### **Neutrinoless Double Beta Decay Summary**

Art McDonald Queen's University, Kingston, Canada

Recent Developments in Neutrino Physics and Astrophysics; BOREXINO 10<sup>th</sup> Anniversary, Gran Sasso, 2017



## Double Beta Candidates

| Isotope           | Endpoint  | Abundance |
|-------------------|-----------|-----------|
| <sup>48</sup> Ca  | 4.271 MeV | 0.187%    |
| <sup>150</sup> Nd | 3.367 MeV | 5.6%      |
| <sup>96</sup> Zr  | 3.350 MeV | 2.8%      |
| <sup>100</sup> Mo | 3.034 MeV | 9.6%      |
| <sup>82</sup> Se  | 2.995 MeV | 9.2%      |
| <sup>116</sup> Cd | 2.802 MeV | 7.5%      |
| <sup>130</sup> Te | 2.533 MeV | 34.5%     |
| <sup>136</sup> Xe | 2.479 MeV | 8.9%      |
| <sup>76</sup> Ge  | 2.039 MeV | 7.8%      |
| <sup>128</sup> Te | 0.868 MeV | 31.7%     |



**Requires: Neutrinos to be their own antiparticle (Majorana particles)** 

• Finite v mass: Lifetimes > ~10<sup>26</sup> years imply v mass < 0.1 eV

As of today: Oscillation of 3 massive active neutrinos is clearly the dominant effect:

### If neutrinos have mass:

$$\left| \boldsymbol{\nu}_{l} \right\rangle = \sum \boldsymbol{U}_{li} \left| \boldsymbol{\nu}_{i} \right\rangle$$

For 3 Active neutrinos.



#### v-less Double Beta Decay: Assuming a Light Majorana v $(T_{1/2})^{-1} = G(Q_{\beta\beta},Z) g_A^4 |M^{0\nu}|^2 < m_{\nu\beta\beta}^2$ **Matrix Elements** 8 NR-EDF **Phase Space** R-FDF QRPA Jy 6 QRPA Tu QRPA CH 5 IBM-2 M<sup>0</sup> Т SM Mi -SM St-M,Tk R. G. H. Robertson, Mod. Phys. Lett. A 28, 3 1350021 (2013). 2 Engel & Menédez 10 10 meV arXiv:1610.06548v2 $^{4}$ X Specific Phase Space, Mg<sup> $^{-1}$ </sup> y<sup> $^{-1}$ </sup> eV<sup> $^{-2}$ </sup> 0 Nd 100 meV **Combining this information on Phase** Te **Space and Matrix Elements, Robertson** Хе concludes that the sensitivity for Ge observing an effective neutrino mass is quite similar for the various isotopes. 1 eV The regions show the potential 100 sensitivity for 1 event per tonne year. g

 $10^{-1}$ 

0.1

Matrix element squared

Note the uncertainty in  $g_A$  on the vertical axis from possible quenching.

## $(T_{1/2})^{-1} = G(Q_{\beta\beta},Z) g_A^4 |M^{0\nu}|^2 < m_{\nu\beta\beta}^2$

## **Theoretical Uncertainties**

Same plot for all isotopes with Q greater than 2 MeV

R. G. H. Robertson, Mod. Phys. Lett. A 28, 1350021 (2013).

![](_page_5_Figure_4.jpeg)

The plot illustrates the two major uncertainties in relating a measurement of half life to an effective neutrino mass.

- The range of matrix element calculations squared is substantial
- The possibility of "quenching" of g<sub>A</sub> is a topic of some controversy. It appears to occur for both single beta decay and for 2v double beta decay. However, the components and phases are very different than for 0v double beta decay.
  Fortunately, the nuclear physics theory community is taking on these questions as high priority and progress is being made on reducing the uncertainties.
  See following talk by Javier Memendez

![](_page_6_Figure_0.jpeg)

This translates into a sensitivity curve for a typical experiment where it is clear that background control and resolution are very important for discovery sensitivity.

![](_page_7_Figure_1.jpeg)

8

Interesting Bayesian study of the probability of observation, assuming Majorana neutrinos and the known information about neutrino properties. Implies reasonable probabilities for regions accessible for next generation experiments. Note that this study and most experimental sensitivities do not include possible quenching effects on g<sub>A</sub> in relating to the scale in eV.

