

Astrophysical J and D factors in dwarf spheroidal galaxies - an overview

C.Combet

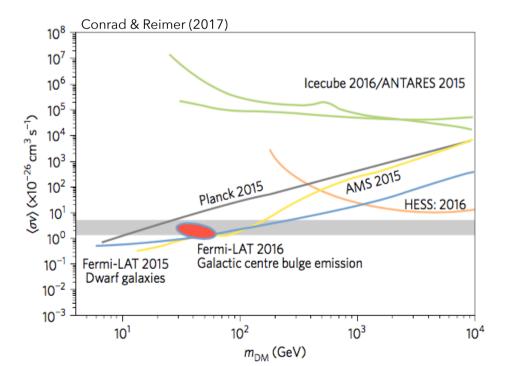
Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France

Barolo Astroparticle Meeting 2017

Indirect detection in γ-rays and v

The gamma or neutrino flux in given by:

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi,\theta,\Delta\Omega) = \frac{d\Phi_{\gamma}^{PP}}{dE_{\gamma}}(E_{\gamma}) \times J(\psi,\theta,\Delta\Omega)$$
Particle physics Astrophysics
$$\frac{d\Phi^{PP}}{dE}(E) = \frac{1}{4\pi} \sum_{f} \frac{dN_{\gamma,\nu}^{f}}{dE} B_{f} \times \begin{cases} \frac{\sigma v}{m_{\chi}^{2}\delta} & (\text{annihilation}) \\ \frac{1}{\tau m_{\chi}} & (\text{decay}), \end{cases} D(\psi,\theta,\Delta\Omega) = \int_{0}^{\Delta\Omega} \int_{\text{l.o.s}} \rho^{2}(l(\psi,\theta)) dl \ d\Omega$$



- J and D values and uncertainties must be robustly determined to put constraints on DM candidate
- Signal/constraints depends crucially on DM distribution
- Favoured targets include:
 - Galactic centre
 - Dark Galactic clumps
 - Galaxy clusters
 - DSph galaxies \rightarrow very competitive

Outline

1. J and D factors from spherical Jeans analysis

- Principle
- Limitations and choosing an optimal setup
- Result overview
- 2. Other considerations
 - Sample contamination
 - Accounting for triaxiality

• Light profile and velocity dispersion

 $I(R) \qquad \sigma_p^2(R)$ $\downarrow \qquad \uparrow$ Deprojection - Projection $\downarrow \qquad I$ $\nu \qquad v\bar{v_r^2}$

• Jeans equation: solve for vv_{r}^{2}

Anisotropy
$$\beta_{ani} = 1 - \bar{v_{\theta}^2} / \bar{v_r^2}$$

$$\frac{1}{\nu} \frac{d}{dr} (\nu \bar{v_r^2}) + 2 \frac{\beta \bar{v_r^2}}{r} = -\frac{GM(r)}{r^2}$$
Enclosed mass
$$M(r) = \int_0^r 4\pi s^2 \rho(s) ds$$

• Dark matter profile, e.g.

$$\rho_{\rm DM}^{\rm Zhao}(r) = \frac{\rho_s}{(r/r_s)^{\gamma} \cdot [1 + (r/r_s)^{\alpha}]^{(\beta-\gamma)/\alpha}}$$
$$\rho_{\rm DM}^{\rm Einasto}(r) = \rho_{-2} \exp\left\{-\frac{2}{\alpha} \left[\left(\frac{r}{r_{-2}}\right)^{\alpha} - 1\right]\right\}$$

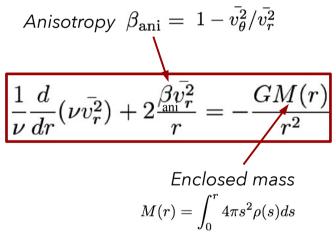
• Light profile and velocity dispersion

 $\sigma_p^2(R)$

Deprojection - Projection ν $\overline{v^2}$

• Jeans equation: solve for vv_{r}^{2}

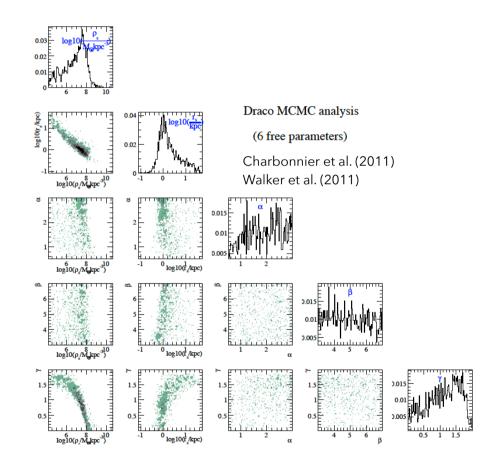
I(R)



• Dark matter profile, e.g.

