From the Solar Neutrino Problem to the Oscillation Discovery and beyond

Y. Suzuki

Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), the University of Tokyo

Prolog

- Historical overview of the discovery of the neutrino oscillatons (solar and atmospheric)
- from 1968 (Davis' first paper)
 2018 : ~ 50 year anniversary of the solar neutrino (oscillation) experiments

1969: I have entered the undergraduate school....

Neurino-heliograph by Super-Kamioande exposure ~2,000 days

This is my personal view [may be a Super-K point of view], but, I will try my best not to create a fake news. 2017/9/4 Y. Suzuki @Brexino10thAnn in Gran Sasso

Solar neutrinos

Major players of the Solar Neutrino **Experiments for the last 50 years**

Towards the solar $\boldsymbol{\nu}$ measurements

- 1946: B. Pontecorvo
- 1949: L. W. Alvarez
 - Idea to detect neutrinos through the process:
 - $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^{-}$ (E_{th} > 817 keV)
- 1964: R. Davis
 - proposed the Cl experiment at Homestake Mine, South Dakota in US
 - using ~600 tons of tetrachloroethylene: C₂Cl₄

First result

VOLUME 20, NUMBER 21

PHYSICAL REVIEW LETTERS

20 May 1968

SEARCH FOR NEUTRINOS FROM THE SUN*

Raymond Davis, Jr., Don S. Harmer,[†] and Kenneth C. Hoffman Brookhaven National Laboratory, Upton, New York 11973 (Received 16 April 1968)

A search was made for solar neutrinos with a detector based upon the reaction $Cl^{37}(\nu, e^{-})Ar^{37}$. The upper limit of the product of the neutrino flux and the cross sections for all sources of neutrinos was 3×10^{-36} sec⁻¹ per Cl^{37} atom. It was concluded specifically that the flux of neutrinos from B⁸ decay in the sun was equal to or less than 2×10^{6} cm⁻² sec⁻¹ at the earth, and that less than 9% of the sun's energy is produced by the

Solar neutrino problem Homestake Cl experiment

- Result (1/3 of predicted) are persistent • for about a quarter of century.
 - Average(1970~1994)
 - $2.56 \pm 0.16_{stat} \pm 0.16_{svs}$ SNU
 - Ratio(data/SSM) = 0.33 ± 0.3
- Solar Neutrino Problem was recognized ulletin early '70

Questions:

- Validity of the flux calculation
 - Mostly ⁸B (\sim 76%) and ⁷Be (\sim 15%) neutrinos
 - ⁸B: ~1/10⁴ of the total solar neutrino flux
- **Radiochemical expeirment:** ٠
 - unfamiliar to physicists
 - extract a few atoms from ~600 tons of material
- **Confusing 11 year modulation** \rightarrow not confirmed later
- not consistent with a simple 2v vaccum 2010scillation

Solar neutrino problem Homestake Cl experiment

- Result (1/3 of predicted) are persistent for about a quarter of century.
 - Average(1970~1994)
 - 2.56 \pm 0.16 $_{stat}$ \pm 0.16 $_{sys}$ SNU
 - Ratio(data/SSM) = 0.33 ± 0.3
- Solar Neutrino Problem was recognized in early '70

Questions:

- Validity of the flux calculation
 - Mostly ⁸B (~76%) and ⁷Be (~15%) neutrinos
 - ⁸B: ~1/10⁴ of the total solar neutrino flux
- Radiochemical expeirment:
 - unfamiliar to physicists
 - extract a few atoms from ~600 tons of material
- Confusing 11 year modulation
 → not confirmed later
- not consistent with a simple 2v vaccum
 2010scillation
 Y. Suzuki @Brexino10

Kamiokande-II 2nd Solar neutrino experiment

• 1982: KamiokaNDE funded [operation:1983-1996]

Scientific objects: proton decay, neutrino oscillation by atmospheric neutrinos, SN neutrino burst;

- Initially solar neutrino was not strongly mentioned

 Observation of µ→evv decay, realized that they were able to measure solar neutrinos by reducing the background (mostly Rn) and lowering the threshold.....