![](_page_8_Figure_1.jpeg)

Agostini, Benato, Detwiler arXiv:1705.02996

#### **Effects on Probabilities of including Cosmology or assuming m<sub>1</sub> is zero**

![](_page_9_Figure_1.jpeg)

### **Status of Major International Experiments**

| Isotope           | Present with data      | Future                      | Туре                                                           |
|-------------------|------------------------|-----------------------------|----------------------------------------------------------------|
| <sup>76</sup> Ge  | MAJORANA<br>GERDA      | LEGEND                      | Semiconductor<br>"                                             |
| <sup>82</sup> Se  | NEMO-3                 | SuperNEMO<br>CUPID          | Tracking Calorimeter<br>Bolometer/Scintillator                 |
| <sup>100</sup> Mo | AMoRE                  | CUPID                       | Bolometer<br>Bolometer/Scintillator                            |
| <sup>130</sup> Te | CUORE                  | SNO+                        | Bolometer<br>Scintillator                                      |
| <sup>136</sup> Xe | EXO-200<br>KamLAND-Zen | NEXO<br>NEXT<br>PANDA-X III | Liquid TPC<br>Liquid TPC<br>Scintillator<br>Gas TPC<br>Gas TPC |

Plus other experiments in the R&D Phase: <sup>48</sup>Ca, <sup>150</sup>Nd...

<sup>76</sup>Ge

### **MAJORANA AND GERDA**

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

MAJORANA Ultra Pure Copper cryostat

30 kg Enriched Ge

Background: 1.8 x 10<sup>-3</sup> counts/(keV kg y) GERDA Ge crystals in liquid Ar

35 kg Enriched Ge

Background: 2.7 x 10<sup>-3</sup> counts/(keV kg y)

LEGEND Phase 1: Up to 200 kg Enr. Ge in GERDA cryostat

Phase 2: Up to 1000 kg Combined Technologies and Collaborations

## Statistical analysis

![](_page_12_Figure_2.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_12_Figure_4.jpeg)

#### TAUP2017, July 26th 2017

19

- Combined unbinned maximum likelihood fit of the six spectra
  - Frequentist: test statistics and method after Cowan et al., EPJC 71 (2011) 1554
  - Bayesian: flat prior on 1/T<sub>1/2</sub> between 0 and 10<sup>-24</sup> yr<sup>-1</sup>
  - Systematic uncertainties folded as pull terms or by Monte Carlo
  - Frequentist: Best fit:  $N^{0v} = 0$   $T_{1/2} > 8.0 \cdot 10^{25}$  yr @ 90% CL It was  $5.3 \cdot 10^{25}$  yr in Phasella MC Median sensitivity (no signal):  $5.8 \cdot 10^{25}$  yr (for 90% C.L.) 30% chance to have a better limit • Bayesian:  $T_{1/2} > 5.1 \cdot 10^{25}$  yr @ 90% Cl Median sensitivity  $4.5 \cdot 10^{25}$  yr

#### <sup>82</sup>Se (and Others)

## NEMO-3

![](_page_13_Figure_2.jpeg)

- ββ decay experiment which combines both tracker and calorimetric measurements
- Took data from February 2003 to January 2011
- Located in the Modane underground laboratory (LSM) at ~4800 m.w.e
- Investigated 7 different  $\beta\beta$  isotopes
- Divided into 20 identical sectors

![](_page_13_Figure_8.jpeg)

<sup>100</sup>Mo (7 kg), <sup>82</sup>Se (1 kg), <sup>130</sup>Te, <sup>116</sup>Cd, <sup>150</sup>Nd, <sup>96</sup>Zr, <sup>48</sup>Ca

- Provided the best value for the 2v half life in these cases.
- Demonstrated the technology for the Super-NEMO detector

### Super – NEMO Demonstrator

- Goal of the demonstrator
  - Run for 2.5 y with 7 kg of  ${}^{82}Se$  $\rightarrow T_{1/2} > 6 \ge 10^{24} \text{ y m}_{\beta\beta} < 0.2 - 0.55 \text{ eV}$
  - Prove SuperNEMO module can be a background free experiment in the region of interest

![](_page_14_Picture_5.jpeg)

- The 2 calorimeter frames have been assembled and populated with the calorimeter blocks
- The tracker has been installed
- Installation of the source foil during fall 2017
- Demonstrator module starts data taking at end of 2017

![](_page_14_Picture_10.jpeg)