$$\rho_{\rm DM}^{\rm Zhao}(r) = \frac{\rho_s}{(r/r_s)^{\gamma} \cdot [1 + (r/r_s)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$
$$\rho_{\rm DM}^{\rm Einasto}(r) = \rho_{-2} \exp\left\{-\frac{2}{\alpha} \left[\left(\frac{r}{r_{-2}}\right)^{\alpha} - 1\right]\right\}$$

Fitting DM profile: χ^2 or Bayesian inference (MCMC, MultiNest) to sample the posterior of the parameters (anisotropy = nuisance parameter)



→ Infer median and CIs of all derived quantities, e.g. J and D factors

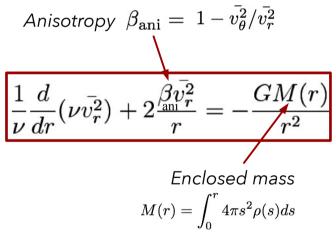
• Light profile and velocity dispersion

 $\sigma_p^2(R)$

Deprojection - Projection v v^2

• Jeans equation: solve for vv_{r}^{2}

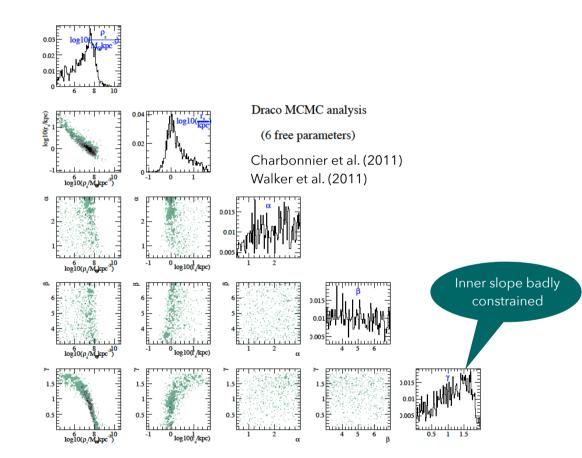
I(R)



• Dark matter profile, e.g.

$$\rho_{\rm DM}^{\rm Zhao}(r) = \frac{\rho_s}{(r/r_s)^{\gamma} \cdot [1 + (r/r_s)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$
$$\rho_{\rm DM}^{\rm Einasto}(r) = \rho_{-2} \exp\left\{-\frac{2}{\alpha} \left[\left(\frac{r}{r_{-2}}\right)^{\alpha} - 1\right]\right\}$$

Fitting DM profile: χ^2 or Bayesian inference (MCMC, MultiNest) to sample the posterior of the parameters (anisotropy = nuisance parameter)



→ Infer median and CIs of all derived quantities, e.g. J and D factors

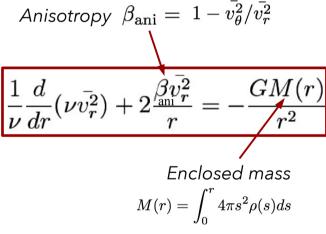
• Light profile and velocity dispersion

Deprojection - Projection

I(R)

 $\sigma_p^2(R)$

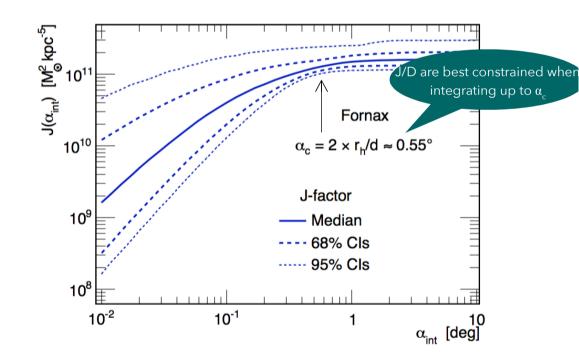
• Jeans equation: solve for vv_r^2



• Dark matter profile, e.g.

$$\rho_{\rm DM}^{\rm Zhao}(r) = \frac{\rho_s}{(r/r_s)^{\gamma} \cdot [1 + (r/r_s)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$
$$\rho_{\rm DM}^{\rm Einasto}(r) = \rho_{-2} \exp\left\{-\frac{2}{\alpha} \left[\left(\frac{r}{r_{-2}}\right)^{\alpha} - 1\right]\right\}$$

Fitting DM profile: χ^2 or Bayesian inference (MCMC, MultiNest) to sample the posterior of the parameters (anisotropy = nuisance parameter)



→ Infer median and CIs of all derived quantities, e.g. J and D factors

- Light profile and velocity dispersion I(R) $\sigma_p^2(R)$ $\rho_p^2(R)$ $\rho_p^2(R)$ $\rho_p^2(R)$ $\rho_p^2(R)$ ν ν v v v
- \bullet Jeans equation: solve for $vv_{\rm \, r}^2$

Anisotropy
$$\beta_{ani} = 1 - \bar{v_{\theta}^2} / \bar{v_r^2}$$

 $\frac{1}{\nu} \frac{d}{dr} (\nu \bar{v_r^2}) + 2 \frac{\beta \bar{v_r^2}}{r} = -\frac{GM(r)}{r^2}$
Enclosed mass
 $M(r) = \int_0^r 4\pi s^2 \rho(s) ds$