• Upgrade of the Kamiokande detector

- Set up anti-counter; Introducing timing electronics
- Many efforts to reduce Rn: threshold \rightarrow (9 MeV ~ 7.5 MeV)

• 1987: KM-II started, and 2 months later, observed v burst from SN1987A

Total: 3000 tons 16 m in hight, 15.6m in diameter Inner: 2140 tons 948 20-in PMTs Fid. 680 tons for solar v Photo-coverage: 20%

Y. Suzuki @Brexino10thAnn in Gra

Kamiokande-II results

Homestake Cl experiment was the only solar ν experiment for ${\sim}20$ years untill KM-II data was shown in 1989.....

Kamiokande-II detects solar neutrinos through

$$-v_e + e^- \rightarrow v_e + e^-$$
 (H₂O): CC + NC

- $\nu_{\mu,\tau} + e^{-} \rightarrow \nu_{\mu,\tau} + e^{-} (H_2O): \text{ NC } \qquad \sigma(\nu_{\mu,\tau}e^{-}) / \sigma(\nu_e e^{-}) = \sim 0.15$
- <u>1989 Result: confirmed the solar neutrino problem</u>
 - R(data/SSM)= 0.46±0.13(stat)±0.08(syst)
 - Homestake + KM-II \rightarrow Stronger indication of the solar v deficits
- KM-II: measures Direction, Time, and Energy Spectrum

Development of the theoretical framework

Y. Suzuki @Brexino10thAnn in Gran Sasso

But '80s are not quiet time "many discoveries": 1^{st} fever of v mass and oscillation

Early '90s Gallium experiments

- In 1966 (Idea) V.A. Kuzmin and G.T. Zatsepin $v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge$ $E_{th} > 230 keV$
- Attempt to measure pp-v

- SAGE in Baksan
 - (1989 ~ still running)
 - Metallic Ga
- GALLEX/GNO in GranSasso
 - (1991~2004)
 - GaCl₃

Gallium experiments pp-neutrinos

SAGE: 65.4+3.1/-3.0(stat)+2.6/-2.8(syst) SNU (data: December 89 ~ December-07) → continuing

GALLEX/GNO 69.3+/-4.1(stat)+/-3.6(syst) SNU (data: May 91 ~ April 03)

Ratio to SSM: 0.51(SAGE); 0.54 (GALLEX/GNO)

- Observed deficit of neutrinos
 - Ga: $pp-v + {}^{7}Be + {}^{8}B + CNO + pep$ (Homestake & KM ~ ${}^{8}B$ neutrinos)
- Solar luminosity constraint on pp-v
 - → thought to be a big constraint
 - <u>but could not provide a definitive conclution</u>
- ...minimal model.....Astrophysics STILL possible

To resolve the solar neutrino problem smoking gun evidence

- 4 different solutions:
 Different characteristics for SK
 - Large Mixing Angle:
 - No energy distortion, <u>day/night flux</u> <u>difference</u>
 - Small Mixing Angle:
 - Energy distortion
 - Vacuum:
 - Energy distortion, seasonal variation
- Flux independent & compelling evidence for the oscillations if found
- Able to determine the solution
 - Super-K can measure the energy spectrum and time variation very precisely

Will be back to the solar neutrino later

Atmospheric Neutrinos

Major players of the atmosphric neutrinos

Early Hints from Kamiokande-II

- 1988: atmospheric neutrino anomaly
 - Kamiokande Observed fewer μ -like events in atmospheric ν interactions than expected

R= (Obs./MC)μ-like = 59±7% (stat.)

Atmospheric Neutrino Anomaly

- Why this observation was not widely accepted as a neutrino oscillation?
- Probably the reasons were the followings
 - 1. <u>Statistic</u> was small
 - 2. Results strongly depend upon the atmospheric neutrino <u>flux calculations</u>
 - 3. There were <u>large uncertainties</u> in the flux calculations
 - Primary cosmic ray flux, primary interactions, secondary particles productions, decays, earth's magnetic fields, modulations, parameters for atmosphere,.....

Atmospheric Neutrino Anomaly

- 4. Another important issue was that theorists did not believe '<u>large mixing</u>'. This was the prejudice that mixing must be small like quark mixing.
- 5. In late 80's, neutrinos were one of the candidates of <u>dark matter particles</u> and the mass needed was ~ O(1 eV) which contradicted with the indication from atmospheric neutrinos unless strong degeneracy was assumed
- The earth size is just so to observe atmospheric neutrino oscillation which people thought <u>'fine tuning'</u>.

