Mauro Mezzetto, Istituto Nazionale Fisica Nucleare, Padova

Prospects on neutrino mass hierarchy determination

- Experimental possibilities
- Present status
- Medium term
- Long term
- Conclusions

... before addressing MH

New T2K results: KEK seminar on 4 August 2017

Based on 89 ν_{e} and 7 $\overline{\nu}_{e}$ events

- 30% of the expected full statistics of the experiment
- 30% improvement in efficiency x acceptance
- Important improvements in neutrino interactions modelling

• δ_{CP} determination is very important for future searches of MH in long baseline experiments

Neutrino Mass Hierarchy (aka Neutrino Mass Ordering)

A degree of freedom in neutrino mass spectrum: neutrino masses can be ordered following the generations (normal hierarchy) or not (inverted hierarchy). Related to

sign of $\Delta m_{31}^2 = m_3^2 - m_1^2$

One of the key objectives in neutrino physics:

- Important phenomenological consequences in neutrino oscillations, supernova neutrinos, cosmology, neutrinoless double beta decays, ...
- Important consequences in neutrino theory: model building, symmetries etc.

Neutrino oscillations effects

(see f.i. Capozzi, Lisi, Marrone, arXiv:1708.03022)

Look for interferences of Δm^2 -driven oscillations with oscillations driven by a different quantity, say Q, having a known sign. The interference can reveal the sign of Δm^2 .

- $Q=\delta m^2 \rightarrow$ medium-baseline reactor v oscillations in vacuum
- $Q = V_e = \sqrt{2}G_F N_e \rightarrow$ earth matter effects: both atmospheric and long-baseline neutrinos
- $Q=V_v \rightarrow core-collapse$ events of a galactic supernova

Had $\theta_{\rm 13}$ been smaller none of the above methods would have worked, except for long baseline neutrinos

Neutrino mass effects

Mass hierarchy has a direct effect on the different ways of adding up neutrino masses (gray regions purely indicative):

Lightest neutrino mass in eV

$$m_{etaeta} = \left| \sum_i U_{ei}^2 m_i \right|$$

Neutrinoless double beta decays

 $m_{\beta}^2 = \sum_i \left| U_{ei} \right|^2 m_i^2$

Neutrino mass via beta decays

Sum of neutrino masses via cosmology

Electron neutrino vacuum oscillations

 $D_{\rm b}$ (a Latt $D_{\rm E}$ 22 (2002) 04 100

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - 2|U_{e3}|^2 (1 - |U_{e3}|^2) \left(1 - \cos\frac{\Delta m_{31}^2 L}{2E}\right) \qquad \text{Astroparticle Phys.18 (2003) 565-579} \\ -\frac{1}{2} (1 - |U_{e3}|^2)^2 \sin^2 2\Theta_{12} \left(1 - \cos\frac{\Delta m_{21}^2 L}{2E}\right) \qquad \text{Solar} \\ +2|U_{e3}|^2 (1 - |U_{e3}|^2) \sin^2 \Theta_{12} \left(\cos\left(\frac{\Delta m_{31}^2 L}{2E} - \frac{\Delta m_{21}^2 L}{2E}\right) - \cos\frac{\Delta m_{31}^2 L}{2E}\right).$$

Matter effects through the Earth

E. K. Akhmedov, S. Razzaque and A. Y. Smirnov, JHEP 1302 (2013) 082

Opposite effects for v and \overline{v} Different effects for the different v flavors

- Flavor identification
- Smearing over energies and directions
- Degeneracy of osc. Parameters
- Statistics
- Systematics

Key features

- The resonance peak (for $P_{e\mu}$, $P_{e\tau}$, $P_{\mu e}$) or dip (for P_{ee}) in the mantle domain ($\cos\theta_z > -0.83$) at $E_v \approx 6$ GeV and $\cos\theta_z = -0.8$;
- Three parametric ridges in the core domain (cosθz < -0:83) at E_v ≈(2 - 10) GeV.