• Dark matter profile, e.g.

$$\begin{split} \rho_{\rm DM}^{\rm Zhao}(r) &= \frac{\rho_s}{(r/r_s)^{\gamma} \cdot [1 + (r/r_s)^{\alpha}]^{(\beta - \gamma)/\alpha}} \\ \rho_{\rm DM}^{\rm Einasto}(r) &= \rho_{-2} \exp\left\{-\frac{2}{\alpha} \left[\left(\frac{r}{r_{-2}}\right)^{\alpha} - 1\right]\right\} \end{split}$$

Jeans equation assumes

- Spherical symmetry
- Dynamical equilibrium
- No rotation

Parametric approach

- Light profile parametrisation (*Plummer, King, Sersic*)
- Anisotropy parametrisation (zero, constant, β(r))
- DM profile parametrisation (*NFW*, core, Zhao, Einasto)

Bayesian inference needs

- Likelihood (binned or unbinned)
- Priors (range, lin or log)

Is there a "safe"/optimal setup for the Jeans analysis? [Bonnivard et al. (2015)]

Hope for the best

Different choices

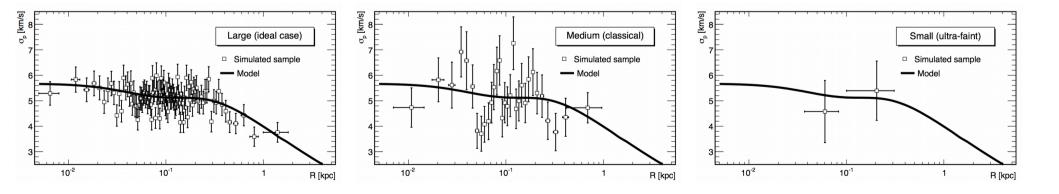
Different results

Mock dSph datasets

	Walker et al. (2011) Charbonnier et al. (2011) "Gaia Challenge"								
	Mock data	Spherical*	Spherical ^o	Triaxial [†]					
98 models	# of models	64	32	2					
DM profile	$\gamma \ r_s$ [kpc]	$[0,1] \ [0.2,1]$	0 - 1 1	0.23 - 1 1.5					
Light profile	$\gamma^* \ r_s^*$ [kpc]	$[0, 0.7] \ [0.1, 1]$	$0.1 - 1 \ [0.1, 1]$	0.23 0.81					
Anisotropy	$\beta_{\rm ani}$ profile	Cst	Cst+Osipkov	Baes & van Hese					

Each model is sampled to mimick:

- Ulltrafaint dSph (N*=30)
- Classical dSph (N*=10³)
- Ideal dSph (N*=10⁴)



Mock dSph datasets

	Walker et al. (2011) Charbonnier et al. (2011) "Gaia Challenge"								
	Mock data	Spherical*	Spherical ^o	Triaxial [†]					
98 models	# of models	64	32	2					
DM profile	$\gamma \ r_s$ [kpc]	$[0,1] \ [0.2,1]$	0 - 1 1	0.23 - 1 1.5					
Light profile	$\gamma^* \ r_s^*$ [kpc]	$[0, 0.7] \ [0.1, 1]$	$0.1 - 1 \\ [0.1, 1]$	0.23 0.81					
Anisotropy	β_{ani} profile	Cst	Cst+Osipkov	Baes & van Hese					

Each model is sampled to mimick:

- Ulltrafaint dSph (N*=30)
- Classical dSph (N*=10³)
- Ideal dSph (N*=10⁴)

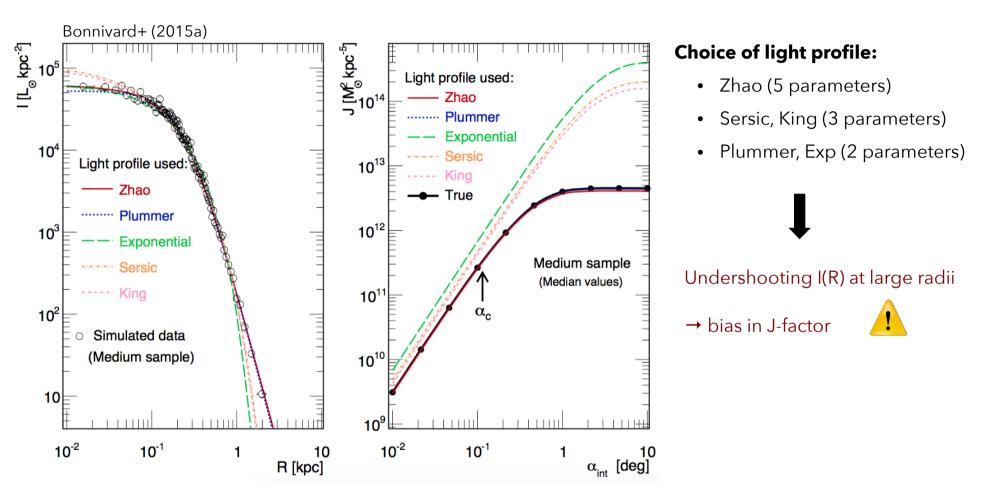
- True J-factors are known for all mock dSph galaxies
- Run analysis on all mock dSphs allowing for fits with the "wrong" parametrisations

How are the reconstructed J-factors affected?

