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The gamma or neutrino flux in given by:

Particle physics Astrophysics

● J and D values and uncertainties must be
robustly determined to put constraints on DM
candidate

● Signal/constraints depends crucially on DM
distribution

● Favoured targets include:
● Galactic centre
● Dark Galactic clumps
● Galaxy clusters
● DSph galaxies → very competitive

Indirect detection in γ-rays and ν 

Conrad & Reimer (2017)



  

Outline 

1.  J and D  factors from spherical Jeans analysis
● Principle

● Limitations and choosing an optimal setup

● Result overview 

2. Other considerations
● Sample contamination 

● Accounting for triaxiality



  

● Light profile and velocity dispersion

● Dark matter profile, e.g. 

● Jeans equation: solve for νv2
r
     

       Deprojection - Projection

Enclosed mass

ani

Anisotropy

From kinematics to DM profile: the Jeans analysis
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→ Infer median and CIs of all derived quantities,
e.g. J and D factors

Getting the J- and D-factors: the Jeans analysis

Charbonnier et al. (2011)
Walker et al. (2011)

Fitting DM profile:  χ2 or Bayesian inference (MCMC,
MultiNest) to sample the posterior of the parameters
(anisotropy = nuisance parameter)



  

● Light profile and velocity dispersion

● Dark matter profile, e.g. 

● Jeans equation: solve for νv2
r
     

       Deprojection - Projection

Enclosed mass

ani

Anisotropy

→ Infer median and CIs of all derived quantities,
e.g. J and D factors

Charbonnier et al. (2011)
Walker et al. (2011)
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Inner slope badly
constrained
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● Light profile and velocity dispersion

● Dark matter profile, e.g. 

● Jeans equation: solve for νv2
r
     

       Deprojection - Projection

Enclosed mass

ani

Anisotropy

→ Infer median and CIs of all derived quantities,
e.g. J and D factors

Getting the J- and D-factors: the Jeans analysis

J/D are best constrained when
integrating up to αc

Fitting DM profile:  χ2 or Bayesian inference (MCMC,
MultiNest) to sample the posterior of the parameters
(anisotropy = nuisance parameter)



  

● Light profile and velocity dispersion

● Dark matter profile, e.g. 

● Jeans equation: solve for νv2
r
     

       Deprojection - Projection

Enclosed mass

ani

Anisotropy

Jeans equation assumes
● Spherical symmetry
● Dynamical equilibrium
● No rotation

Parametric approach
● Light profile parametrisation

(Plummer, King, Sersic)
● Anisotropy parametrisation (zero,

constant, β(r))
● DM profile parametrisation (NFW,

core, Zhao, Einasto)

Bayesian inference needs
● Likelihood (binned or unbinned)
● Priors (range, lin or log)

Different choices
=

Different results

Hope for the best

Is there a “safe”/optimal setup for the Jeans analysis?
[Bonnivard et al. (2015)]

Getting the J- and D-factors: the Jeans analysis



  

DM profile

Light profile

Anisotropy 

98 models

"Gaia Challenge"

Mock dSph datasets

Walker et al. (2011)
Charbonnier et al. (2011)

Each model is sampled to
mimick:
● Ulltrafaint dSph (N*=30)
● Classical dSph (N*=103)
● Ideal dSph (N*=104) 



  

Mock dSph datasets

● True J-factors are known for all
mock dSph galaxies

● Run analysis on all mock dSphs
allowing for fits with the “wrong”
parametrisations

How are the reconstructed J-factors affected?

→ Identify the most important ingredients and
define a safe(r) way to use the spherical Jeans
analysis.

