

Borexino workshop "Recent developments in neutrino physics and astrophysics" LNGS & GSSI September 2017

New determinations of mixing parameters with atmospheric neutrinos

Juan-Pablo Yáñez

j.p.yanez@ualberta.ca

outline

-modeling atmospheric neutrinos -oscillations in atmospheric nu's -recent experimental results -future experiments

modeling atmospheric neutrinos: what's new?

-cosmic ray flux

-4 new measurements in last ~10 years (AMS-II, PAMELA, Cream, BESS) -more detailed flux characterization

p" (GeV/c) 10^{3} Atherton et al. FNAL Serpukhov 10² Allaby et al. Eichten et al. Abbott et al 10 Cho et al. 10⁻¹ 10^{2} 10 p_{PRIM} (GeV/c)

-hadronic interactions

Regions measured in color

Boxes correspond to phase space relevant to atomspheric neutrinos that could be measured (MC) Red/black are geomagnetic effects

Phys.Rev.D74:094009,2006

-hadronic

interactions

Regions measured in **color Boxes** correspond to phase space relevant to atomspheric neutrinos that could be measured (MC)

> Updated from Phys.Rev.D74:094009,2006 Barr, AtmNuWorkshop16

atmospheric neutrino flux

-estimated uncertainties

atmospheric neutrino flux

improvements from last decade

-better input measurements

-CR and had. int. errors reduced

-uncertainties under scrutiny
 -renewed efforts & tools

oscillations in atmospheric v

wide baseline, energy range ν_{μ} νμ ν_{μ} ν_{μ} direction → baseline 12,700km ν_{μ} ~10km - ~12,700km different e⁻ density ν_{μ} along paths **Neutrino detector**

 ν_{μ}

 ν_{μ}

Borrowed from T. DeYoung

survival probabilities

survival probabilities

exotic possibilities

for $\cos\theta = -1$ (crossing all of the Earth)

relevant interactions

multi-dimensional constrains

multi-dimensional constrains

recent experimental results

Super-Kamiokande water Cherenkov

Muon-like event

Super-Kamiokande

from Neutrino'98 presentation

Super-Kamiokande

almost 20 years later

SK-I+II+III+IV, 4581 Days

IceCube DeepCore

first publication on oscillations in 2013

IceCube DeepCore

standard oscillations

FIG. 3. Fit results showing projections in the NN output and zenith angle distribution for taulike (NN>0.5), upward-going $[\cos(\theta) < -0.2]$, nontaulike (NN<0.5), and downward-going $[\cos(\theta) > 0.2]$ events for both the two-dimensional PDFs and data. The PDFs and data sets have been combined from SK-I through SK-III in this figure. The fitted tau signal is shown in gray.

ν_τ appearance in Super-Kamiokande

NuTau CC scaling 1.42 ± 0.35 (stat) +0.14 -0.12 (syst).

Phys. Rev. Lett. 110, 181802 (2013)

exotic oscillations

exotic oscillations

E_{nu} ~ TeVs

$$\mathbf{U} \equiv \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

 $|U_{\mu 4}|^2 = \sin^2 \theta_{24},$ $|U_{\tau 4}|^2 = \cos^2 \theta_{24} \cdot \sin^2 \theta_{34}.$

ANTARES water Cherenkov

MINOS magnetized steel & scintillator calorimeter

32

towards the future

main interests

-precision measurements -neutrino mass ordering -CP-violation in leptons*

... bigger, better, denser experiments

INO

-individual particle tracking -charge identification

INO

Hyper-Kamiokande

- -8x Super-Kamiokande's FV / tank
- -260kt mass / tank

Hyper-K

-atmospheric+beam nus

Hyper-Kamiokande (one tank)

IceCube-Gen2 Phase1

-DeepCore infill -lower energy threshold

IceCube-Gen2 Phase1

PINGU

0.6

other experiments atmospheric v are a secondary measurement

JUNO mass ordering from reactor neutrinos

DUNE

CP violation from beam neutrinos

back to the present

summary & outlook

-atm. nus are an invaluable tool for neutrino physics -very large & unique phase space in L/E, flavor

-renewed efforts to model & understand atm nus ongoing -more data, new software, workshops in last years