→ Identify the most important ingredients and define a safe(r) way to use the spherical Jeans analysis.

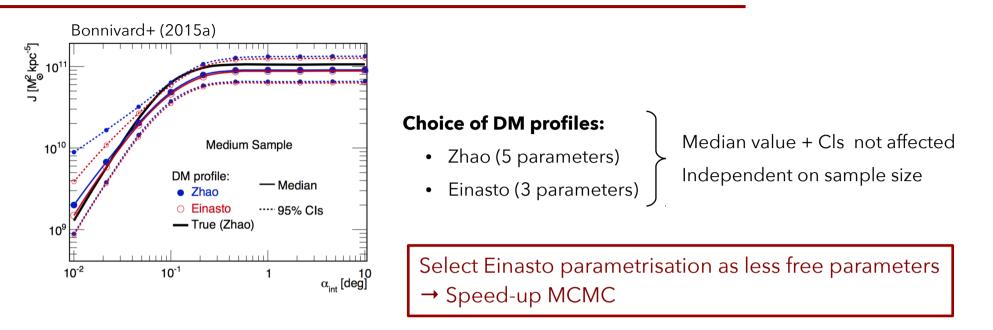
Mock dSph datasets: light profile

NB: the light profile is fitted first, then used in the Jeans analysis



Select Zhao parametrisation as more flexible to describe the light profile

Mock dSph datasets: DM density profile



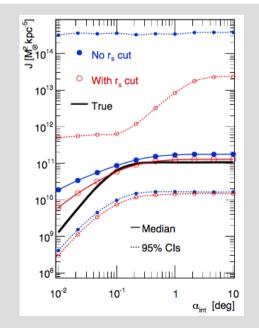
Priors

Einasto slope: very steep inner slopes disfavoured by sims and data and give rise to large upper CIs (not shown)

 $0.12 < \alpha^{E} < 1$

$$\rightarrow$$
 (conservative $<\sigma v>$)

Scale radius: Asking
$$r_s^{\rm DM} \ge r_s^{\star}$$
 drastically reduces upper CIs



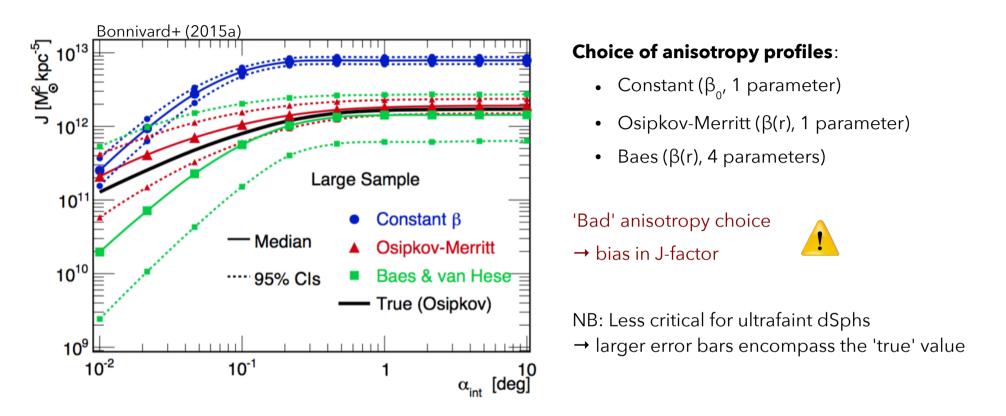
Truncation radius ?

• tidal radius

•
$$\rho_{dsph} = \rho_{Gal}$$

outermost star
 [Geringer-Sameth+ 2015]

