

Transfer reaction studies at HIE-ISOLDE

Freddy Flavigny

flaviqny@ipno.in2p3.fr

Workshop GHT2017

24/01/2017

1

- 1. General context of transfer studies @ (HIE)-ISOLDE
- 2. MINIBALL + TREX: Performances and Highlights
- 3. Perspectives

Introduction: ISOLDE

Time structure (ex: ⁶⁶Ni beam)

Time structure (ex: ⁶⁶Ni beam)

Example for ⁶⁶Ni beam:

BeamON width = 1.2 ms REXEBIS-cycle = 33 Hz (Max 50Hz)

=>39.6 ms of beam /s (4%)

If integrated rate is 10⁶ pps:

=> Instantaneous rate = 2.5*10⁷ pps

- 1. TREX (+ MINIBALL)
- 2. ACTAR-TPC
- 3. HELIOS
- 4. SPECMAT

V. Bildstein, EPJA **48**, 85 (2012)

- 1. TREX (+ MINIBALL)
- 2. ACTAR-TPC
- 3. HELIOS
- 4. SPECMAT

ERC grant, G. Grinyer (GANIL)

- 1. TREX (+ MINIBALL)
- 2. ACTAR-TPC
- 3. HELIOS-like (ISS coll., R. Page (U. Liverpool))
- 4. SPECMAT

1. TREX (+ MINIBALL)

- 2. ACTAR-TPC
- 3. HELIOS

4. SPECMAT

ERC grant, R. Raabe (KU Leuven)

Layout of the Hall: 3 experimental lines

Completed transfer experiments (TREX)

Period: 2007-2012

Reaction	Analyzer
³⁰ Mg(d,p)	V. Bildstein
⁶⁶ Ni(d,p)	J. Diriken
⁶⁶ Ni(t,p)	J. Eleseviers
³⁰ Mg(t,p)	K. Wimmer
⁴⁴ Ar(t,p)	K. Nowak
⁷⁸ Zn(d,p)	R. Orlandi
⁷² Zn(t,p)	S. Hellgartner
¹¹ Be(d,p)	J. Joanssen
⁸ Li(d,p)	O. Tengborn
⁹⁸ Rb(⁷ Li,t)	S. Bottoni

Completed transfer experiments (TREX)

Period: 2007-2012

Reaction	Analyzer
³⁰ Mg(d,p)	V. Bildstein
⁶⁶ Ni(d,p)	J. Diriken
⁶⁶ Ni(t,p)	J. Eleseviers
³⁰ Mg(t,p)	K. Wimmer
⁴⁴ Ar(t,p)	K. Nowak
⁷⁸ Zn(d,p)	R. Orlandi
⁷² Zn(t,p)	S. Hellgartner
¹¹ Be(d,p)	J. Joanssen
⁸ Li(d,p)	O. Tengborn
⁹⁸ Rb(⁷ Li,t)	S. Bottoni

Completed transfer experiments (TREX)

K. Wimmer, PRL**105**, 252501 (2010)

Period: 2007-2012

Reaction	Analyzer
³⁰ Mg(d,p)	V. Bildstein
⁶⁶ Ni(d,p)	J. Diriken
⁶⁶ Ni(t,p)	J. Eleseviers
³⁰ Mg(t,p)	K. Wimmer
⁴⁴ Ar(t,p)	K. Nowak
⁷⁸ Zn(d,p)	R. Orlandi
⁷² Zn(t,p)	S. Hellgartner
¹¹ Be(d,p)	J. Joanssen
⁸ Li(d,p)	O. Tengborn
⁹⁸ Rb(⁷ Li,t)	S. Bottoni

Target:

- ³H loaded Ti foil:
- Tot. Thick:
- Ratio 3H/Ti:
- Eff. Thick:

- 10 GBq 500 μg/cm2
- 1/3
- 40 µg/cm2

http://isolde.web.cern.ch/active-experiments.

Accepted experiments (31) + LOIs

Letters of Intent (2010)

Accepted for 4-5.5 MeV/u:

Reaction	SpokePersons	l(pps)	Contaminant
¹⁷ N(d,p)	A. Matta, W .Catford	1*10 ⁴	
⁶⁸ Ni(d,p)	L. Gaffney, F. Flavigny	2*10 ⁵	⁶⁸ Ga
⁹ Li(t,p) ¹¹ Li	K. Riisager, D. Mucher	1*10 ⁶	
⁸⁰ Zn(d,p)	R. Orlandi, R. Raabe	2-8*10 ³	⁸⁰ Ga
⁷⁰ Ni(d,p)	J. Valiente Dobon	1*10 ⁴	⁷⁰ Ga
⁷ Be(d,p)	D. Gupta	1*10 ⁷	
²⁰ Mg+p-> ²¹ Al	B. Fernandez	50	²⁰ Na
¹¹ Be(t,p)	J.G. Johansen	5*10 ⁶	
¹³² Sn(⁷ Li,t)	S. Leoni, B. Fornal	8*10 ⁵	

+ about 15 Coulomb Excitation experiments

Reaction	SpokePersons
¹⁰⁰ Sn region	J. Cederkall
¹⁸⁴ Hg region	P. Van Duppen
¹³² Sn region	Th. Kroll
⁵⁰⁻⁵² Ca region	S. Freeman
GASPARD	W. Catford, D. Beaumel

