Solar models and neutrinos (II)

F. L. Villante – University of L'Aquila and LNGS-INFN

Outline

- The solar composition problem
- Metals .vs. opacity
- CNO and ecCNO neutrinos
- Summary and conclusions

The **downward revision** of heavy elements photospheric abundances ...

Element	GS98	AGSS09met	$\delta z_{ m i}$
- C	8.52 ± 0.06	8.43 ± 0.05	0.23
N	7.92 ± 0.06	7.83 ± 0.05	0.23
O	8.83 ± 0.06	8.69 ± 0.05	0.38
Ne	8.08 ± 0.06	7.93 ± 0.10	0.41
$\overline{\mathrm{Mg}}$	7.58 ± 0.01	7.53 ± 0.01	0.12
Si	7.56 ± 0.01	7.51 ± 0.01	0.12
\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02	0.12
Fe	7.50 ± 0.01	7.45 ± 0.01	0.12
$(\mathrm{Z/X})_{\odot}$	0.02292	0.01780	0.29

$$[I/H] \equiv \log(N_I/N_H) + 12$$

The **downward revision** of heavy elements photospheric abundances ...

Element	GS98	AGSS09met	$\delta z_{ m i}$
\overline{C}	8.52 ± 0.06	8.43 ± 0.05	0.23
N	7.92 ± 0.06	7.83 ± 0.05	0.23
O	8.83 ± 0.06	8.69 ± 0.05	0.38
Ne	8.08 ± 0.06	7.93 ± 0.10	0.41
Mg	7.58 ± 0.01	7.53 ± 0.01	0.12
Si	7.56 ± 0.01	7.51 ± 0.01	0.12
\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02	0.12
Fe	7.50 ± 0.01	7.45 ± 0.01	0.12
$(\mathrm{Z/X})_{\odot}$	0.02292	0.01780	0.29

$$[I/H] \equiv \log (N_I/N_H) + 12$$

The **downward revision** of heavy elements photospheric abundances ...

Element	GS98	AGSS09met	$\delta z_{ m i}$
\overline{C}	8.52 ± 0.06	8.43 ± 0.05	0.23
N	7.92 ± 0.06	7.83 ± 0.05	0.23
O	8.83 ± 0.06	8.69 ± 0.05	0.38
Ne	8.08 ± 0.06	7.93 ± 0.10	0.41
Mg	7.58 ± 0.01	7.53 ± 0.01	0.12
Si	7.56 ± 0.01	7.51 ± 0.01	0.12
\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02	0.12
Fe	7.50 ± 0.01	7.45 ± 0.01	0.12
$(\mathrm{Z/X})_{\odot}$	0.02292	0.01780	0.29

$$[I/H] \equiv \log (N_I/N_H) + 12$$

A quick remark on notation:

Here and in the following, I use

$$\delta Q \equiv \frac{Q - \overline{Q}}{\overline{Q}}$$

to indicate the fractional variation of the generic quantity $\,Q\,$ with respect to a reference value $\,\overline{Q}\,.$

The **downward revision** of heavy elements photospheric abundances ...

Element	GS98	${ m AGSS09met}$	$\delta z_{ m i}$
-C	8.52 ± 0.06	8.43 ± 0.05	0.23
N	7.92 ± 0.06	7.83 ± 0.05	0.23
O	8.83 ± 0.06	8.69 ± 0.05	0.38
Ne	8.08 ± 0.06	7.93 ± 0.10	0.41
$\overline{\mathrm{Mg}}$	7.58 ± 0.01	7.53 ± 0.01	0.12
Si	7.56 ± 0.01	7.51 ± 0.01	0.12
\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02	0.12
Fe	7.50 ± 0.01	7.45 ± 0.01	0.12
$(Z/X)_{\odot}$	0.02292	0.01780	0.29