#### <sup>100</sup>Mo

## AMoRE

<sup>40</sup>Ca<sup>100</sup>MoO<sub>4</sub> (enriched <sup>100</sup>Mo, depleted <sup>48</sup>Ca) or other Mo-based scintillating crystal used as source and detector

+ Metallic Magnetic Calorimeter (MMC, low temperature sensor)

![](_page_15_Figure_4.jpeg)

#### <sup>100</sup>Mo

## AMoRE

- AMoRE-I at Y2L (same cryostat as Pilot), with CaMoO<sub>4</sub> crystals + a few others (ZMO, LMO, …)
- AMoRE-II at a new, larger laboratory (ARF),  $X^{100}MoO_4$  crystals (X = Li, Na,  ${}^{40}Ca$ , Zn or other)

![](_page_16_Figure_4.jpeg)

| ~200 kg             |
|---------------------|
| 1000                |
| 0.0001              |
| ~5×10 <sup>26</sup> |
| 17-32               |
| ARF (new lab)       |
| 2020-2022           |
|                     |

<sup>130</sup>Te

![](_page_17_Picture_1.jpeg)

## First CUORE results

Oliviero Cremonesi INFN - Sez. Milano Bicocca on behalf of the CUORE Collaboration

TAUP 2017

## TeO<sub>2</sub> arrays

![](_page_17_Figure_6.jpeg)

CUORE

CUORE is the latest evolution of a long series of TeO<sub>2</sub> detectors which included two large demonstrators:

- Cuoricino
- CUORE-0

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

## The CUORE Collaboration

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

Congratulations to the CUORE Collaboration on their beautiful first results

<sup>130</sup>Te

## First CUORE results

Oliviero Cremonesi INFN - Sez. Milano Bicocca on behalf of the CUORE Collaboration TAUP 2017

• Half-life limit (90% CL, including systematics): 4.5×10<sup>24</sup> yr

![](_page_19_Figure_4.jpeg)

20

m<sub>lightest</sub> [meV]

![](_page_19_Figure_5.jpeg)

![](_page_20_Picture_0.jpeg)

## **CUPID-0 (Formerly Lucifer)**

![](_page_20_Picture_2.jpeg)

## Scintillating Bolometers: rudiments of operation

Operating Temperatures for massive detectors: 10÷30 mK

![](_page_20_Figure_5.jpeg)

![](_page_20_Picture_6.jpeg)

Science Run 0

(17 March - 15 May)

24 Zn<sup>82</sup>Se bolometers, for a total mass  $\approx$  5.1 kg of <sup>82</sup>Se 2 ZnSe bolometer  $\approx$ 400 g each, not enriched in <sup>82</sup>Se Q<sub>ββ</sub>(<sup>82</sup>Se) = 2998 keV

Light detectors high purity Ge wafers with antireflecting coating Thermal sensors made with NTD thermistors Detector assembled in 5 towers in Cuoricino/CUORE-0 cryostat Total active mass of the detector ~10.5 kg

0.89 kg x y exposure of ZnSe 0.47 kg x y exposure of <sup>82</sup>Se

S. Pirro TAUP 2017

The SR-1 started 3 June 2017

SNO +

Replace the heavy water in SNO with organic liquid scintillator (LAB) plus Te (~4 ton). Liquid is lighter than water so the Acrylic Vessel must be held down.

> Existing AV Suppor Ropes

"SNO RELOADED"

V Hold Down

Hold-down ropes installed, now full with pure water, running. LAB installation 2018, Te installation early 2019.

![](_page_21_Picture_7.jpeg)

# SNO+ Sensitivity

![](_page_22_Figure_1.jpeg)

E.Caden (SNOLAB) TAUP-2017 2017-07-24

**Possible Phase II:** 

5% Te Loading

PMT's replaced with High Quantum Efficiency

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

SNO+ Picture From Internal Camera

## **EXO-200: New Results**

- EXO-200 consists of a radiopure TPC filled with enriched LXe (80.6%)
- Located at Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, USA
- High-voltage applied between cathode and anodes (opposite ends)
- · Two measurements of energy deposited in event
  - Scintillation light (178 nm), by large avalanche photo-diodes (APDs)
  - Ionization charge, by 2 wire grids (induction and collection)

![](_page_24_Figure_8.jpeg)

