PLAS: Analog memory ASIC Status report

Ramón J. Aliaga

Instituto de Física Corpuscular (IFIC) Consejo Superior de Investigaciones Científicas (CSIC)

Contact: raalva@ific.uv.es

24 Jan 2017

GHT Workshop – IPN Orsay

Purpose of PLAS

- □ Front-end circuit, receive preamp signals
- Generate trigger request
- □ Sample valid pulses, zero suppression
- Serialize output
- Minimize deadtime
- Minimize power consumption

Classic analog memory structure

Switched Capacitor Array (SCA)

- Capacitors charged consecutively, high write frequency
- On trigger, SCA is stopped and contents are held
- Slow read frequency, voltage digitized externally
- SCA is replicated for each input channel

Classic analog memory structure

Switched Capacitor Array (SCA)

- **Problem:** SCA cannot be rewritten until read out
- Low read frequency implies very long dead time
- Existing solutions:
 - Partial readout
 - Replication

New analog memory structure

PipeLined Asymmetric SCA (PLAS)

- Split the memory into two sequential SCA stages
- □ Stage 1: Many **short SCAs** for **pre-trigger** samples, one per input
- □ Stage 2: A few long SCAs for post-trigger samples, shared
 - Include **buffer SCAs** where contents of stage 1 are transferred

New analog memory structure

PipeLined Asymmetric SCA (PLAS)

- Advantages:
 - No deadtime
 - Smaller circuit (less capacitor cells)
- Disadvantages:
 - Calibration more complex (needs path through both stages)

PLAS 1.0 specifications

General information:

- 0.18 μm CMOS technology
- Die size 3.5 mm × 3.9 mm (32 channels)
- □ 1.8 V power supply
- I2C configuration interface
- Low power (12 mW/channel, measured)
- Low noise (11.9 ENOB, simulated)

PLAS 1.0 specifications

Pulse capture:

- **32 inputs** with independent trigger
- Generates common Trigger Request
- Samples at 200 MHz
 - Both edges of 100 MHz clock
- **224 samples** captured per pulse
 - **32** before trigger, **192** after trigger

No deadtime

Memory readout:

- **8** output queue slots
- Single analog output (differential)
- Serial readout at 50 MHz
- Needs external ADC
- Designed for **triggerless** readout
- **Generates timestamp** for pulses
 - Synchronizable with each other and/or GTS

Input stage

- Input signals
 - Configurable input range and polarity for each channel
 - External resistor R₁
 - Programmable V_{ref} (2 per block of 8 channels)
- Channel trigger
 - Leading edge, programmable threshold (2 per channel)
 - Programmable mode (edge polarity, global trigger, hysteresis...)

Output format

10

- All data serialized into one differential link at 50 MBaud
- Output frames contain analog and digital data for single pulses

□ Frame contents:

- Training pattern when idle (010101...)
- Frame header
- ID of triggering channel
- Circular buffer position on trigger
- Tracking info through PLAS

- Trigger timestamp (Grey encoded)
- Error correcting code (SECDED)
- 32(+1) pre-trigger samples
- 192(+6) post-trigger samples
- Total duration: 5.98 μs (up to 165 kEvent/s)

GHT Workshop – IPN Orsay

24 Jan 2017

Multiplexing PLAS outputs

- Merge output from several PLAS with external multiplexer
- Less physical links, increased latency, event rate reduced (or not)
- Requires external arbitration controller
- PLAS 2.0 will include:
 - Chip ID field in frame (4 bits)
 - Multi-PLAS arbitration support

Readout

- Frames are digitized by free running ADC (digital: "0"= -1.8V, "1" = +1.8V)
- FPGA mandatory for decoding ADC output
 - Detect start of frame
 - Decode frame contents
 - Adjust sampling phase automatically

- □ Firmware needs to include:
 - Sampling phase control
 - PLAS frame decoding
 - Sample reordering
 - Calibration correction
 - Timestamp synchronization
 - PLAS configuration
 - **TRACE-specific PSA**

Processing in FPGA

Continuous processing steps:

- Extracting analog and digital data
- Header detection
- Bit error correction
- Recovering data fields in frame

- Reordering samples and removing dummies
- Calibration correction
- Timestamp correction
- Pulse Shape Analysis (TBD)