$$[I/H] \equiv \log (N_I/N_H) + 12$$

... leads to SSMs which do not correctly reproduce helioseismic observables

Flux	B16-GS98	B16-AGSS09met	Solar	
$\overline{Y_{ m S}}$	0.2426 ± 0.0059	0.2317 ± 0.0059	0.2485 ± 0.0035	(≈ 2-3σ discrepancies)
$R_{\rm cz}/R_{\odot}$	0.7116 ± 0.0048	0.7223 ± 0.0053	0.713 ± 0.001	(~ 2-30 discrepancies)
$\Phi_{ m pp}$	$5.98(1 \pm 0.006)$	$6.03(1\pm0.005)$	$5.97^{(1+0.006)}_{(1-0.005)}$	l loite.
Φ_{Be}	$4.93(1 \pm 0.06)$	$4.50(1 \pm 0.06)$	$4.80_{(1-0.046)}^{(1+0.050)}$	Units: pp: 10 ¹⁰ cm ² s ⁻¹ ;
$\Phi_{ m B}$	$5.46(1 \pm 0.12)$	$4.50(1 \pm 0.12)$	$5.16^{(1+0.025)}_{(1-0.017)}$	Be: 10^9 cm 2 s ⁻¹ ;
$\Phi_{ m N}$	$2.78(1 \pm 0.15)$	$2.04(1\pm0.14)$	≤ 13.7	pep, N, O: 10 ⁸ cm ² s ⁻¹ ; B, F: 10 ⁶ cm ² s ⁻¹ ;
$\Phi_{ m O}$	$2.05(1\pm0.17)$	$1.44(1 \pm 0.16)$	≤ 2.8	hep: 10 ³ cm ² s ⁻¹

How severe is the problem?

To combine observational infos, we introduce a χ^2 that can be used as a figure-of-merit for solar models with different composition:

Villante et al. 2014, ApJ 787 (2014) 13

			GS98	AGSS09met	
Case	dof	χ^2	p-value (σ)	χ^2	p -value (σ)
$Y_{\rm S} + R_{\rm CZ}$ only	2	0.9	0.5	6.5	2.1
$\delta c/c$ only	30	58.0	3.2	76.1	4.5
$\delta c/c$ no-peak	28	34.7	1.4	50.0	2.7
$\Phi(^7{\rm Be}) + \Phi(^8{\rm B})$	2	0.2	0.3	1.5	0.6
all ν -fluxes	8	6.0	0.5	7.0	0.6
global	40	65.0	2.7	94.2	4.7
global no-peak	38	40.5	0.9	67.2	3.0

Table 5. Comparison of B16 SSMs against different ensembles of solar observables. Vinyoles et al, ApJ 835 (2017) no.2, 202

- High-Z models are clearly preferred by helioseismology.
- The interpretation is however complicated by the **opacity-composition degeneracy** (see the following).

- Metals give a negligible contribution to EOS
- Metals give a **substantial** contribution to **opacity**:

Energy producing region ($R < 0.3 R_o$)

$$\kappa_Z \approx \frac{1}{2} \kappa_{tot}$$

Fe gives the largest contribution.

Outer radiative region $(0.3 < R < 0.73 R_{\odot})$

$$\kappa_z \sim 0.8 \ \kappa_{tot}$$

Relevant contributions from several diff. elements (O,Fe,Si,Ne,...)

• Z_{CNO} control the efficiency of CNO cycle

- Metals give a negligible contribution to EOS
- Metals give a **substantial** contribution to **opacity**:

Energy producing region ($R < 0.3 R_o$)

$$\kappa_Z \approx \frac{1}{2} \kappa_{tot}$$

Fe gives the largest contribution.

Outer radiative region $(0.3 < R < 0.73 R_{\odot})$

$$\kappa_Z \sim 0.8 \ \kappa_{tot}$$

Relevant contributions from several diff. elements (O,Fe,Si,Ne,...)

• Z_{CNO} control the efficiency of CNO cycle

A change of the solar composition produces the same effects on the helioseismic observables and neutrino fluxes (except CNO) of a suitable change of the solar opacity profile $\delta \kappa(r)$:

$$\delta \kappa_{\rm Z}(r) \equiv \sum_{j} \frac{\partial \ln \kappa(r)}{\partial \ln Z_{j}} \delta z_{j}$$

The solar opacity profile

The "optimal" opacity profile (i.e. the temperature stratification) of the Sun is well determined by observational data

Note that:

- The sound speed and the convective radius determine the tilt of $\delta \kappa(r)$ (but not the scale)
- The surface helium and the neutrino fluxes determine the scale for $\delta \kappa(r)$

F.L. Villante and B. Ricci - Astrophys.J.714:944-959,2010
F.L. Villante - Astrophys.J.724:98-110,2010
F.L. Villante, A. Serenelli et al., Astrophys.J. 787 (2014) 13

Fractional variation of opacity profile to fit the data

Caveat

- Constraints are obtained by using parametrized $\delta k(r)$
- A non parametric approach is in progress (Song et al, 2017)

The solar opacity profile

The "optimal" opacity profile (i.e. the temperature stratification) of the Sun is well determined by observational data

Note that:

- The sound speed and the convective radius determine the tilt of $\delta \kappa$ (r) (but not the scale)
- The surface helium and the neutrino fluxes determine the scale for $\delta \kappa(r)$