DM profile

Light profile

Anisotropy 

98 models

"Gaia Challenge"
Walker et al. (2011)

Charbonnier et al. (2011)

Each model is sampled to
mimick:
● Ulltrafaint dSph (N*=30)
● Classical dSph (N*=103)
● Ideal dSph (N*=104) 



  

Undershooting I(R) at large radii 

→ bias in J-factor

Choice of light profile:
● Zhao (5 parameters)
● Sersic, King (3 parameters)
● Plummer, Exp (2 parameters)

Select Zhao parametrisation as more flexible to describe the light profile

Mock dSph datasets: light profile

Bonnivard+ (2015a)

NB: the light profile is fitted first, then used in the Jeans analysis



  

Choice of DM profiles:
● Zhao (5 parameters)
● Einasto (3 parameters)

Median value + Cls  not affected 

Independent on sample size

Select Einasto parametrisation as less free parameters
→ Speed-up MCMC

Mock dSph datasets: DM density profile
Bonnivard+ (2015a)

Priors

Einasto slope: very steep inner slopes
disfavoured by sims and data and give rise
to large upper CIs (not shown)

0.12 < αE <1 

→ (conservative <σv>)

Scale radius: Asking                   drastically
reduces upper CIs

Truncation radius ?
● tidal radius
● ρdsph = ρGal

● outermost star
[Geringer-Sameth+ 2015]



  

'Bad' anisotropy choice 

→ bias in J-factor

NB: Less critical for ultrafaint dSphs
→ larger error bars encompass the 'true' value

Choice of anisotropy profiles:

● Constant (β
0
, 1 parameter)

● Osipkov-Merritt (β(r), 1 parameter)
● Baes (β(r), 4 parameters)

For classical dSphs, use Baes & van Hese anisotropy profile (but time consuming)

For ultrafaint dSphs, constant anisotropy profile suffices (and runs much faster)

Mock dSph datasets: anisotropy profile

Bonnivard+ (2015a)

+ anisotropy cut: avoid non-physical models with (Ciotti & Morganti 2010)



  

Simulations → DM halos are triaxial
Observations → signs of ellipticity

1) Known triaxiality parameters but unknown
orientation 
→ ~30% uncertainty

2) Spherical Jeans analysis on triaxial data
→ Bias J up to factor ~ 2.5
→ Truth may not be encompassed in 95% Cls.

Cannot do much about it as dSphs actual shapes and orientations are unknown…

So, keep working assuming spherical symmetry but consider adding extra systematic error
in the error budget 

Mock dSph datasets: triaxiality

Triaxial halo (abc=1): b/a=0.8, c/a=0.6Bonnivard+ (2015a)



  

Mock dSph datasets: biases and uncertainties



  

J-factors: Application to real dSph data (αint = 0.5°
 )

Bonnivard et al. (2015b,c), Walker et al. (2016) 

● Larger error bars to ultrafaint dSph [except for the Fermi-LAT 2014 analysis, which assumed
universal dSph properties from numerical simulations (Martinez 2015)].

● Distance is the main driver → simple scaling to estimate J when no spectroscopic data (e.g. Drlica-
Wagner et al. (2015), Albert et al. (2017))
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J-factors: Application to real dSph data (αint = 0.5°
 )

● Larger error bars for ultrafaint dSph [except for the Fermi-LAT 2014 analysis, which assumed
universal dSph properties from numerical simulations (Martinez 2015)].

● Distance is the main driver → simple scaling to estimate J when no spectroscopic data (e.g. Drlica-
Wagner et al. (2015), Albert et al. (2017)) 

● Segue I is found discrepant with other estimates and very uncertain: possibly suggests stellar
contamination [cf. Part 2]

Bonnivard et al. (2015b,c), Walker et al. (2016) 



  

D-factors: Application to real dSph data (αint = αc )

● Reshuffling of the best targets when considering D-factors; UMa2 remains an excellent option 

● For decay, emission is less peaked and outer regions play an important role → halo truncation
radius becomes an important parameter; point-like assumption fails.