Supernova MH Signatures

Mirizzi et al. Riv. Nuovo Cim. 39, 1 (2016); K. Scholberg, arXiv:1708.03022

Supernovae explosion mechanisms (and neutrino collective effects) are not known enough to compute a solid prediction of neutrino spectra for NH and IH.

A promising "candle" is the observation is of the neutronization because the time dependence of its luminosity is nearly model independent: self-interaction has a negligible effect and the burst to be processed by MSW effects only. Its flavor is strongly dominated by v_e .

It is anyway important to separately measure neutrino-antineutrino flavors and accumulate a large statistics, this is possible only combining different detection technologies (water, Lar, scintillator etc.)

K.Scholberg, arXiv:1707.06384. normalized to a 10 kpc SN2a explosion

			T		<u> </u>
Detector	Type	Mass (kt)	Location	Events	Status
Super-Kamiokande	H_2O	32	Japan	7,000	Running
LVD	C_nH_{2n}	1	Italy	300	Running
KamLAND	C_nH_{2n}	1	Japan	300	Running
Borexino	C_nH_{2n}	0.3	Italy	100	Running
IceCube	Long string	(600)	South Pole	(10^{6})	Running
Baksan	C_nH_{2n}	0.33	Russia	50	Running
HALO	Pb	0.08	Canada	30	Running
Daya Bay	C_nH_{2n}	0.33	China	100	Running
$NO\nu A^*$	C_nH_{2n}	15	USA	4,000	Running
$MicroBooNE^*$	Ar	0.17	USA	17	Running
SNO+	C_nH_{2n}	0.8	Canada	300	Near future
DUNE	Ar	40	USA	$3,\!000$	Future
Hyper-Kamiokande	H_2O	374	Japan	$75,\!000$	Future
JUNO	C_nH_{2n}	20	China	6000	Future
RENO-50	C_nH_{2n}	18	Korea	5400	Future
PINGU	Long string	(600)	South Pole	(10^{6})	Future

Statistical Methods

MH can have only two values (of course) and their are a priori known. One could question if the ΔX^2 method is adequate: this discussion is indeed quite animate in literature (the following list could be incomplete):

- Qian X. *et al.* Phys.Rev. D86 (2012) 113011
- E. Ciuffoli, J. Evslin and X. Zhang, JHEP 1303 (2013), Phys. Rev. D 88 (2013) 033017
- A. Tonazzo, PoS EPS-HEP2015 (2015) 085
- L. Stanco et al. Phys.Rev. D95 (2017) no.5, 053002
- LBNO coll. J.Phys.Conf.Ser. 598 (2015) no.1, 012005
- X. Qian et al, Nucl.Instrum.Meth. A827 (2016) 63-78
- Vitells and Read, arXiv:1311.4076
- M. Blennow , JHEP 1401 (2014) 139
- M. Blennow et al., JHEP 1403 (2014) 028
- Y. Zhang et al., Mod.Phys.Lett. A29 (2014) 1450096
- J. Evslin, arXiv:1310.4007.
- L.Stanco et al., arXiv:1707.07651.

Present Status

- SK alone: ΔX^2 (NH-IH)= -5.2
- T2K alone: (too short baseline): IH favored (posterior probability 0.86)
- NOvA alone (PRL 118, 231801 (2017)): ΔX^2 (NH-IH)= - 0.2 (upper octant) ΔX^2 (NH-IH)= - 3.2 (lower octant)

• Global fits (not including 2017 data or full SK data set, see also previous talk): Capozzi et al, Nucl.Phys. B908 (2016) 218, ΔX^2 (NH-IH)= -0.98 nu-fit.org, ΔX^2 (NH-IH)= -0.83 de Salas et al., arXiv:1708.01186, ΔX^2 (NH-IH)= -2.7

Three Flavor Fit (w/ reactor and T2K constraints)

- Include constraint from T2K public data.
- Normal hierarchy is slightly preferred: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -5.2$ (-3.8 exp. for SK best, -3.1 for combined best)
- p-value of Inverted hypothesis is 0.024 $(\sin^2\theta_{23}=0.6)$ and 0.001 $(\sin^2\theta_{23}=0.4)$.