Mock dSph datasets: anisotropy profile

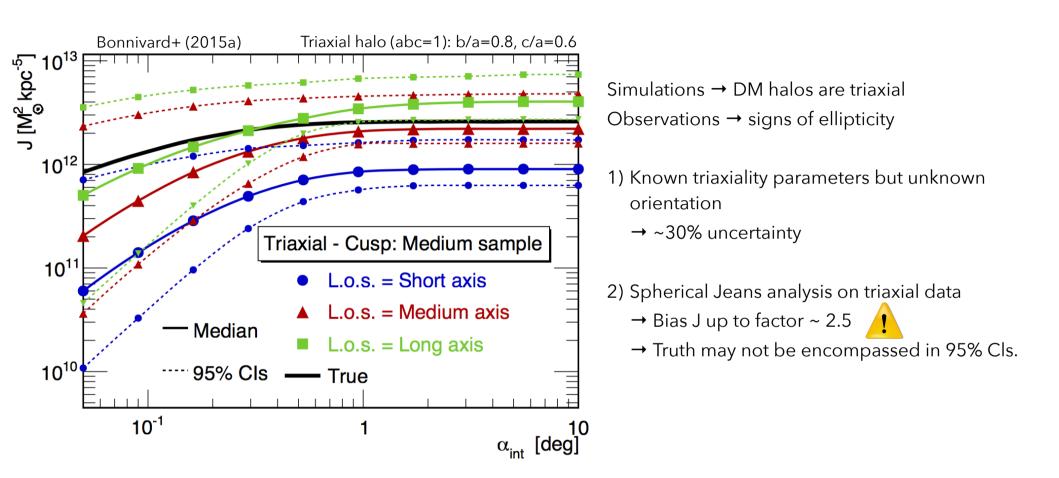


+ anisotropy cut: avoid non-physical models with $\beta_{ani}(r) \leq -\frac{1}{2} \frac{d \log v(r)}{d \log(r)}$, (Ciotti & Morganti 2010)

For classical dSphs, use Baes & van Hese anisotropy profile (but time consuming)

For ultrafaint dSphs, constant anisotropy profile suffices (and runs much faster)

Mock dSph datasets: triaxiality



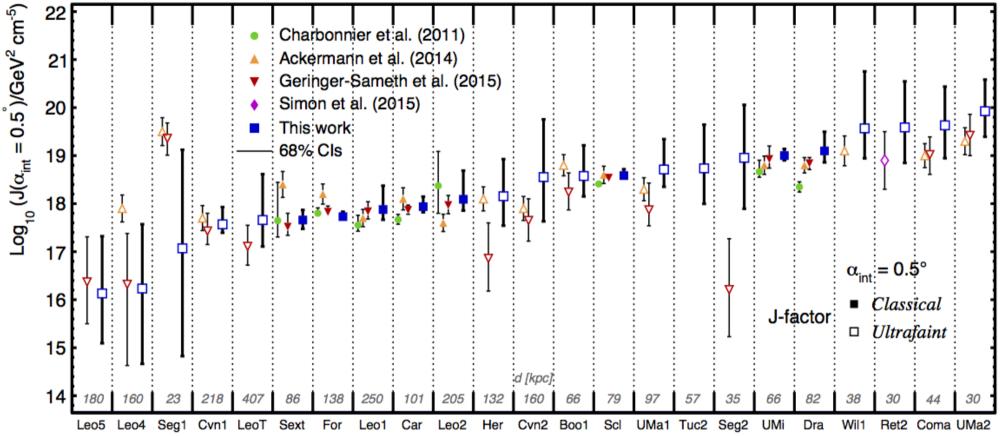
Cannot do much about it as dSphs actual shapes and orientations are unknown...

So, keep working assuming spherical symmetry but consider adding extra systematic error in the error budget

Mock dSph datasets: biases and uncertainties

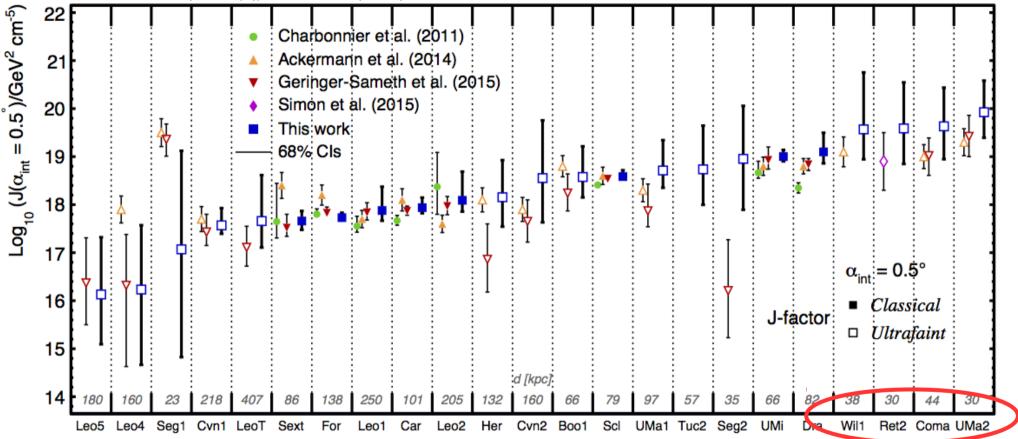
	Annihilation			Decay		
	Ultra-faint	Classical	Ideal	Ultra-faint	Classical	Ideal
Bias from:	$J^{ m median}/J^{ m true}(lpha_c^J)$			$D^{ m median}/D^{ m true}(lpha^D_c)$		
Einasto vs Zhao	none	none	none	none	none	none
Wrong β_{ani}	none	$\lesssim 3$	$\lesssim 10$	none	$\lesssim 2.5$	$\lesssim 2$
Wrong $I^{ ext{light}}$	$\lesssim 2$	$\lesssim 3$	$\lesssim 3$	$\lesssim 1.5$	$\lesssim 4$	$\lesssim 4$
Triaxiality	$\lesssim 2.5$	$\lesssim 2.5$	$\lesssim 2.5$	$\lesssim 2$	$\lesssim 2$	$\lesssim 2$
Uncertainties [†] :	$J^{\pm95\%{ m CI}}/J^{ m median}(lpha_c^J)$		(α_c^J)	$D^{\pm 95\%{ m CI}}/D^{ m median}(lpha_c^D)$		
Maximum knowledge	$\lesssim 20$	$\lesssim 2$	$\lesssim 1.5$	$\lesssim 8$	$\lesssim 1.5$	$\lesssim 1.25$
$ ho_{\mathrm{DM}}^{\mathrm{Einasto}}$ + $eta_{\mathrm{ani}}^{\mathrm{Baes}}$ modelling	$\lesssim 20$	$\lesssim 4$	$\lesssim 2.5$	$\lesssim 10$	$\lesssim 2$	$\lesssim 2$