F.L. Villante - Astrophys.J.724:98-110,2010 F.L. Villante, A. Serenelli et al., Astrophys.J. 787 (2014) 13 Fractional variation of opacity profile to fit the data 0.30 0.25 0.15 0.10 $\delta Z_{CNO} = \delta Z_{Ne} = 0.45$; $\delta Z_{Heavy} = 0.19$ 0.05 ≈ few % δZ_{CNO} = 0.37; δZ_{Ne} = 0.80; δZ_{Heavy} = 0.13 0.08 r/R_o

F.L. Villante and B. Ricci - Astrophys.J.714:944-959,2010

The interpretation is however complicated by the **opacity-composition degeneracy**. Which fraction of the required $\delta \kappa(r)$ has to be ascribed to intrinsic ($\delta \kappa_{l}(r)$) and/or composition opacity changes?

$$\delta\kappa(r)=\delta\kappa_{\rm I}(r)+\sum_j\frac{\partial\ln\kappa(r)}{\partial\ln Z_j}\delta z_j$$
 Opacity table "errors" Non standard effects (WIMPs in solar core)

different admixtures $\{\delta z_i\}$ can do equally well the job

The Sun was born (at t=0) **chemical homogenous**.

- Elemental diffusion
- Nuclear reactions

The Sun was born (at t=0) **chemical homogenous**.

- Elemental diffusion
- Nuclear reactions

The Sun was born (at t=0) **chemical homogenous**.

- Elemental diffusion
- Nuclear reactions

The Sun was born (at t=0) **chemical homogenous**.

- Elemental diffusion
- Nuclear reactions

CN neutrino production

Neutrinos produced in the CN-cycle probe the abundance of carbon and nitrogen in the core of the Sun

CN neutrino production

Neutrinos produced in the CN-cycle probe the abundance of carbon and nitrogen in the core of the Sun

The importance of CNO neutrinos

- Probe the dominant H-burning mechanism in massive and/or evolved stars
- Provide a direct determination of the C+N abundance in the solar core:

$$\delta\phi_{\rm O} = \delta X_{\rm CN}^{\rm core} + \alpha \,\delta T_{\rm c} + \delta S_{114}$$

$$\delta\phi_{\rm N} = \delta X_{\rm CN}^{\rm core} + \gamma \,\delta T_{\rm c} + f \,\delta S_{114}$$

indeed, the (strong) dependence on T_c can be eliminated by using **B-neutrinos as solar thermometer**. E.g.

$$\delta\phi_{\rm O}-0.785\,\delta\phi_{\rm B}=\delta X_{\rm CN}^{\rm core}~\pm0.4\% ({\rm env})~\pm2.6\% ({\rm diff})~\pm10\% ({\rm nuc})$$
 Serenelli et al., PRD 2013

The importance of CNO neutrinos

- Probe the dominant H-burning mechanism in massive and/or evolved stars
- Provide a direct determination of the C+N abundance in the solar core:

$$\delta\phi_{\rm O} = \delta X_{\rm CN}^{\rm core} + \alpha \,\delta T_{\rm c} + \delta S_{114}$$

$$\delta\phi_{\rm N} = \delta X_{\rm CN}^{\rm core} + \gamma \,\delta T_{\rm c} + f \,\delta S_{114}$$

indeed, the (strong) dependence on T_c can be eliminated by using **B-neutrinos as** solar thermometer. E.g.

$$\delta\phi_{\rm O}-0.785\,\delta\phi_{\rm B}=\delta X_{\rm CN}^{\rm core}~\pm0.4\% ({\rm env})~\pm2.6\% ({\rm diff})~\pm10\% ({\rm nuc})$$
 Serenelli et al., PRD 2013

High-Z .vs. Low-Z

$$\delta\phi_{\rm O} = \frac{\phi_{\rm O}^{\rm HZ} - \phi_{\rm O}^{\rm LZ}}{\phi_{\rm O}^{\rm LZ}} \simeq 40\%$$

Beyond solar composition problem (10%):

Using CNO neutrinos to probe for mixing processes in the Sun (and other stars)

$$\delta X_{\rm CN} = \frac{X_{\rm CN}^{\rm core} - X_{\rm CN}^{\rm surf}}{X_{\rm CN,ini}} \simeq 15\%$$

Is it possible to observe CNO neutrinos in LS?

The detection of CNO neutrinos is very difficult:

- Low energy neutrinos → endpoint at about 1.5 MeV
- Continuos spectra → do not produce recognizable features in the data.
- Limited by the background produced by beta decay of ²¹⁰Bi.