-experiments producing well understood, reliable results -next generation measurements tough, but possible

backup

-geomagnetic effects

Can Come In

Can't Come In

-3D calculations -site-specific

-hadronic

interactions HARP data

Phys.Rev.D83:123001,2011

HKKM CR flux

New Cosmic Ray Model with AMS02 and BESS-polar

Honda AtmNuWorkshop 2016

HKKM neutrino flux updates

atmospheric neutrino flux

-and its uncertainties

parameters accessible

$$P^{2\nu}_{\nu_{\alpha}\to\nu_{\beta}}(L,E) = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2}{4E}L\right)$$

$$\Delta m_{\rm large}^2 \gg |\Delta m_{\rm small}^2|$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1/2} & 0 \\ 0 & 0 & e^{i\alpha_2/2} \end{pmatrix}$$

survival probabilities

saturation effect

saturation effect on θ_{13}

Figure 3.4: Effective θ_{13} as a function of neutrino energy for an electron number density of 2.5 (blue). Dashed black lines show the value of θ_{13} for vacuum, from 4.1 and its complement $(\pi/2 - \theta_{13})$. The solid black line indicates maximal mixing. Calculated using Eq. 3.45.

event signature & energy

-particle (ring) counting -Cherenkov light emission -ionization

relevant interactions

early measurements

signature extension and brightness scales with neutrino energy

The lowest energy neutrinos are seen by the DeepCore sub-array (E >= 10 GeV)

detection principle

neutrino interacts with ice nuclei via "deep inelastic scattering"

secondary charged particles produced as a result

Tau apperance in IceCube

PINGU

-DeepCore infill -lower energy threshold

Super-Kamiokande

b

Charge (pe)

* 23.3-26.

+26.3

.

а

Super-Kamiokande IV T2K Beam Run 0 Spill 797537 Run 66776 Sub 770 Event 178987674 10-05-11:12:14:31 T2E leas dt = 1899.2 m mmer, 1932 hits, 3282 pe Outer: 6 hits, 5 pe Trigger: 0x80000007 0 wall: 1136.5 cm mu-like, p = 536.2 MeV/c

Charge (pe) .

64

MINOS far detector

Figure 9: Schematic view of the MINOS far detector (a), a scintillation plane with 8 modules (b), and the scintillation strip readout scheme (c).

MINOS

segmented modules proposed

NuPRISM

HyperKamiokande

VLVNTs vs beam experiments

TABLE 1: Qualitative comparison of experiments measuring the atmospheric neutrino oscillation parameters. The table is divided into detector and flux characteristics. Note that the far detector of T2K is Super-Kamiokande but uses accelerator neutrinos. Detector performances taken from [4, 9, 38, 43, 49, 83, 95]. Expected neutrino events quoted from published results of ν_{μ} disappearance at analysis level (note that for VLVNTs this number can vary significantly depending on the studied range in energy, zenith angle, and topology). COH refers to coherent pion production. For details on the other interaction channels and energy ranges see Figure 8.

	Darameter	VLVNT		SK	MINOS T2K and NOVA
	rarameter	ANTARES	DeepCore	SIX	WIINOS, 12K, and NOVA
Detector (far)	Instrumentation density (m ⁻³)	9.1×10^{-5} OMs	2.3×10^{-5} DOMs	0.2 OMs	15 channels
	Detection principle	Cherenkov light over tens of meters		Cherenkov rings	Trackers/calorimeters
	E_{ν} resolution	$50\% \pm 22\%$	25% at 20 GeV	3% at 1 GeV	10-15% at 10 GeV
	θ_{ν} resolution	3° at 20 GeV	8° at 20 GeV	2-3°	_
	Particle ID capabilities	Muon/no muon in interaction		e, μ, π (rings)	Individual particles, charge
Neutrino flux	Source of neutrinos	Atmosphere: mix of $\nu_e, \overline{\nu}_e, \nu_\mu$, and $\overline{\nu}_\mu$			Accelerator: $\nu_{\mu}/\overline{\nu}_{\mu}$ modes
	Baseline	10–12700 km			300–800 km
	Flux determination	Atm. ν models, self-fit		+top/down ratios	Near/far detector
	Energy range	10-100 GeV		Few MeV–few GeV	Few GeV
	Main interaction channel	DIS		QE	QE, RES, COH, and DIS
	ν events expected with osc.	530	1800	2000	30 (T2K), 900 (MINOS)
	and without osc. (per year)	660	2300	2300	120 (T2K), 1050 (MINOS)

FIGURE 5: Expected interaction rate of electron neutrinos and antineutrinos predicted by a NO over the rate predicted assuming an IO. Using the oscillation parameters in [3]. Because of the flux ratio $\nu_{\mu}/\bar{\nu}_{\mu}$ and the cross section difference, estimated to be 2.1 times larger for neutrinos than antineutrinos, more electron neutrino interactions are expected for a NO.