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“gamma-ray flux = particle physics x astrophysics”
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Bayesian exploration of possible dark matter density profiles

Velocity anisotropy, light profile, truncation, priors

Dark matter annihilation and decay in dSphs 11
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Figure 6. Top: J-factors and 68% CIs for ↵int = ↵

J
c : the ’[]’ symbols combine in quadrature the 68% statistical uncertainties and possible systematics (±0.4)

from triaxiality of the dSph galaxies (Bonnivard et al. 2015). Bottom: comparison of the J-factors to other works, with ↵

int

= 0.5

�. See also Section 5.4 for a
critical discussion of the targets most favoured by our analysis.

5.3 D-factor: ranking of the dSphs and comparison to other
works

Dark matter decay is less often considered than annihilation, how-
ever recent observations of an unidentified X-ray line at 3.55 keV in
galaxy clusters has generated increasing interest in this possibility
(e.g., Bulbul et al. 2014a; Boyarsky et al. 2014b).

Ranking. The blue squares in figure 7 and the three rightmost
columns of table 2 give an overview of the D-factors computed
here. First, comparing the top panels of figures 6 and 7, we find that
the ordering of the most promising targets changes significantly
whether focusing on DM annihilation or decay, even though Ursa
Major II remains the best candidate for ↵

int

= ↵D
c . Furthermore,

the two panels in figure 7 show that changing the integration angle
for a decaying DM signal also has a strong impact on the ranking

and on the error bars, more strongly than in the case of DM anni-
hilation. In particular, for ↵

int

= 0.1� (bottom panel), most targets
have very similar D-factors and the increased error bars make the
ranking less obvious.

Comparison to other works. The availability of independently-
derived D-factors for dSphs in the literature remains limited, mak-
ing comparison less straightforward than in the case of annihilation.

• Although not published in the Charbonnier et al. (2011) study
which focused on J-factors only, the D-factors for the eight ‘clas-
sical’ dSphs were also obtained from our original analysis setup.
As in the case of annihilation, these values (green dots in figure 7)
are systematically lower than that obtained by the present analysis
and this is connected, as for J , to the choice of the light profile.
• We also compare our results to those of Geringer-Sameth,
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the bb̄ and τþτ− channels with expectation bands derived
from the analysis of 300 randomly selected sets of blank
fields. Sets of blank fields are generated by choosing
random sky positions with jbj > 30° that are centered at
least 0.5° from 3FGL catalog sources. We additionally
require fields within each set to be separated by at least
7°. Our expected limit bands are evaluated with the 3FGL

source catalog based on four years of PASS7 REPROCESSED

data and account for the influence of new sources present in
the six-year PASS8 data set.
Comparing with the results of Ackermann et al. [13], we

find a factor of 3–5 improvement in the limits for all
channels using six years of PASS8 data and the same sample
of 15 dSphs. The larger data set as well as the gains in the

LAT instrument performance enabled by PASS8 both
contribute to the increased sensitivity of the present
analysis. An additional 30%–40% improvement in the
limit can be attributed to the modified functional form
chosen for the J factor likelihood (3). Statistical fluctua-
tions in the PASS8 data set also play a substantial role.
Because the PASS8 six-year and PASS7 REPROCESSED

four-year event samples have a shared fraction of only
20%–40%, the two analyses are nearly statistically inde-
pendent. For masses below 100 GeV, the upper limits of
Ackermann et al. [13] were near the 95% upper bound of
the expected sensitivity band while the limits in the present
analysis are within 1 standard deviation of the median
expectation value.

FIG. 1 (color). Constraints on the DM annihilation cross section at the 95% CL for the bb̄ (left) and τþτ− (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300 randomly
selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected sensitivity while the
bands represent the 68% and 95% quantiles. For each set of random locations, nominal J factors are randomized in accord with their
measurement uncertainties. The solid blue curve shows the limits derived from a previous analysis of four years of PASS7 REPROCESSED

data and the same sample of 15 dSphs [13]. The dashed gray curve in this and subsequent figures corresponds to the thermal relic cross
section from Steigman et al. [5].

