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1 INTRODUCTION

e Strong interactions are described by the Lagrangian

of QCD:

1 P
L= —EF;LVF““ + W (v D, —m)V — Oq(z)

Mass matrix can always be put in a diagonal form
mij:mi&j ; Z,]:le
Topological charge density

7 . oz |
Q($>:@FMVF’U ; F/ :§€’uprO

Topological charge

/d4x q(x) = n = integer

For instanton configurations n # 0.
Physics is invariant under 6 — 6 + 2.

e Gauge theory with SU(3) color gauge group: N, = 3.
e It depends on the following parameters:
g—>AQ0D7 0 My NC : Nf:273

Dimensional transmutation: A ~ 250MeV instead of g.
Only dimensional parameter for massless quarks.



e If the quarks are massless the transformations (A and
B are N; x Ny unitary matrices)

1+~°
2

U — AV, 0 W) — BYW ; Wp = v

are a symmetry of the QCD Lagrangian:

U(Ny) x U(Ny) chiral invariance

e This symmetry is spontaneously broken to the vecto-

rial U(Ny) generated by the transformations for which
A=DB.

e Pseudoscalar mesons are Goldstone bosons associated
to the spontaneous breaking of chiral symmetry.

e They get a non-zero mass from the quark mass matrix
(m #0).
e But the split in the quark masses:

T 056 5 = =201 hglusgey = (3.1 % 1)MeV
my mgq

is not sufficient to explain the mass spectrum of the
pseudoscalar mesons:

my, = 139MeV ;. m, = 547MeV ; m,y = 957TMeV ; mg = 498MeV
This problem was called U(1)-problem.
e U(1) axial anomaly:

o, [@7“75\11} = 2Nyq(x) + Mass Matrix

¢ How can we incorporate the effect of the anomaly in
the meson mass matrix?



2 Effective Lagrangian for the light d.o.f

e At low energy (£ << A) and low quark masses (m; <<
A) we can neglect all degrees of freedom except the
Goldstone bosons (pseudoscalar mesons).

e They are described by the following chiral Lagrangian:

1 E F2
L=-T f Ty (M N P
S MOURU) + o5 r(MU+UY) 5 UUT =
e The constraint implies:
F7T Ny
U(z) = —LeVR@F - ¢(g) = 1197 + o L Tr[rr’] = 6%

V3 | VN

e For Ny =3 ® corresponds to the octet of pseudoscalar
mesons:

™ +ng/V3 V2rt V2K
[Mr% = — Vor~ —7m0 +ns/V3  V2K°
V2\ VBk- VBKY o3

e As the quark mass matrix, also M can be chosen to
be diagonal:

Mij = pi;0;;

e Gell-Mann-0Oakes-Renner relation

,LL%FE = —2m; < \IJZ\I/Z >

In first approximation the ratio m;/u? is independent
on 1.



o If M = 0 the previous Lagrangian is invariant under
U(Ny) x U(Ny) transformations:

U— AUB' ; U'— BU'AT ; A7'=A" . B'=pB!

e It has the same global symmetries as QCD with mass-
less quarks,
but it does not take care of the U(1) axial anomaly !!

e We have to add a term that is invariant under SU(N) x
SU(N;)xU(1)y and trasforms under the U(1)4 to repro-
duce the axial anomaly:

L — L+2Nig(z)a ; U — e #U

e This brings us to the following modified Lagrangian:

1 F
L=5Tr(@UaU") + 5T (M(U+UT)) +

+%Q($)T7“ (log U — log UT)

e In general we could add a generic term of the form:
> La(U,U")[g(x)*
i=0

preserving parity and U(N;) x U(Ny).

e It turns out that, for large N., only one term of the
previous sum contributes.

e The one with : =1 and L, = @%



e This brings us to:

1 F.
(U.Uq) =5 T(a,uUa,uU>+2\/§ r (MU +UY) +
+§q(x)T7° (logU — log U") + R Oq(x)

Added also the 6 parameter for studying the depen-
dence of physical quantities on 6.

e The equation of motion for q gives:

F? '
= a2” 0 — %q(a:)Tr (log U — log UT)

q()

e When inserted back into the Lagrangian it gives:

1
[ =

F
— 5Tr(aMUaMUB +—=Tr (MU +U")) +

2¢/2

aF? ( ’
- (9—§T7“(1ogU—logUT)

e Our aim in the following is

1. to show how the U(1) problem is solved

2. to determine the dependence of physical quantities
on the 6 parameter



3 Finding the minimum

e We have to find the value of < U > that minimizes the
potential that follows from the previous Lagrangian.
e Since UU' ~ 1 and the meson mass matrix is diagonal

we can take:
, F
< UZ >— 6_2@'51.._71-
J 2

e It is convenient to introduce the following quantity:

™

Ui.:‘/;.e—wﬁz‘ < Vi>= 215
J J J \/5 J

e and one obtains (M;;(¢;) = p? cos ¢;d;;) :
1 F?
L= §TT(8MV8MVT) + a16ﬂ- [Tr (logV — log VT)} ‘¥

+2]3T§TT (M((bz-) [(V + V) — 2\%]) -

Ny
. aF’; F.
+i|0-) ¢ 2\@%[ﬁ(logV—logvT)—(V—vT)]

1=1

e The parametrs ¢, are determined by minimizing the

potential:

v-L 50 - Z@)Q =D uicosd

2 : :
1=1 =1




e This implies the following equations:
Ny

pising; =a | 0 — Zgbl ; t=1...Ny

e Finally in terms of ¢ we get:

1 aN F? 2P
L=-T N—=Le242npy | M —1

5 r(0,V0,V") 5 S+ 5 (0) (cos 2l ) +

akF, V20
0 — T —d
—|— NG Z Oi r Sl P

where

F. . S
V = —GZ\/ﬁCD(x)/FW O =7 + —F ; Mlj(6> = ,LL? COS gbléw

V2 | /N

e We proceed as follows:
1. First we solve the minimization equations that de-
termine ¢; as functions of 6,a and 2.

2. Then we insert them in L that will in general be a
function of 0,a and .

e Physical quantities are invariant under 6 — 6 + 27 !!
If we have found a solution ¢;(f) of the minimization
equations, then the following is also a solution:

G1(0+2m) = ¢1(0) +2m ;g0 +2m) =¢i(f) ; i=2...Ny

But the physical quantities depend only on % and
therefore are invariant under a shift of 27 of 6.



4 Spectrum of pseudoscalar mesons

e The quadratic part of the previous Lagrangian is:

Ly = %TT (8,001 D) — gTT () Tr (§) — %Tr (M(6)3?)

e It is convenient to decompose the matrix ¢ as follows:
q)ij = ﬁaﬁ’fgﬁ + ’1)267;]'

~
~af

;i are the Ny(N;—1) non-diagonal generators of SU(Ny).

e One gets:
- 5167 1 (0) + 13(0)
Haﬁ H’y§ FT._ { M2 _ Mo B

—_ =
—_ = =

\11...11)
e The masses M?(0) of the physical states are determined
by the following equation:

Ny Ny Ny |

dot A =T = M20) = T[* — 1) [1-a > =] =0

2 2
i=1 i=1 j=1 p™ = H;

e In the case with three flavours and in the limit p3, u3 <<
©3 one gets the following masses for 7 and 7'

3 1
M? :m%(Jriaié\/(Zm%(—2m%—a)2—|—8a2




3 m2 — m?
t =2 — . = = 8) + sin &1
g = V2= Zm e 5 ) = cosgls) +sin gl

e We get a from the sum of the masses:

2 2 2
my, +m,, — 2mi

o= g ~ 0.24(GeV)?

e Using this value of ¢ and neglecting the square term
in the square root we get:

3 —2v?2
+ —\/_a = 0.27(GeV)* ; [Exp. 0.30]

2 2
mnNmK

3+ 2v2
2, ~o 4 32V

} a=0.95(GeV)* ; [Exp. 0.92]

and

¢ ~ 14 [Fxp. 11]

e ¢ is a parameter that appears in the effective La-
grangian as the coefficient of the ¢° term:

1 F
LW, U',q) = =Tr(0,U0,U") + —=Tr (M(U + U")) +

=5 W
1 ; q
+§q(az)T7“ (logU — log U") + a2 Oq(x)

e How can we extract it from the underlying QCD?

e In the large N, limit quark loops can be neglected
and this corresponds, in the effective Lagrangian, to
neglect the dependence on U.



e Therefore, for large N., a can be extracted from the
topological susceptibility of pure Yang-Mills theory:

. 1
lim(—7) /d4y " < q(x)q(y) >yu= iaFﬁ ~ (180MeV)*

q—0
[Exp. Lattice] = (194(5)MeV)*
e This has to be distinguished from the topological sus-

ceptibility computed in large N. QCD or, equivalently,
from the previous effective Lagrangian:

. . 1qx — XYM
lim (—3) / d*ze'™{q(2)q(0))gep = Xoep = Ny 1
q—0 I +a Zizfi 2

e It follows from the fact that there is a two-point cou-
pling between the singlet S(x) and ¢(x) and from the
mixing of S(x) with the octect through the mass term.

e It vanishes in the chiral limit, when at least one of the
p? = 0, for reasons that will become clear soon.

e Using
m2 +m?, — 2m?
pi=0.7m2 ; pui=13m> ; a=— ?3 b 0.24(GeV)?
we get

XQCD = (785M€V)4



5 The Witten-Veneziano relation

e In order to get the WYV relation we have to consider
the theory without quarks:

P
al?
with a source term J.
e From it we can compute the partition function:

Z(J,0) = e~ W(J8) _ e—v;VMFg(eHJ)?/zL

and the vacuum energy:

w(,0) aF? ,
E0) = = —"0
0)==— =
e From it we get:
d’E(0) aF? )
deg ‘9:0 - 2 7 MS - CLNf

e They imply the WYV relation:

2N d*E(0)
Ms = Fﬂf a1




6 Strong CP violating mesonic amplitudes

e CP is conserved if 6 — Zjvzfl ;, = 0. This happens when:

1. 6 = 0 that implies that ¢, =0
2. the mass of a quark flavour is zero

3. and also sometimes if 0 = 7

e Consider the minimization equations for two flavours
with a >> p?, 3

0=0o¢1+ ¢ ; M%Sm¢1:,u%sin(9—(b1)

e Their solution:

_ 115 sin 6 , (13 sin 6
sin ¢y = 1. 1 5 2 , singy = I 4 5 2

Vot s+ 2023 cos 0 VT s+ 2033 cos 0
and

2, 2 2, 2
+ 5 cos 6 + p7 cosf

Cos f1 = 4/“4“2 29 oSy = 4#24#1 29

Vit s+ 2033 cos 6 Vot s+ 20303 cos 0

e The corresponding potential
F2
VIO) = =<7\ 11+ iy + 2ppiz cos 0

e For equal masses (u; = ps = p) we get:

9 ‘

COS —
2

V() = —F7u’

Notice that both Eq.s are periodic of period 27 in 6.



e Expanding around the previous solution and including
terms of order H2

P10 = Q1o+ €0p1o+ O(7)
in the minimization equations

,u% sin ¢ = ,u% sin ¢y = a(f — ¢1 — ¢9)

12
€ =
a

e One gets:
. sin 0 2 + 12 cosd . sin 6 2+ 12 cosd
$1 = ¢1 — €03 = ,u; L 2= ¢y — €03 & “S
R H1 R 2
where
4 4 2,9
- . + 15 + 2 cos b
bi+dy—0 - R= My T ' l;LLLQ
M1

e Compute the coefficient of the C'P violating term:
sinf (4 15 sin 0
R ay/pt + 5+ 2433 cos 6

0—@1— ¢y =c

e It is vanishing if § = 0 or if y{ and/or y3 are equal to
Zero.
If 111 # ps it is also zero for 0 = w. But if yu; = uo = p we
get:

2
0— 61— o =" #0
In conclusion if 1y = ys then C'P is violated at 6 = 7.

e From the C'P violating term extract a cubic term in
the fields of the pseudoscalar mesons:

a (9 — Zf\gl i a (9 - Zf\ifl i)

 3V2R, V3F,

)TT<CI)3) — — Ty




e Decay amplitude ns — 171~ given by:

Ny
! (9 ~ it gbi) _2mz(0) pipzsind
V/3F; V3E. i+ g+ 2u3 5 cos

T(n— atrT) =

m2(0) = 13 COS Py + [15 COS Py _

1
> 5\/%‘ + iy + 243 15 cos 0

e For small values of § we get

2m> 0

\/EFW( m oy m_2)2
\/ m2 \/ mi

mq, my are the quark masses.