J-factors: Application to real dSph data ($\alpha_{int} = 0.5^{\circ}$)



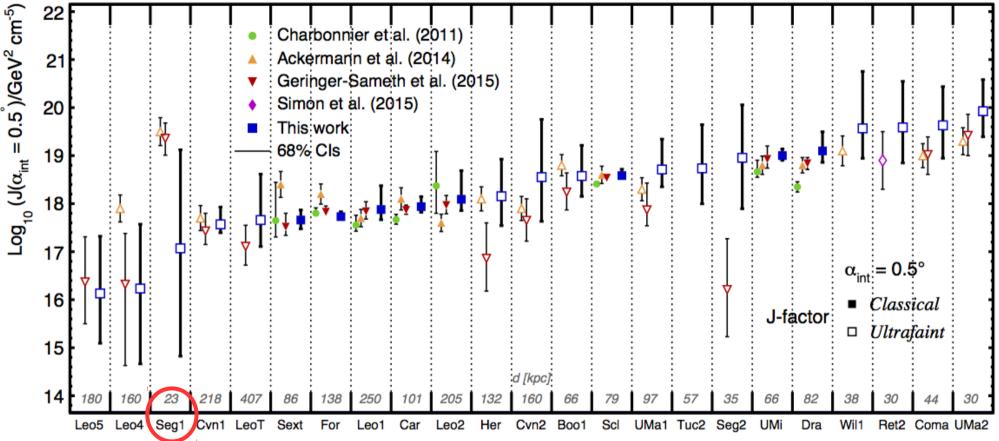
• Larger error bars to ultrafaint dSph [except for the *Fermi-LAT* 2014 analysis, which assumed universal dSph properties from numerical simulations (Martinez 2015)].

J-factors: Application to real dSph data ($\alpha_{int} = 0.5^{\circ}$)



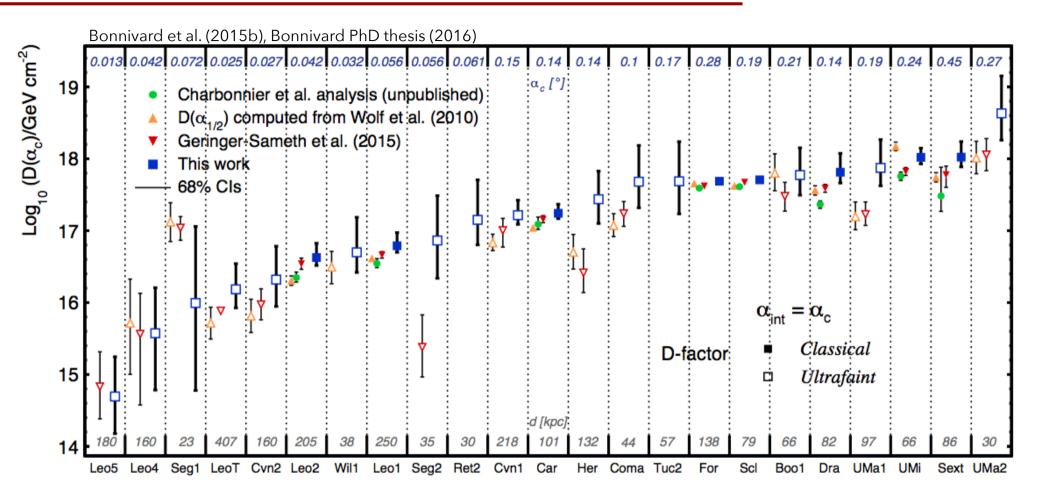
- Larger error bars for ultrafaint dSph [except for the *Fermi-LAT* 2014 analysis, which assumed universal dSph properties from numerical simulations (Martinez 2015)].
- Distance is the main driver → simple scaling to estimate J when no spectroscopic data (e.g. Drlica-Wagner et al. (2015), Albert et al. (2017))