FIG. 2 (color). Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and τþτ− (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3σ limit) [57], 112 hours of observations of the
Galactic center with H.E.S.S. [58], and 157.9 hours of observations of Segue 1 with MAGIC [59]. Pure annihilation channel limits for
the Galactic center H.E.S.S. observations are taken from Abazajian and Harding [60] and assume an Einasto Milky Way density profile
with ρ⊙ ¼ 0.389 GeV cm−3. Closed contours and the marker with error bars show the best-fit cross section and mass from several
interpretations of the Galactic center excess [16–19].
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FIG. 11: Annihilation cross section limits from the joint analysis of 20 dwarf galaxies. The shaded band is the systematic 1�

uncertainty in the limit derived from many realizations of halo J-profiles of the dwarfs consistent with kinematic data. The
solid line depicts the median of this distribution of limits over the halo realizations. The thin dashed line corresponds to the
benchmark value of the required relic abundance cross section (3 ⇥ 10�26cm3

/s), while the solid horizontal line corresponds
to the detailed calculation of this quantity derived by Steigman et al. [18]. The observed limits are below this latter curve
for masses less than [0, 26, 54] GeV (for annihilation into bb̄), [18, 29, 62] GeV (⌧+

⌧

�), [21, 35, 64] GeV (uū, dd̄, ss̄, cc̄, and gg),
[87, 114, 146] GeV (��), and [5, 6, 10] GeV (e+

e

�), where the quantities in brackets are for the �1�, median, and +1� levels of
the systematic uncertainty band. A machine-readable file tabulating these limits is available as Supplemental Material.

observed test statistic. The signal significance is shown
assuming the two di↵erent background PDFs. An as-
sumption of a Poisson background does not describe the
actual background in many cases and can lead to a mis-
takenly large detection significance.

The di�culty in fitting a multi-component Poisson
background model is illustrated in Fig. 4 of [92]. There,
“blank sky locations” are used to test whether the like-
lihood ratio test statistic is accurately described by an
“asymptotic” �2 distribution. This sampling of blank sky
locations is analogous to the empirical background sam-
pling developed in [48] and employed in the present work.
Ackermann et al. [92] found that the blank sky PDF of
the test statistic deviated from the �2 distribution at

large values of the test statistic. One of the reasons for
the deviation could be that the background model is not
flexible enough to describe the true background. Carl-
son et al. [56] present evidence that unresolved blazars
and radio sources are at least partly responsible for the
insu�ciency of the background treatment used in [92].

The blank sky location sampling of Ackermann et al.
[92, Fig. 4] reduces the tail probability of a TS = 8.7
observation to a local p-value of 0.13. This corresponds
to a significance of 2.2� which can be directly compared
to the values shown in our Figs. 8, 9, and 10. Thus,
when calibrating the detection significance using an em-
pirical sampling of the background, the results of Acker-
mann et al. [92] are closer in line with what we find. We

Geringer-Sameth, Koushiappas, Walker 1410.2242 (PRD) Fermi collab 1503.02641 (PRL)

Pass 7 Pass 8

6 years of Fermi data

J’s from Geringer-Sameth+1408.0002 (ApJ) J’s from Martinez 1309.2641 (MNRAS)
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from the analysis of 300 randomly selected sets of blank
fields. Sets of blank fields are generated by choosing
random sky positions with jbj > 30° that are centered at
least 0.5° from 3FGL catalog sources. We additionally
require fields within each set to be separated by at least
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data and account for the influence of new sources present in
the six-year PASS8 data set.
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find a factor of 3–5 improvement in the limits for all
channels using six years of PASS8 data and the same sample
of 15 dSphs. The larger data set as well as the gains in the

LAT instrument performance enabled by PASS8 both
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analysis. An additional 30%–40% improvement in the
limit can be attributed to the modified functional form
chosen for the J factor likelihood (3). Statistical fluctua-
tions in the PASS8 data set also play a substantial role.
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20%–40%, the two analyses are nearly statistically inde-
pendent. For masses below 100 GeV, the upper limits of
Ackermann et al. [13] were near the 95% upper bound of
the expected sensitivity band while the limits in the present
analysis are within 1 standard deviation of the median
expectation value.
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section from Steigman et al. [5].
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work with previously published constraints from LAT analysis of the Milky Way halo (3σ limit) [57], 112 hours of observations of the
Galactic center with H.E.S.S. [58], and 157.9 hours of observations of Segue 1 with MAGIC [59]. Pure annihilation channel limits for
the Galactic center H.E.S.S. observations are taken from Abazajian and Harding [60] and assume an Einasto Milky Way density profile
with ρ⊙ ¼ 0.389 GeV cm−3. Closed contours and the marker with error bars show the best-fit cross section and mass from several
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solid line depicts the median of this distribution of limits over the halo realizations. The thin dashed line corresponds to the
benchmark value of the required relic abundance cross section (3 ⇥ 10�26cm3
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observed test statistic. The signal significance is shown
assuming the two di↵erent background PDFs. An as-
sumption of a Poisson background does not describe the
actual background in many cases and can lead to a mis-
takenly large detection significance.