Tn— 77 )~

e This implies that

I(n— 7)) =60 (135 KeV)

From experiments we get:

that gives an upper limit to the value of 6 < 103

e The decay amplitude of » — 777~ is zero for 6 = 0, 7 if

P # 103
if uf = u3 it is not vanishing anymore at 0 = 7.



e Masses of the pseudoscalar mesons as a function of the
angle 6:

2 2 2 2
2 f41 COS @1 + 15 COS P2 2 f41 COS @1 + 13 COS O3
Mmoo+ = ;M =
) 2 2

and

2 2
,  pdcoséy + pdcos ¢y
Mpo.50 = 9

e They imply:

2 .2 2 2 2 2
_ Mg — My — Mg +Mis 15608 g — f1f COS Py

R(0) = — _
() m2 115 COS g + 3 cos ¢y

™

(3 — ) (3 + )
Hi + H + 2403 5 cos 0

and in particular

2 .2
RO =0)=2—1 R
Ho +

o+
=)= 2 2
Mo — [

e Experimentally R = 0.3 that is consistent with 6 = 0.



7 Strong CP violating amplitudes with baryons

e The baryons belong to an octet of SU(3):

»0 +

weRE EOZ o
> \/§+\/6 n
= =0 24

e Under the chiral U(3) x U(3) the baryons transform as
follows:
147

5 B — ARB' ;. L=

R =

e The Lagrangian involving baryons can be written as
follows:

2 _ _
\é:aTr [LURU + RU'LU'] +

™

Lyor =T'r [Bi’y“(‘?ﬂB] —

+6Tr [LURM + RU'LM'] +~Tr [LMRU + RM'LU"]

e As before we introduce

V;j _ Uijei‘bj ; Rij _ Gi(biR;j : Eij — ei@'l_;;j

e We get

V2a

7

+0Tr [(L'VR + RVIL) M(0)|+yTr [L'M(O)R'V + RM(O)L'V'] +

Ly =Tr [B'z’y“@uB'] — g

Tr [L'VRV + RVIL'VT] +

Same structure as before + CP violating term.



e Determine «,v and J in terms of the baryon masses:

F. F
mwzﬁ(a—&é—wﬂ) ; mzzﬁ(a—(vw)ﬁ)
Fr F, 1
mzzﬁ(a—&bz—wi) ; mA:\ﬁ(Q_g(’Y+5)(M2+2M§))
e We get
—Q msy + il (my —my)
B 7 R
e s — ) — (mz = )
TR 27T -

d =

V2 3 ]

2 (13 — ) |2

e The baryon masses satisfy the Gell-Mann-Okubo mass
formula:

3ma + my = 2(m= + my)

e Introduce the octet of baryons, couple them with the
mesons and extract the 7N coupling constants:

V2N [i75gxnn + Gonn] T'T'N
obtaining the (Goldeberger-Treiman relation
Frgznn = my

and the CP violating pion-nucleon coupling constant

B B m1m29 .
JxNN = 2F7T(m1 + mg)(M3 — m)

3
X §(mg —my) — (mz — my)



e They can be used to estimate the electric dipole mo-
ment of the neutron (CP violating):
1 my

2 ’ gﬂ'NNg’/TNN 10g
4 my my

D, = —3.6-10"%cm

in units where the electric charge e = 1.

e The experimental limit is:

D, <6-107°=6< 10"



8 Including the axion

e 0 is very small and actually consistent with zero.
e Can we make it to be zero in a natural way?

e The vanishing of m, would be a way because it allows
to rotate 6 away.
But m, seems to be # (.

e The Peccei-Quinn solution of the strong CP problem
uses a similar mechanism.

e It includes in the matter sector of QCD some new
d.o.f. with an extra U(1l)pgp symmetry that is broken
by an anomaly exactly as U(1)4.

e The would be Goldstone boson gets a mass with the
same mechanism as the singlet.

e Denoting with apgthe coefficient of the U(1)po anomaly
and with F,, the scale of its spontaneous breaking, we
can extend our previous Lagrangian as follows:

1 1 Fr
L= 5Tr(0U0,U")+3Tr(0.NoN)+ o (MU +U")) +

2

—0q + # + %q(w) (Tr(log U —log UT) + apg(log N — log N'))
where
Ulz) = TLeVB@F Ny = Lo givaayn

NG | NG

e Under the two U(1) transformations:

U — U N = "N,

)

the effective Lagrangian transforms as follows:

L — L — (N¢f +apgy) q(z)



e It is invariant if we choose N+ apgy = 0.
This is an anomaly-free U(1) subgroup, whose sponta-
neous and explicit breaking (by quark masses) implies
a new, pseudo-Goldstone boson, the (Peccei-Quinn-
Weinberg-Wilczek) axion.

e Proceeding as before
<Uj>=e "i5;F/V2 3 <N>=e¢F,/V2

we have to minimize the potential

F? la all all
V=50 =) 6= 0) =D uicosg,
1=1 =1

Ny
alO0=D ¢i—0|=pising; ; 0—¢—) &i=0
1=1

1=1

e They imply:

No dependence on f# and no CP violation in analogy
with the case m, = 0.

e The mass matrix involving the axion and the compo-
nents of ¢ in the Cartan subalgebra of U(Ny) (®;; = v;6;;)
is given by:

i Ny Ny I
-5 Z/ﬁ@?—i—@ Z%“Fb@ ; Z)ECLPQF7T
i=1 i=1 @




e The masses of the neutral mesons and of the axion
are given by setting to zero the determinant of the
following matrix:

[Va—X  ba ba  ba ... ba )
ba  pi+a—\ a a ... a
ba a ps+a—X a ... a

\ ba ba ba ba ... ,u?vf—i—a—)\)

e That is by solving the equation:
Ny

1 1
2| = — b
A

1=1

e Since b << 1 the lowest eigenvalue, corresponding to
the mass of the axion, is given by:

2 2 2

2 b QPQFW
a1 3 1 1 3 1
5*‘2@:1/722 5+Z@':1u_§

Xqocp 1s the topological susceptibility in QCD.

— miFO% = = QQ%QXQCD

m

e In terms of the masses of the pseudoscalar mesons,

one gets:
1 9 1 1 5 1 9
a M1 M H3

e Neglecting the term with 1/a, one gets the current

algebra relation:
mymsa

(7711 -+ m2)2

in terms of the mass of the up and down quarks.

272 _ o 2 270
my by = 2apgm Fr -

e Consistency with experiments requires:
F, > 10°GeV = m,, < 0.01eV



9 Conclusions

e The topological susceptibility in pure (large N.) YM
theory determines the spectrum of the pseudoscalar
mesons:

aF2

lim/dllxoiqx(q(x)q(())}m[ IXYM = I—
q—0 2

e The spectrum of the pseudoscalar mesons in (large V,)
QCD is fixed by the vanishing of the determinant of
the mass matrix:

Ny Ny
[I¢* = u) 1—azq —z| =1l -2y =0
1=1 =1 t 1=1

M; are the physical masses of the pseudoscalar mesons.
e Chiral limit (/N; = 3): massless octect and mg = 3a.

e Two-point correlator in (large N.) QCD

- Xy M i ¢ —
(=) / 26 (g(2)g(0)) oo — o TT L
1—aZu qu_MiQ

¢ _Ml

e The topological susceptibility in (large N.) QCD de-
termines the mass of the axion:

miFo% = QQ%’QXQCD

e and it is related to yy,, by

. 4 iQZE = =X XYM
}15% / d e (q()q(0))gcp = iXgep 21 Ny

that vanishes, as expected, in the chiral limit
(no 6 dependence in the chiral limit).



e Including the axion one gets:

Ny Ny 1 B Ny
Cll@ =) [1=a Y ==+ || =11 — M) —m}) =¢
i1 = —nq P
and
1 ¢y i
(=) [ e l)a0acns = v T] s = Xacpa =0

1=1

e In agreement with the fact that the axion is there to
eliminate the 6§ dependence of the physical quantities.

e Actually, the effective Lagrangian is a simple way to
implement the Ward identities of the underlying mi-
croscopic theory (QCD):

—i/d4xeiqx<q“Jé2(x)O(y)> = 2/d4$eiqx<9($)0(y)>

v2m; [ de(P(2)0() + (@Y. OW))
where O(y) = q(z), m;P,(z) with P, = iY;y51;.

e For instance, the Ward identity with O(y) = ¢(y) is
satisfied by the following two-point functions:

N
2iq, aF? ! q* — p?
¢ —pp 2 L= M

/ 26 (70 (2)g(y)) =

1=1

Ny
2u aF7 vy @ — 1
¢ —pi 2 1@ — M

/ d*ze'" (2m,; Pi(x)q(y)) =

and

N
, al? ¢ — p?

d4 qr — T -
/ ze™{q(2)q(y)) = = Ll =

with [QY, q(y)] = 0.




10 Outlook

e Extend our results at finite temperature.
e Can we say something at finite V.7

e Can lattice QC' D say something about the dependence
of the topological susceptibility on the quark masses
in the chiral limit (also at finite temperature)?

e Can lattice QC'D determine the momentum depen-
dence of the two-point function:

2

2
. - XY M — K
(=) / a6 ((2)q(0)) = —XYMH T
1—aY ) 5y ¢ — M}

q _ML