C. Licciardi, Carleton

Latest EXO-200 Results, TAUP 2017

<sup>136</sup>Xe

- · Combined analysis:
  - Total exposure = 177.6 kg.yr

### **EXO-200: New Results**

 $\begin{array}{l} \label{eq:sensitivity of 3.7x10^{25} yr (90\% CL)} \\ T_{1/2}{}^{0\nu\beta\beta} > 1.8 \ x \ 10^{25} \ yr \\ \left< m_{\beta\beta} \right> < 147 - 398 \ meV \\ (90\% \ C.L.) \\ \\ & arXiv: 1707.08707 \end{array}$ 

![](_page_25_Figure_5.jpeg)

No statistically significant excess: combined p-value ~1.5σ

26

# The nEXO TPC

Long, single drift

- HV
- Xe purity (low outgassing)

Novel charge tiles

- very low noise
- modularity
- self-supporting

SiPMs on the barrel

- optically open, reflective field cage
- no HV required
- Robust
- larger gain
- large scale production

In-Xe electronics

radioactivity

![](_page_26_Figure_16.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

Discovery sensitivity (3 $\sigma$ , 50%) after 10 yr T<sub>1/2</sub><sup>0v $\beta\beta$ </sup> = 5.5x10<sup>27</sup> yr

If <sup>136</sup>Ba-tagging can be implemented:  $T_{1/2}^{0\nu\beta\beta} = 1.6 \times 10^{28} \text{ yr}$ 

### **Ba-Tagging research ongoing:**

- Electrically Biased probe with Resonance Ionization Spectroscopy
  - Stanford University
- Extraction to Gas Phase with Ion Trapping
  - Carleton and McGill Universities and TRIUMF
- Electrically Biased probe with Thermal Desorption
  - University of Illinois Urbana-Champaign
- Cryogenic probe with Fluorescence Spectroscopy
  - Colorado State University

# THE NEXT CONCEPT

<sup>136</sup>Xe

![](_page_28_Figure_1.jpeg)

- High pressure gas TPC filled with xenon enriched at 90% in <sup>136</sup>Xe.
- Ionization signal amplification using electroluminescence (EL).
- Energy plane filled with PMTs. Measures both energy and start of the event (t<sub>0</sub>).

NEXT

 Tracking plane composed of SiPMs. Reconstructs event topology.

# Fluorescence of organic molecules being studied for Ba-tagging.

![](_page_28_Figure_7.jpeg)

- 5 kg of Ar has been running at CanFranc since Oct 2016.
- NEXT-100: 100 kg of Ar will be running by the end of 2018

![](_page_28_Figure_10.jpeg)

## KamLAND-Zen

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

Phase I + II (504 kg-yr):  $t_{\gamma_2}$  < 1.07 x 10<sup>26</sup> yrs Now running with New Balloon and 750 kgs Future: 1000 kg <sup>136</sup>Xe

## PandaX-III

#### 10 Bar Gas TPC:

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_30_Figure_5.jpeg)

Full Project: 5 x 200 kg Modules in water shield in Jing Ping Laboratory

Presently one prototype module with Micromegas readout.

## Comparison of Experiments

![](_page_31_Figure_1.jpeg)

S. Schönert | TUM Double Beta Decay TAUP2017

Adopted from Agostini, Benato, Detwiler arXiv:1705.02996

#### **Discovery Potential (5 year running)**

Agostini, Benato, Detwiler arXiv:1705.02996

![](_page_32_Figure_2.jpeg)

250 meV 100 meV 130**Te** 40 met CUORE SNO+ Phase I SNO+ Phase II 15 me CUPID (Te) 5 meV 10<sup>3</sup> 10<sup>2</sup> 10<sup>4</sup> 10<sup>5</sup> 10<sup>€</sup> sensitive exposure for Te<sup>130</sup> [kg<sub>ien</sub> yr]

Contours in  $m_{\beta\beta}$  cover the range of Nuclear Matrix Elements (but not possible  $g_A$  quenching)

## **Summary and Future Outlook**

- Several experiments are prepared to dip into the Inverted Hierarchy region in the full operation of their present configuration.
- There are future prospects for sensitivity that will extend at least to the bottom of the IH region.
- Considerable work continues to be needed on control of backgrounds to attain adequate sensitivity in finite time.
- Analysis by Agostini et al suggests optimism for the possibility for discovery within the potentially accessible regions if neutrinos are Majorana particles.
- Further theoretical work is very important to improve the uncertainty in nuclear matrix elements and g<sub>A</sub> quenching.