	δ _{CP}	sin²θ ₂₃	$ \Delta m^2_{32} $ (eV ²)
Inverted	4.189	0.575	2.5x10-3
Normal	4.189	0.587	2.5x10-3
Inverted	4.538	0.55	2.5x10-3
Normal	4.887	0.55	2.4x10-3

w/T2K constraint

Cosmology

See next talk by R. Battye

S. Vagnozzi et al. arXiv: 1701.08172 CMB+BAO+ τ (optical depth to reionization) \rightarrow Mv < 0.151 eV (95%CL) \rightarrow IH excluded at ~64% C.L.

CMB+BAO+ τ +Planck high-polarization data \rightarrow Mv < 0.118 eV (95%CL) \rightarrow IH excluded at ~71% C.L.

CMB+BAO+ τ +Planck high-polarization data+[H₀ = (73.02+/- 1.79) km s⁻¹Mpc⁻¹] \rightarrow Mv < 0.090 eV (95%CL) \rightarrow IH excluded at ~77% C.L.

Simpson, Jimenez, Pena-Garay, Verde, "Strong Evidence for the Normal Neutrino Hierarchy", 1703.03425: "... we infer odds of 42:1 in favour of the normal hierarchy" (Bayesian odds)

T.Schwetz et al., arXiv:1703.04585: "We argue that the claimed evidence for normal ordering is almost entirely driven by the adopted prior and not due to the data itself"

Near Future (extrapolation of running experiments)

• T2K-II: MH sensitivity not quoted but ...

- SK: could improve its sensitivity thanks to the event reconstruction developments by the T2K collaboration
- Nova: see also next slides

Projection of T2K+Nova at full statistics

From T2K collaboration: PTEP 2015 (2015) 4, 043C01. Recent improvements of both T2K and Nova reconstruction not considered and T2K-II not included

Full statistics of the running experiments: T2K and Nova, equal v and \overline{v} runs, dashed lines: including systematics

NOvA future reach

Future experiments

Atmospheric neutrinos

- INO
- Orca
- Pingu
- Hyper-Kamiokande

Long Baseline

- Dune
- Hyper-Kamiokande (T2KK)

Vacuum oscillations

• Juno

D

JUNO (Jiangmen Underground Neutrino Observatory)

JUNO

- Funded, under construction
- Data taking expected by 2020
- Reactors power: 36 GW (26.6 GW by 2020)
- Aimed to measure MH, precision measurement of $\sin^2\theta_{12}$, δm^2_{12} , Δm^2_{23} and also SuperNovae, solar, atmospheric, geo neutrinos, proton decay, indirect DM searches ..

CDR: arXiv:1508.07166, Physics: J.Phys. G43 (2016) no.3, 030401

Juno detector

Experiment	Daya Bay	Daya Bay BOREXINO		JUNO	
LS mass	20 ton ~300 ton		~1 kton	20 kton	
Coverage	~12%	~34%	~34%	~80%	
Energy resolution	~7.5%/√E	~5%/ √ E	~6%/√E	~3%/ √ E	
Light yield	~ 160 p.e. / MeV	~ 500 p.e. / MeV	~ 250 p.e. / MeV	~ 1200 p.e. / MeV	

JUNO

MH sensitivity in 6 years. External measure of Δm_{ee}^2 could be crucial

C .								
		Stat.	Core dist.	DYB & HZ	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
	Size	$52.5\mathrm{km}$	Tab. 1-2	Tab. 1-2	1%	6.3%	0.4%	1%
	$\Delta \chi^2_{ m MH}$	+16	-3	-1.7	-1	-0.6	-0.1	+(4-12)
							·	

 $\sin^2\theta_{13}$

5%

~15%

INO/ICAL

٠

Magnetized Iron Calorimeter (ICAL) composed of resistive plate chamber (RPC) in India

- 48x16x14.5 m, 50 kton mass
- **v** and \overline{v} separation by muon charge
- Expect MH determination at **2.2σ using 10 yr data** (3σ if hadron information is introduced)

Pramana - J. Phys. (2017) 88:79

5σ

4σ

3σ

2σ

20

ORCA (Oscillation Research with Cosmics in the Abyss)

J.Phys G43 (2016) n.8, 084001

Digital Optical Module (DOM)

31 x 3"-PMTs (19♥, 12♠)

- Uniform angular coverage
- Directional information
- Single photon counting

ORCA

ORCA

Capozzi, Lisi, Marrone arXiv:1708.03022

" ... the corresponding distributions for IO (not shown) would be visually indistinguishable."