Confusions in atm ν in early 90's

- Other experiments: inconsistent with the KM result
 - − IMB, Frejus, Nusex → But IMB confirmed 1992
 - Systematic bias (?) between Iron Calorimetry (no deficits) vs Water Ch. → settled 1997 by Soudan-II

To establish the atm-v oscillation

- In order to 'establish' the atmospheric neutrino anomaly as a neutrino oscillation, it is necessary to have an evidence which does not depend on the 'flux calculations'
- Indication was already seen in the zenith angle distribution by

Kamiokande, PLB, 335 (94)237

$$v_{\mu} \rightarrow v_{e} (1.0, 1.8 \times 10^{-2} \text{ eV}^{2})$$

----- $v_{\mu} \rightarrow v_{\tau} (1.0, 1.6 \times 10^{-2} \text{ eV}^{2})$

This was thought as a compelling evidence for the v oscillation → Strategy of Super-K

Super-Kamiokande (21 years old !)

- 50,000 tons (22,500 ton fid.) Imaging Water **Cherenkov Detector**
- 1,000 m underground
- Inner-Detector (ID)
 - 11,146 50cm PMTs (40%)
- Outer-Detector (OD)
 - 20cm PMTs - 1,885
- ~ 130 collaborators from 36 institutions (10 countries) as of 2017 – Japan, US, Poland, Spain, China, Korea, Canada, UK, France, Italy 2017/9/4

Atmospheric neutrinos in SK

- SK: 22.5 kton → very high statistics
 - ~ 8 atmospheric v events /day:
 - Very quick to reach the conclusions
 - Key issue \rightarrow zenith angle distribution

[<u>1st paper</u>] Feb.-'98 (414days-25.5 ktyr) "Measurement of a small atmospheric v_e/v_μ ratio" (sub-GeV) R= 0.61±0.03±0.05

[2nd paper] May.-'98 (414days-25.5ktyr) "Study of the atmospheric neutrino flux in the multi-GeV energy range" (multi-GeV) [414days] R= 0.66±0.06±0.08 and

Zenith angle distribution 2017/9/4

Y. Suzuki @Brexino10thAnn in Gran Sasso

From: totsuka@suketto.icrr.u-tokyo.ac.jp (Yoji Totsuka) Date: April 25, 1998 at 2:53:15 AM EDT To: kajita@suketto.icrr.u-tokyo.ac.jp, kearns@budoe.bu.edu, takita@oskjcc.hep.sci.osaka-u.ac.jp, shige@uhhepj.phys.hawaii.edu Cc: sk_exe_com@suketto.icrr.u-tokyo.ac.jp Subject: combined analysis

Hi,

Please make the following combined analyses and present the results at the collaboration meeting

Data sets; sub-GeV atm-nu, multi-GeV atm-nu, up-thru-mu, up-stop-m

Hypothesis; nu-mu <--> nu-tau oscillations Parameters; delta m² and sin2(2theta)

Make a simultaneous fit to all the above data sets.

Obtain;

Validity of the hypothesis Allowed region of the parameters

Overlay fitted curves of a typical set of parameters to all the distributions (R(momentum, zenith), e(momentum, zenith), mu(momentum, zenith), thrumu(zenith), stopmu(zenith) stop/thru(zenith), east-west of atm-mu, etc

I want to know if we can announce that Super-K has discovered the firm evidence for the non-zero delta m²

Best regards, Yoji An email from spokesperson, Yoji Totsuka, to the four conveners of the atmospheric neutrino analysis

dated on 25th of April, 1998

~ 2 month before NEUTRINO '98 at Takayama, Japan

Beyond The Standard Model: This Time for Real

Frank Wilczek^a *

F. Wilczeck

^aInstitute for Advanced Study, School of Natural Sciences, Olden Lane, Princeton, New Jersey 08540

Summary Talk @NEUTRINO'98

The value of the neutrino mass reported by the SuperK collaboration fits beautifully into the framework of gauge theory unification. Here I justify this claim, and review the other main reasons to believe in that framework. Supersymmetry and SO(10) symmetry are important ingredients; nucleon instability is a dramatic consequence.