The di�culty in fitting a multi-component Poisson
background model is illustrated in Fig. 4 of [92]. There,
“blank sky locations” are used to test whether the like-
lihood ratio test statistic is accurately described by an
“asymptotic” �2 distribution. This sampling of blank sky
locations is analogous to the empirical background sam-
pling developed in [48] and employed in the present work.
Ackermann et al. [92] found that the blank sky PDF of
the test statistic deviated from the �2 distribution at

large values of the test statistic. One of the reasons for
the deviation could be that the background model is not
flexible enough to describe the true background. Carl-
son et al. [56] present evidence that unresolved blazars
and radio sources are at least partly responsible for the
insu�ciency of the background treatment used in [92].

The blank sky location sampling of Ackermann et al.
[92, Fig. 4] reduces the tail probability of a TS = 8.7
observation to a local p-value of 0.13. This corresponds
to a significance of 2.2� which can be directly compared
to the values shown in our Figs. 8, 9, and 10. Thus,
when calibrating the detection significance using an em-
pirical sampling of the background, the results of Acker-
mann et al. [92] are closer in line with what we find. We
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6 years of Fermi data

“Pass 7 vs Pass 8”

profiles for each energy bin used to derive our γ-ray flux upper
limits will be made publicly available. We plan to augment this
resource as more new systems are discovered.

After the completion of this analysis, we became aware of an
independent study of LAT Pass 8 data coincident with DES
Y2 dSph candidates (Li et al. 2016). The γ-ray results
associated with individual targets are consistent between the
two works; however, the samples selected for combined
analysis are different.

We would like to thank Tim Linden and Dan Hooper for
helpful and engaging conversations. We also thank the
anonymous referee for thoughtful and constructive feedback
on this manuscript.
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Figure 9. Upper limits (95% confidence level) on the DM annihilation cross section derived from a combined analysis of the nominal target sample for the ¯bb (left)
and t t+ - (right) channels. Bands for the expected sensitivity are calculated by repeating the same analysis on 300 randomly selected sets of high-Galactic-latitude
blank fields in the LAT data. The dashed line shows the median expected sensitivity while the bands represent the 68% and 95% quantiles. Spectroscopically
measured J-factors are used when available; otherwise, J-factors are predicted photometrically with an uncertainty of 0.6 dex (solid red line). The solid red line shows
the observed limit from the combined analysis of 15 dSphs from Ackermann et al. (2015b). The closed contours and marker show the best-fit regions (at s2
confidence) in cross-section and mass from several DM interpretations of the GCE: green contour(Gordon & Macias 2013), red contour(Daylan et al. 2016), orange
data point(Abazajian et al. 2014), purple contour(Calore et al. 2015). The dashed gray curve corresponds to the thermal relic cross section from Steigman
et al. (2012).

Figure 10. Upper limits on the DM annihilation cross section ( ¯bb channel) derived from the sub-sample of dSphs with measured J-factors (left) and the complete
nominal sample (right). Green curves show the limits obtained when these samples are analyzed using only predicted J-factors (even when measured J-factors are
available) and fixed J-factor uncertainties of 0.4, 0.6, and 0.8 dex. The solid black line shows the observed limit from Ackermann et al. (2015b). The closed contours
and marker are the same as depicted in Figures 8 and 9.
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At higher DM masses use atmospheric Cherenkov telescopes

see also H.E.S.S. collab 1410.2589 (PRD),

MAGIC collab 1312.1535 (JCAP), Ahnen+ 1601.06590 (JCAP)
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Reticulum II

Gamma-rays 1-300 GeV Gamma-ray background model at 8 GeV
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Dark matter?