Event spectrum in ultrapure liquid scintillators (Borexino-like)

Determining ²¹⁰Bi with the help of ²¹⁰Po?

Deviations from the exponential decay law of ²¹⁰Po can be used to determine ²¹⁰Bi

$$n_{\rm Po}(t) = [n_{\rm Po,0} - n_{\rm Bi}] \exp(-t/\tau_{\rm Po}) + n_{\rm Bi}$$

Borexino already have the potential to probe the CNO neutrino flux ... but the
detector should be stable (no convective motions) over long time scales.

How to improve?

Increase the detector depth Consider larger detectors

- → reduction of cosmogenic ¹¹C background
- → Stat. uncertainties scales as 1/M¹/² SNO+ (1 kton), LENA (50 kton)

How to improve?

Increase the detector depth Consider larger detectors

- → reduction of cosmogenic ¹¹C background
- → Stat. uncertainties scales as 1/M¹/² SNO+ (1 kton), LENA (50 kton)

The final accuracy depends, however, on the internal background (210Bi)

Borexino: $20 \text{cpd}/100 \text{ ton} \rightarrow 150 \text{ nuclei} / 100 \text{ ton}$

ecCNO neutrinos

In the CN-NO cycle, besides the conventional CNO neutrinos (blue lines), monochromatic ecCNO neutrinos (red lines) are also produced by electron capture reactions:

$$^{13}{\rm N} + e^{-} \rightarrow ^{13}{\rm C} + \nu_{e}$$
 $E_{\nu} = 2.220~{\rm MeV}$ $^{15}{\rm O} + e^{-} \rightarrow ^{15}{\rm N} + \nu_{e}$ $E_{\nu} = 2.754~{\rm MeV}$ $^{17}{\rm F} + e^{-} \rightarrow ^{17}{\rm O} + \nu_{e}$ $E_{\nu} = 2.761~{\rm MeV}$

F.L. Villante, PLB 742 (2015) 279-284 L.C. Stonehill et al, PRC 69, 015801 (2004) J.N. Bahcall, PRD 41, 2964 (1990).

ecCNO neutrinos

The ecCNO fluxes are extremely low: $\Phi_{\text{ecCNO}} \approx (1/20) \Phi_{\text{B}}$. Detection is extremely difficult but could be rewarding. Indeed:

- ecCNO neutrinos are sensitive to the metallic content of the solar core (same infos as CNO neutrinos);
- Being monochromatic, they probe the solar neutrino survival probability at specific energies ($E_v \cong 2.5$ MeV) exactly in the transition region.

F.L. Villante, PLB 742 (2015) 279-284 L.C. Stonehill et al, PRC 69, 015801 (2004) J.N. Bahcall, PRD 41, 2964 (1990).

Expected rates in Liquid Scintillators

- v e elastic scattering of ecCNO neutrinos produces Compton shoulders (smeared by energy resolution) at 2.0 and 2.5 MeV;
- ecCNO neutrino signal has to be extracted statistically from the (irreducible) ⁸B neutrino background.

Expected rates in Liquid Scintillators

Additional background sources:

- Intrinsic: negligible/tagged (with Borexino Phase-I radio-purity levels);
- External: reduced by self-shielding (Fid. mass reduced from 50 to ≈20 kton in LENA);
- **Cosmogenic:** ¹¹C overlap with the observation window.

Expected rates in Liquid Scintillators

Additional background sources:

- Intrinsic: negligible/tagged (with Borexino Phase-I radio-purity levels);
- External: reduced by self-shielding (Fid. mass reduced from 50 to ≈20 kton in LENA);
- **Cosmogenic:** ¹¹C overlap with the observation window.

Signal comparable to stat. fluctuations for exposures 10 kton \times year or larger.

100 counts / year above 1.8 MeV in 20 kton detector \rightarrow 3 σ detection in 5 year in LENA

Summary

The **solar composition problem** indicates that there is something **wrong** or **unaccounted** in solar models

- Are properties of the solar matter (e.g. opacity) correctly described?
- Are the new abundances (i.e. the atmospheric model) wrong?
- Is the chemical evolution not understood (extra mixing?) or peculiar (accretion?) with respect to other stars?

Note that:

The Sun provide the **benchmark** for stellar evolution. If there is something wrong in solar models, then this is wrong for all the stars ...

CNO and ecCNO neutrinos, besides testing CN-NO cycle, could provide clues for the solution of the puzzle.

Thank you