After the discovery

• long-baseline oscillation experiments, K2K/T2K, Minos and so on later have provided significant results on θ_{23} , θ_{13} , MH and δ_{CP} as well as atm-v

Back to Solar Neutrino Oscillations

To resolve the solar neutrino problem smoking gun evidence

- 4 different solutions:
 - Different characteristics
 - Large Mixing Angle:
 - No energy distortion, <u>day/night flux</u> <u>difference</u>)
 - Small Mixing Angle:
 - Energy distortion
 - Vacuum:
 - Energy distortion, seasonal variation
- Flux independent & compelling evidence fpr the oscillations
- Able to determine the solution
 - Super-K can measure the energy spectrum and time variation very precisely

 \rightarrow Strategy for SK solar v 2017/9/4

Super-K Solar ν results Two SK papers in PRL on 18th June 2001 issue (1258 days)

Paper 1: Flux measurement

 Solar ⁸B and hep Neutrino Measurements

Paper 2: Oscillation analysis

- No strong spectrum distortion
 - excluded SMA and Vacuum
- No seasonal
 - exculuded Vacuum
- ➔ LMA solution remained

- <u>However, the Day/Night effect, the smoking evidence for</u> <u>LMA, was less than 2 sigma, not sufficient to claim positive</u> <u>evidence</u>
- A kind of strange situation !
- We, SK, found the solution, but needed "another" evidence which was independent from the flux calculation

SNO

- 1000 tons D₂O
 - 12m Diameter Acrylic Vssel
- 1700 tons H₂O Inner Shield
- 9500 PMTs, 60% coverage
- Outer Shield H₂O
 5300 tons

Charged Current (CC)

 $v_e + d \rightarrow p + p + e^$ sensitive only to v_e <u>Electron scattering (ES)</u>

 $v + e^{-} \rightarrow v + e^{-}$ v_e and $(v_{\mu}, v_{\tau})x \sim 0.15$ 2017/9/4

Neutral current interaction (NC)

 v_x + d → v_x + p + n 1) n + d → t + 6.25 MeV γ 2) n + ³⁵Cl → ³⁶Cl + 8.6 MeV ∑γ 3) n + ³He → p + t + 0.76 MeV sensitive to all neutrinos

Y. Suzuki @Brexino10thAnn in Gran Sasso

2017/9/4

Evidence from SNO+SK on 18th June, 2001

• 18-June-2001: SNO announced the discovery of Solar Neutrino Oscillation

using

- SNO: charged current $\rightarrow v_e$
- SK: Electron Scattering $\rightarrow v_e + 0.15(v_{\mu} + v_{\tau})$
- Found there are non-electron neutrino components in the solar neutrinos measured on the earth

Phys. Rev. Lett. 87, 071301, SNO Collaboration (Received 18 June 2001; published 25 July 2001)

Solar neutrinos from ⁸B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of ν_e 's is measured by the CC reaction rate to be $\phi^{CC}(\nu_e) = 1.75 \pm 0.07(\text{stat})^{+0.12}_{-0.11}(\text{syst}) \pm 0.05(\text{theor}) \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$. Comparison of $\phi^{CC}(\nu_e)$ to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3σ difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- ν_e component in the solar flux. The total flux of active ⁸B neutrinos is determined to be $5.44 \pm 0.99 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$.

35%

46.5%

Evidence from SNO+SK on 18th June, 2001

35%

46.5%

• 18-June-2001: SNO announced the discovery of Solar Neutrino Oscillation

using

- SNO: charged current $\rightarrow v_e$
- SK: Electron Scattering $\rightarrow v_e + 0.15(v_\mu + v_\tau)$
- Found there are non-electron neutrino components in the solar neutrinos measured on the earth

2002~ SNO Neutral Current

- SNO firmly established the solar neutrino oscillation by itself.
- SNO data itself cannot point the large mixing angle solution.
- We need to combine the results from <u>all the</u> <u>solar neutrino experiments</u> to obtaine the LMA
- In this sense the observation of day/night effect (direct evidence for LMA) is still very important.

Large Mixing Angle (LMA) Solution

- Vacuum in low energy:
 - $P_{ee} = 1 (1/2) \sin^2 2\theta$
- Matter in high energy (>5 MeV):

•
$$P_{ee} = \cos^2\theta \cos^2\theta_m + \sin^2\theta \sin^2\theta_m$$

→
$$P_{ee}$$
=sin²θ (θ_m → $\pi/2$)

$$\tan^2 2\theta_m = \frac{\tan^2 2\theta_v}{1 - (2p\sqrt{2G_Fn_e})/(\Delta m^2 \cos 2\theta_v)}$$