Aimed to be in data taking by mid 2020 (but not yet fully funded)

- neutrino and antineutrino events cannot be distinguished
- electron and muon flavors are only probed via the categories of "shower" and "track" events.

PINGU (Precision IceCube Next Generation Upgrade)

J.Phys. G44 (2017) no.5, 054006

PINGU

1 σ Energy-Direction resolution curves

MH sensitivity after 4 years of data

4 years to be completed, start in 2018?

Hyper-Kamiokande

One tank

arXiv:1412.4673, Kek preprint 2016-21

YPER

	SK	НК
Total Volume (Fiducial)	0.05 Mton (0.022)	0.26 Mton (0.19)
Dimension	39 m (ф) 42 m (H)	74 m (ф) 60 m (H)
No. Of PMT (coverage)	11 k (40%)	80 k (new gen.) (40%)
Single photon detection eff.	12%	24%
Photon yield	1	2
Timing resolution (single photon)	2 ns	1 ns
Beam Power	0.75 MW (goal T2K)	1.3 MW

By combining atmospherics with beam data

Project status in Japan T. Nakaya @ Lepton Photon 2017

- · Strong support from communities: Cosmic-Ray and High Energy
- · Strong Commitment from host institutes: ICRR, U. Tokyo and KEK
 - $\cdot\,$ MoU between ICRR and KEK/IPNS for Hyper-K
 - · U.Tokyo will launch new institute for Hyper-K in October 2017
 - $\cdot\,$ ICRR future project committee: Hyper-K should be the laboratory's next main project
 - $\cdot\,$ KEK project implementation plan: the first priority to the J-PARC upgrade for Hyper-K
- Science Council of Japan selects Hyper-K as one of the top priority largescale projects in "Master Plan 2017" (28 among 163)
- · Hyper-K is listed in the MEXT (funding agency) Large Projects Roadmap.
- Budget is requested to start in 2018 toward the operation from 2026.

JFY 2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	
Geo-sur	vey, deta Initial facility const.	iled desi Access tunnel	gn Ca PMT	vern exc	avation	Tank o	onstruct	Wate fillin	r g Operati	

Off-axis angle

By K. Hagiwara, N. Okamoura, K. Senda

T2KK MH Sensitivity

Beam only.

Dune (Deep Underground Neutrino Experiment)

• Muon neutrinos/antineutrinos from high power proton beam:

1.2 MW from day one, upgradeable to 2.4 MW

- Massive underground Liquid Argon TPC, 4 x 17 kton modules for a total fiducial mass > 40 kton
- Near detector to characterize the beam and measure neutrino cross sections in Argon

Dune MH sensitivity

Dune is the ultimate experiment as far as regards MH sensitivity

Mass Hierarchy Sensitivity

CP Violation Sensitivity

A. De Roeck@Lepton Photon 2017:

"... We look forward to start operation of the first far detector module in 2024 and first data with beam, near detector and first two far detector modules in 2026."

... to guide the eye

Originally published in Blennow et al., JHEP 1403 (2014) 028

8 Median significance (σ) DUNE 6 5σ 5 ORCA PINGU JUNO <u>3</u>σ 3 Hyper-K INO NOvA 0 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 Time (years)

Expected sensitivities vs. time

Conclusions

- Running experiments could reach a 3σ sensitivity on MH already in 2020
- Around 2020 several new experiments will start with a target sensitivity of 3-5 σ
- In the late 20's new generation Long Baseline Experiments will surpass the 5σ sensitivity
- As a very welcome bonus all those experiments will bring important improvements in
 - Proton decay searches
 - Precision in neutrino oscillation parameters
 - Supernovae physics
 - Indirect Dark Matter searches
 - Neutrino astronomy, etc.