Bonnivard et al. (2015b), Bonnivard PhD thesis (2016) 



  

Outline 

1.  J and D factors from spherical Jeans analysis
● Principle

● Limitations and choosing an optimal setup

● Result overview 

2. Other considerations
● Sample contamination

● Accounting for triaxiality → See Mauro’s talk 



  

Identifying and handling contamination

● Hard cuts from some diagnosis (CMD, σ-clipping on vl.o.s, metallicity, location) → member yes/no
(see Battaglia, Helmi & Breddels 2013 for a review)
→ use all stars that pass the cut into likelihood

● Membership probability Pi: Expectation-maximisation (Walker+ 2009), Bayesian method (Martinez+ 2011)
→ cut to select ‘members’ : .e.g Pi > 0.95     (1)
→ used as weights in the likelihood         (2)



  

Identifying and handling contamination

● Hard cuts from some diagnosis (CMD, σ-clipping on vl.o.s, metallicity, location) → member yes/no
(see Battaglia, Helmi & Breddels 2013 for a review)
→ use all stars that pass the cut into likelihood

● Membership probability Pi: Expectation-maximisation (Walker+ 2009), Bayesian method (Martinez+ 2011)
→ cut to select ‘members’ : .e.g Pi > 0.95     (1)
→ used as weights in the likelihood       

● Simulations of contaminated ultrafaint samples (Bonnivard, Maurin, Walker 2016) show that:

→ they have a ‘large’ values of N(0.05< Pi< 0.95) / N(Pi>10-3)         [=0.19 for Segue 1]

→ J-factors differ when performing Jeans using (1) or (2) 

 (2)

Bonnivard, Maurin & Walker (2016)

● Segue I has peculiar behaviour
→ caution advised when using J.

● Among classical, Fornax shows
sign of slight contamination.

+ sensitivity to one star



  

Identifying and handling contamination

● Hard cuts from some diagnosis (CMD, σ-clipping on vl.o.s, metallicity, location) → member yes/no
(see Battaglia, Helmi & Breddels 2013 for a review)
→ use all stars that pass the cut into likelihood

● Then, joint foreground + member likelihood e.g.
→ Bonnivard, Maurin, Walker (2016, Appendix A, similar result to P-weighted likelihood)
→ Ichikawa et al. (2017) : simulations + naive cut + standard Jeans (Zhao DM, Plummer light, constant
anisotropy) + foreground prior from control region

- mock

mock mock mock

Naive cut
P-weighted à la Bonnivard+ 
Joint FG+member fit



  

Accounting for triaxiality 

● Simulations → DM haloes are triaxial
● Observations → “light”  of dSph  does  not  necessarily look spherical
● Using spherical Jeans analysis may yield factor ~2 bias on J-factors

Hayashi & Chiba (2012), Hayashi et al. (2016) → axisymmetric Jeans analysis (oblate case)

→ MCMC with 6 parameters



  

Accounting for triaxiality 

Sanders et al. (2016) → correction to J and D                                       from  M2M sims +  analytical considerations

● Various DM/light profiles

● Prolate haloes → corr ~ 1.6

● Oblate haloes → corr ~ 0.4 – 0.75

● Triaxial haloes → factor  ~2 extra
uncertainty

● Simulations → DM haloes are triaxial
● Observations → “light”  of dSph  does  not  necessarily look spherical
● Using spherical Jeans analysis may yield factor ~2 bias on J-factors



  

1. Data-driven estimated J/D factors with spherical Jeans analysis + Bayesian inference

● Mock data allow optimised  setup for the Jeans analysis (parametrisations + priors)

● Application to 23  dSph galaxies (overall agreement between authors)

→ For annihilation, Ursa Minor and Draco are the best 'safe' targets
→ Coma, UMa2, Ret 2 are more uncertain but possibly more promising
→ Segue 1 is problematic – possible stellar contamination

● If triaxial dSph galaxies →   factor ~2 bias using spherical Jeans

2. To go further

● Mass modeling:

→ break mass-anisotropy degeneracy: Lokas & Mamon (2003), Walker & Penarubbia (2011),
Richardson & Fairbairn (2012, 2014), Read & Steger (2017), Kovalczyk+(2017)
→ account for ellipticity/triaxiality: Hayashi et al. (2016), Sanders et al. (2016)

● Likelihood:

→ Include foreground component to mitigate contamination effects
→ Profile likelihood / frequentist approach (Chiappo+ 2017)

Summary

https://lpsc.in2p3.fr/clumpy/
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