= 0 Resonance condition

- $\begin{array}{l} \Delta m^2 \ region \ 10^{-5} \ to \ 10^{-4} \ eV^2 \\ \Delta m^2 < 1.6 \times 10^{-4} \ eV^2 \ Ev > 10 \ MeV \ \clubsuit \ resonance \\ \Delta m^2 < 0.8 \times 10^{-4} \ eV^2 \ Ev > 5 \ MeV \ \clubsuit \ resonance \\ \Delta m^2 > 1.6 \times 10^{-5} \ eV^2 \ Ev < \ 1 \ MeV \ \clubsuit \ no \ res. \end{array}$
- Transition Vac \rightarrow Matter: 1~a few MeV
 - → sensitivity on Δm^2 from the exp's
 - \rightarrow good place to look for exotics

2004 KamLAND vs Solar

- First data in 2004: 141.1 days
- Observe: 54 events (expects 86±5.6 events)
- Ratio = $0.661 \pm 0.085 \pm 0.041$

 KamLAND (Reactor): Known distance and known energy E

- → precise determination of ∆m²~E/L Just a right distance (1st or 2nd oscillation phase)
- Solar (LMA) \rightarrow mixing angle determination

Solar neutrinos after the discovery

γ²/d.o.f. = 172.3/147

210Po: 583 ± 2 (free)

²¹⁰Bi: 27 ± 8 (free)

⁸⁵Kr: 1 ± 9 (free)

14C: 39.8 ± 0.9 (constrained)

Pile-up; 321 ± 7 (constrained)

pp v: 144 ± 13 (free)

pep v: 2.8 (fixed)

CNO v: 5 36 (fixed

²¹⁴Pb; 0.06 (fixed)

7Be v: 46.2 ± 2.1 (constrained)

- Borexino: making many important new measurements of low energy solar neutrinos
 - ⁷Be, ⁸B, pep, pp,,,,testing solar models
 - → will be discussed more in the later section

Hyper-Kamiokande now on the ROADMAP2017 of Japanese funding agency

- 7-8 years of construction
- Possible 2nd detector in Korea
- 40K of 50cm PMT
 - PMT: 2 times higher sensitivity than SK

- SN neutrino bursts 100k~150k events for SN at 10kpc sensitivity up to 1~2 Mpc
- Solar neutrinos: 70 events/day

- Proton Decay $(e^+\pi^0)$
- 10³⁵yrs in12yrs

2017/9/4

One more step: 10 Megaton My dream in future !

TITAND (under sea)

- proton decay up to ~10³⁶ years
- SN burst every year
 - SN Observatory
- Atmospheric v
- Long baseline v
- sol v: difficult

2017/9/4

Ref:1) Y. Suzuki, hep-ex/0110005 (in **2001**) 2) Y. Suzuki, in Proc. of Neutrino Oscillation in Venice, Feb, 2006

Ocean Spirals 深海未来都市構想 OCEAN SPIRAL <深海力による地球再生をめざす> 特性】 【今回計画】 **Deep Ocean project** http://www.shimz.co.jp/theme/dream/oceanspiral.html BLUE GARDEN は太陽光がよく届く 快適・健康・安全な ンの光合成限界 深海都市のペースキャンプ (直径 500mの球体) ATTITUTAL DATE 深海ゴンドラ発着フロア -パーパラストボール 砂と空気による浮力制御 人と深海の新しい繋がり 海音波モニタリング拠点 — 深海未来都市構想 — 音波が一番屋く 深さを利用 OCEAN SPIRAL **氏線度地域**) INFRA SPIRAL • 運搬機能 往路:人・電気・水・酸素等 復路:人・海底資源・生物資 1.000m:緊閉目 調査が合った日 -2,500m:海水淡水化用 清水建設 **深海牛物モニタリング拠点** ●海水温2~3℃の生物常時観測 Under water lab. 2000 modepth Gran Sasso 42

Epilog

- Solar v oscillation: Hint in 1968, solved in 2001. Took 33 years
- Atm v oscillation: Hint in 1988, solved in 1998. Took 10 years.
- These results are the consequence of the efforts of many experiments and many people, and
- many theoretical works on the oscillation related phenomena, the atmospheric v flux calculations, the solar models.
- We should not forget those strong leaders
 - We miss Y. Totsuka, H Chen, J. Bahcall, R. Rahgavan,,,,,,,,

- I am happy to have been with a saga of the discovery of neutrino oscillatons
- Hope there will be fruitefull and exciting new results from neutrino experiments in future.

2017/9/4

Y. Suzuki @Brexino10thAnn in Gran Sasso