPi(x) with Pi = iψiγ5ψi.

• For instance, the Ward identity with O(y) = q(y) is

satisfied by the following two-point functions:∫
d4xeiqx〈J (i)

5µ (x)q(y)〉 =
2iqµ

q2 − µ2
i

aF 2
π

2

Nf∏
i=1

q2 − µ2
i

q2 −M 2
i∫

d4xeiqx〈2miPi(x)q(y)〉 =
2µ2

i

q2 − µ2
i

aF 2
π

2

Nf∏
i=1

q2 − µ2
i

q2 −M 2
i

and ∫
d4xeiqx〈q(x)q(y)〉 =

aF 2
π

2

Nf∏
i=1

q2 − µ2
i

q2 −M 2
i

with [Q
(i)
5 , q(y)] = 0.
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10 Outlook

• Extend our results at finite temperature.

• Can we say something at finite Nc?

• Can lattice QCD say something about the dependence

of the topological susceptibility on the quark masses

in the chiral limit (also at finite temperature)?

• Can lattice QCD determine the momentum depen-

dence of the two-point function:

(−i)
∫
d4xeiqx〈q(x)q(0)〉 =

χYM

1− a
∑Nf

i=1
1

q2−µ2i

= χYM

Nf∏
i=1

q2 − µ2
i

q2 −M 2
i

?
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