Current options for readout

PLAS 1.0 test board

NUMEXO2 + FADC Mezzanine

Custom DAQ from older project

GHT Workshop – IPN Orsay

First tests

Tests with oscilloscope capture, not FPGA

Results of first tests

- Summary: PLAS 1.0 works partially, redesign mandatory
- Some event data is lost
 - Pre-trigger samples
 - Triggering channel ID
 - Circular buffer position
- Max frequency below 100 MHz
 - Works properly at 90 MHz
 - Using 80 MHz or 78.125 MHz for tests
- Configuration interface fully operational
- Trigger request signals working
- Around 12 mW/channel (in test conditions)

Bugs in trigger logic

- □ (Almost) confirmed in simulations
- Sensitivity to clock skew between 1st and 2nd stage
 - Stage 2 knows there is a trigger
 - Stage 1 does not realize there is a trigger
 - Data is not transferred (channel ID, pretrigger samples...)
- Trigger logic needs redesign

Current plan and status

- 18
- PLAS 1.0 test
 - FPGA-based readout
 - NUMEXO2: Having some troubles with setup...
 - Custom DAQ: Ongoing
 - Full PLAS characterization & calibration
 - Completion expected by 15th March (with custom DAQ)
- PLAS 2.0 redesign
 - Fix/redesign trigger logic
 - Fix operating frequency
 - Clarify specifications
 - Internal vs external shaper
 - Pre-trigger window
 - Other changes depend on test results. Proposals?
 - Foundry deadline: 15th May or 14th August

PLAS: Analog memory ASIC Status report

Ramón J. Aliaga

Instituto de Física Corpuscular (IFIC) Consejo Superior de Investigaciones Científicas (CSIC)

Contact: raalva@ific.uv.es

24 Jan 2017

GHT Workshop – IPN Orsay

Acknowledgments

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Ramón J. Aliaga Instituto de Física Corpuscular (CSIC-UV)

Work partially supported by:

- Spanish Ministry of Economy and Competitiveness (MINECO) under Grant FPA2014-57196-C5
- Generalitat Valenciana, Spain, under Grant PROMETEOII/2014/019
- European Commission FEDER funds

Extra slides

24 Jan 2017

GHT Workshop – IPN Orsay

- PLAS analog output does not have sharp edges
 - Exponential waveform, sampling error
 - **Error** $\propto \Delta v$, not systematic
 - Error decreases exponentially with sampling phase φ
- Sampling phase control at the readout digitizer

- PLAS analog output does not have sharp edges
 - Exponential waveform, sampling error
 - **Error** $\propto \Delta v$, not systematic

23

- Error decreases exponentially with sampling phase φ
- Sampling phase control at the readout digitizer

- PLAS analog output does not have sharp edges
 - Exponential waveform, sampling error
 - **Error** $\propto \Delta v$, not systematic
 - Error decreases exponentially with sampling phase φ
- Sampling phase control at the readout digitizer

Adjustment method:

- Capture the idle training pattern (010101...)
- **\Box** Shift ϕ until bit slip detected
- Set φ at value just before the bit slip
- Shift over the whole period recommended for optimal SNR

Adjustment method:

26

- Capture the idle training pattern (010101...)
- Shift φ until bit slip detected
- Set φ at value just before the bit slip
- Shift over the whole period recommended for optimal SNR

Adjustment method:

27

- Capture the idle training pattern (010101...)
- **\Box** Shift φ until bit slip detected
- Set φ at value just before the bit slip
- Shift over the whole period recommended for optimal SNR

Synchronization scheme

- □ PLAS timestamp $(TS_{PLAS}) \neq GTS$ timestamp (TS_{GTS})
- $\square PLAS clock = GTS clock \implies TS_{PLAS} TS_{GTS} = constant offset$

Alignment method: Compute offset, subtract from TS_{PLAS}

- **SYNC signal** distributed to all PLAS in all DBs at the same time (clock cycle)
- □ Use **SYNC** as PLAS External Trigger on a dummy channel in each PLAS
- Triggers controlled sync event on all PLAS

Synchronization scheme

- □ Causes Trigger signal to reach the GTS
 - \Rightarrow Obtain TS_{GTS}(sync)
- \Box Places sync event in PLAS queue with TS_{PLAS}(sync)
- □ Sync frame reaches ROU, identify by channel ID ⇒ Obtain TS_{PLAS}(sync)
- Compute offset = TS_{PLAS}(sync) TS_{GTS}(sync)
- □ For all future events, correct TS_{GTS} (event) = TS_{PLAS} (event) offset

29