J-factors: Application to real dSph data ($\alpha_{int} = 0.5^{\circ}$)



- Larger error bars for ultrafaint dSph [except for the *Fermi-LAT* 2014 analysis, which assumed universal dSph properties from numerical simulations (Martinez 2015)].
- Distance is the main driver → simple scaling to estimate J when no spectroscopic data (e.g. Drlica-Wagner et al. (2015), Albert et al. (2017))
- Segue I is found discrepant with other estimates and very uncertain: possibly suggests stellar contamination [cf. Part 2]

D-factors: Application to real dSph data ($\alpha_{int} = \alpha_{c}$)



- Reshuffling of the best targets when considering D-factors; UMa2 remains an excellent option
- For decay, emission is less peaked and outer regions play an important role → halo truncation radius becomes an important parameter; point-like assumption fails.

1. J and D factors from spherical Jeans analysis

- Principle
- Limitations and choosing an optimal setup
- Result overview

2. Other considerations

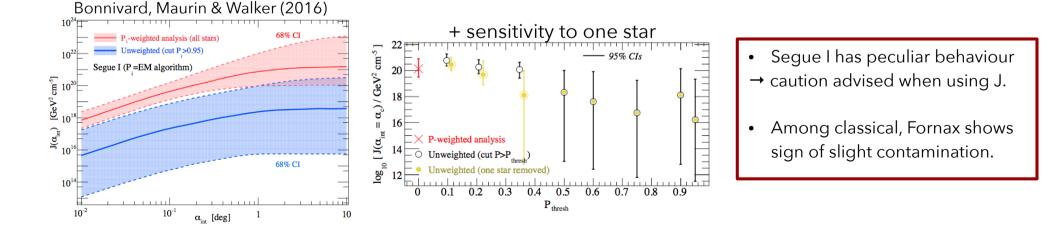
- Sample contamination
- Accounting for triaxiality → See Mauro's talk

Identifying and handling contamination

- Hard cuts from some diagnosis (CMD, σ-clipping on v_{l.o.s}, metallicity, location) → member yes/no (see Battaglia, Helmi & Breddels 2013 for a review)
 → use all stars that pass the cut into likelihood
- Membership probability *Pi*: Expectation-maximisation (Walker+ 2009), Bayesian method (Martinez+ 2011)
 → cut to select 'members' : .e.g *P_i* > 0.95 (1)
 - \rightarrow used as weights in the likelihood (2)

Identifying and handling contamination

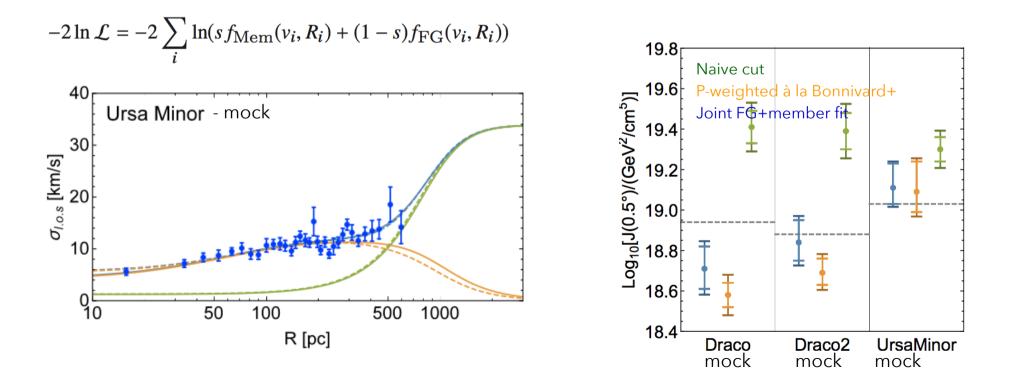
- Hard cuts from some diagnosis (CMD, σ-clipping on v_{l.o.s}, metallicity, location) → member yes/no (see Battaglia, Helmi & Breddels 2013 for a review)
 → use all stars that pass the cut into likelihood
- Membership probability *Pi*: Expectation-maximisation (Walker+ 2009), Bayesian method (Martinez+ 2011)
 → cut to select 'members' : .e.g *P_i* > 0.95 (1)
 - \rightarrow used as weights in the likelihood (2)
- Simulations of contaminated ultrafaint samples (Bonnivard, Maurin, Walker 2016) show that:
 - \rightarrow they have a 'large' values of N(0.05< Pi< 0.95) / N(Pi>10⁻³) [=0.19 for Segue 1]
 - \rightarrow J-factors differ when performing Jeans using (1) or (2)



Identifying and handling contamination

- Hard cuts from some diagnosis (CMD, σ-clipping on v_{l.o.s}, metallicity, location) → member yes/no (see Battaglia, Helmi & Breddels 2013 for a review)
 → use all stars that pass the cut into likelihood
- Then, joint foreground + member likelihood e.g.
 - → Bonnivard, Maurin, Walker (2016, Appendix A, similar result to P-weighted likelihood)