1. General context of transfer studies @ (HIE)-ISOLDE

2. MINIBALL + TREX: Performances and Highlights

3. Perspectives

Setup for Transfer: TREX + Miniball

- T-REX:
 - identification
 - energy
 - angular distribution

- gamma detection in Miniball:
 - energy
 - angular distribution (Doppler correction)

- 8 Miniball triple (HPGe) clusters
- Each crystal: 6-fold segmented

- 8 Δ E-E_{rest} barrel detectors (140/1000 um)
- 2 $\Delta\text{E-E}_{\text{rest}}$ CD detectors (140/500 and 500,1500 um)
- Covered θ_{lab} range:

28° to 78° and 102 to 152° (Barrel) and 152 to 172° (Bw CD) •Reaction chamber: Diameter: 140 mm Thickness:2mm Al

Electronics

MiniBall: Digital electronic (DGFs)

• DGF: Digital Gamma finder (CAMAC stdrd)

•Amplifier (gain+offset)

- 2 DGFs per crystal 48 DGFs -168 ch.
- ADC : 40 MHz 16 bit sampling
- Timestamp + Buffer until read out

TREX: Analog electronic (Mesytec)

- CD signals multiplexed (MUX32)
 - From 32 to 4= 2*(Energy+Position) signals
 - 2 events over thresh. max per 30ns
- 2 Trigger groups (Top-Left, Bottom-Right)
- MADCs + buffer + read-out
- Timestamp sync. with DGF master clock

TREX: Resolutions

Fig. 6. Polar resolution achievable with T-REX if the strips are divided in the analysis into 16 bins along their length.

Excitation Energy

Geant4 Simulations

²²Ne(d,p)²³Ne @ 2.85 MeV/u

Table 2. Contributions from different features to the excitation energy resolution determined by Geant4 simulations. The contributions depend on the beam used, the values reported are for the $d(^{22}Ne, p)^{23}Ne/d(^{30}Mg, p)^{31}Mg$ reaction, both at 2.85 MeV u^{-1} . The 12 μ m thick MylarTM foils in front of the forward barrel detectors contribute only on the order of 1 keV to the final resolution.

		Excitation energy					
Feature	Amount	resolution (FV		WHM) [k	eV]	
		Forward		Backward			
Detector res.	$100 \mathrm{keV}$	93	/	76	130	/	_
Beam spot size	$5\mathrm{mm}$	120	/	81	40	/	_
Target thickness	$1\mathrm{mgcm^{-2}}$	597	/	497	489	/	_
	$100\mu\mathrm{gcm^{-2}}$	86	/	29	28	/	_
ϑ_{lab} res.	2° to 6°	357	/	315	129	/	_
Total res	$1\mathrm{mgcm^{-2}}$	680	/	619	399	/	_
100a1 168.	$100\mu\mathrm{gcm^{-2}}$	137	/	111	150	/	_

 $Exp(1mg.cm^{-2})$: FWHM =1 MeV

≻

TREX+MINIBALL: Efficiencies

TREX: Particle identification (examples)

- Backward:
 - Proton stopped in dE, Eres used as a veto
- Forward:
 - dE Vs E

Kinematics for ⁶⁶Ni(d,p)⁶⁷Ni

Particle-gamma coincidences

Particle-gamma coincidences

Colors: feeding to all different levels populated in ⁶⁷Ni

Improved level scheme

3680 (50)

Improved level scheme

Identification of 5/2+ states (neutron excitations above the N=50 shell gap, d5/2)

Fusion and Elastic Scattering

forward CD stack backward CD stack Target Beam forward barrel stack backward barrel stac E [MeV] 3 [MeV] 10⁵ 10⁵ ш 50 Mg 10⁴ 1**0**⁴ 10³ 10³ 30 30 10² 10² 20 20 10 10 Mg ᅇ δ 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 20 ϑ_{lab} [°] ϑ_{lab} [°]

Mylar foils in front of detectors

K. Wimmer, PhD Thesis, TU Munich.

1. General context of transfer studies @ (HIE)-ISOLDE

2. MINIBALL + TREX

3. Perspectives

A TREX upgrade ?

G4 simulations: S. Hellgartner, PhD Thesis, TU Munich.

Goals:

- Higher segmentation
- DSSDs
- Lower Threshold
- ASIC based readout (No more multiplexing)

- Target Thickness effects
- Compromise: Resolution/Statistics

Ex; _{Target:} FWHM(gs):

0.1 to 0.5 mg/cm² 86 keV to 265 keV

MINIBALL upgrade ?

- Anti-Compton BGO shield
 - Designed at IPN Orsay

- New electronics?
 - GSI, FEBEX ?

- Unique physics opportunities at HIE-ISOLDE
 - Large variety of beams due to target-ion source developments
 - Laser ionization selectivity
 - Higher E, allows to study heavier masses
- Another Si array at ISOLDE?
 - Future of TREX? Ressources, upgrade?
 - Main possibilities of improvements:
 - X Efficiency
 - ✓ Particle Identification (dE(TOF), PSA, ...)
 - ✓ Resolution (yes but compromise with target thickness)
 - ✓ Physics with forward reactions
 - Technical aspects
 - Coupling with MINIBALL (ACQ, elect., mechanics..)
 - Pulsed beam (rate, readout, dead time)
 - Normalization