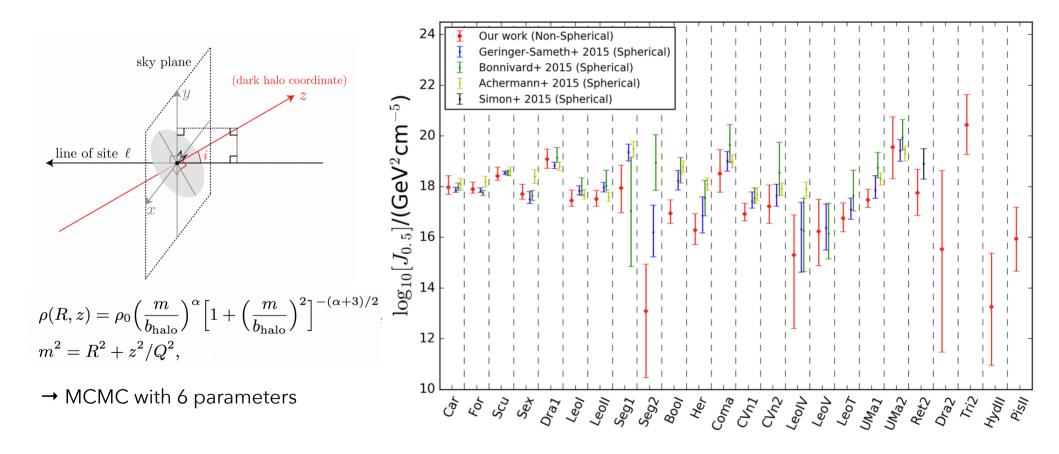
→ Ichikawa et al. (2017) : simulations + naive cut + standard Jeans (Zhao DM, Plummer light, constant anisotropy) + foreground prior from control region



Accounting for triaxiality

- Simulations \rightarrow DM haloes are triaxial
- Observations → "light" of dSph does not necessarily look spherical
- Using spherical Jeans analysis may yield factor ~2 bias on J-factors

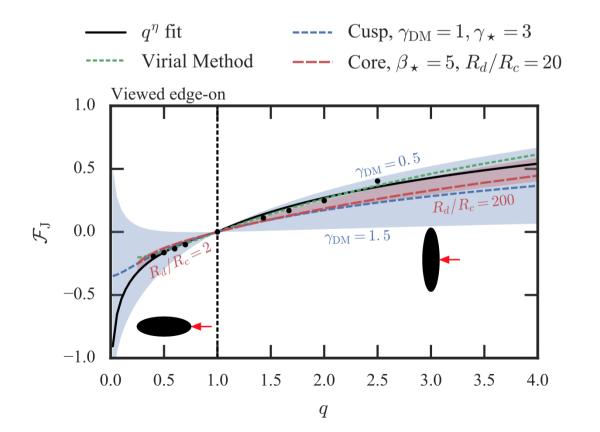
Hayashi & Chiba (2012), Hayashi et al. (2016) → axisymmetric Jeans analysis (oblate case)



Accounting for triaxiality

- Simulations \rightarrow DM haloes are triaxial
- Observations \rightarrow "light" of dSph does not necessarily look spherical
- Using spherical Jeans analysis may yield factor ~2 bias on J-factors

Sanders et al. (2016) \rightarrow correction to J and D $\mathcal{F}_{J} = \log_{10}(J/J_{sph}),$ $\mathcal{F}_{D} = \log_{10}(D/D_{sph})$ from M2M sims + analytical considerations



- Various DM/light profiles
- Prolate haloes \rightarrow corr ~ 1.6
- Oblate haloes \rightarrow corr ~ 0.4 0.75
- Triaxial haloes → factor ~2 extra uncertainty

Summary

1. Data-driven estimated J/D factors with spherical Jeans analysis + Bayesian inference

- Mock data allow optimised setup for the Jeans analysis (parametrisations + priors)
- Application to 23 dSph galaxies (overall agreement between authors)
 - \rightarrow For annihilation, Ursa Minor and Draco are the best 'safe' targets
 - → Coma, UMa2, Ret 2 are more uncertain but possibly more promising
 - → Segue 1 is problematic possible stellar contamination
- If triaxial dSph galaxies → factor ~2 bias using spherical Jeans

2. To go further

• Mass modeling:

→ break mass-anisotropy degeneracy: Lokas & Mamon (2003), Walker & Penarubbia (2011), Richardson & Fairbairn (2012, 2014), Read & Steger (2017), Kovalczyk+(2017)

- → account for ellipticity/triaxiality: Hayashi et al. (2016), Sanders et al. (2016)
- Likelihood:
 - → Include foreground component to mitigate contamination effects
 - → Profile likelihood / frequentist approach (Chiappo+ 2017)