1. Gamma-ray data is inconsistent with background 

2. Consistent with dark matter annihilation 

3. Inconsistent with any other possible source

see also Drlica-Wagner+ (Fermi,DES) 1503.02632 (ApJL) — (Pass 8 analysis) 
Hooper & Linden 1503.06209 (Pass 7)



Bonnivard et. al. arXiv:1504.03309 (ApJL)
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Figure 3. Median (solid), 68 % (dashed), and 95% (dash-dot) CIs
of the J- (top) and D-factors (bottom) of Ret II, as a function of
integration angle, reconstructed from our Jeans/MCMC analysis.

0.1 < Pi < 0.95, we obtain very similar results. These
two tests confirm that the reconstruction of the astro-
physical factors of Ret II is not significantly a↵ected by
outliers. This is not always the case, notably for Segue I
(Bonnivard, Maurin & Walker, in prep.).
We note that Simon et al. (2015) independently per-

formed an analysis of the M2FS Ret II spectroscopic data
and found a slightly smaller J-factor. This can be traced
to their choice of priors and light profile (L. Strigari,
private communication). A detailed comparison will be
presented in Geringer-Sameth at al. (in prep.).

4. COMPARISON TO OTHER DSPHS

The same Jeans analysis has been applied to twenty-
one other dSphs in Bonnivard et al. (2015b). In Figure 4,
we compare the J-factors (for ↵

int

= 0.5�) of Ret II to the
brightest objects identified in Bonnivard et al. (2015b)11.
Ret II is comparable to Wilman I in terms of its median
J-factor, but slightly below Coma Berenices and Ursa
Major II. Its CIs are typical of an ‘ultrafaint’ dSph, and
significantly larger than the uncertainties of ‘classical’
dSphs.
Interpreting the possible �-ray signal in Ret II in

terms of DM annihilation (Geringer-Sameth et al. 2015b;
Hooper & Linden 2015), one would expect similar emis-
sions from the dSphs with comparable J-factors, such as
UMa II, Coma, and Wil I. However, no excess was re-
ported from these latter objects (Geringer-Sameth et al.
2014; Fermi-LAT Collaboration 2015). This could be
explained by the large statistical and systematic12 un-

11 Segue I may have a highly uncertain J-factor (Bonnivard,
Maurin & Walker, in prep.). We show it only for illustration pur-
poses.

12 The latter comes from a possible triaxiality of the dSph (0.4
and 0.3 dex for annihilation and decay respectively, see Bonnivard
et al. 2015a), and depends on the l.o.s. orientation with respect to
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Figure 4. Comparison of the J-factors at ↵int = 0.5� obtained
for Ret II (red circle) and for the potentially brightest objects
from Bonnivard et al. (2015b) (blue squares), with the same
Jeans/MCMC analysis. Ret II is comparable to Wil I in terms
of J-factors, but slightly below Coma and UMa II. A 0.4 dex sys-
tematic uncertainty was added in quadrature to the 68% CIs to
account for possible triaxiality of the DM halo (Bonnivard et al.
2015a). Also shown are the J-factors obtained for Ret II by varying
di↵erent ingredients of the analysis - see Section 3.

certainties in the J-factors. Moreover, the Jeans analysis
assumes all of these objects to be in dynamical equilib-
rium, but tidal interactions with the Milky Way could
artificially inflate the velocity dispersion and therefore
the astrophysical factors. UMa II, and to a lesser extent
Coma, appear to be experiencing tidal disturbance (Si-
mon & Geha 2007; Fellhauer et al. 2007; Muñoz et al.
2010; Smith et al. 2013), while Wil I may show non-
equilibrium kinematics (Willman et al. 2011). Caution
is therefore always advised when interpreting the astro-
physical factors of these objects. The dynamical status
of Ret II is not yet clear. Its flattened morphology may
signal ongoing tidal disruption. However, the available
kinematic data do not exhibit a significant velocity gra-
dient that might be associated with tidal streaming mo-
tions (Walker et al. 2015).

5. CONCLUSION

We have applied a spherical Jeans analysis to the newly
discovered dSph Ret II, using sixteen likely members
from the kinematic data set of Walker et al. (2015).
We employed the optimized setup of Bonnivard et al.
(2015a,b), which was found to mitigate several biases
of the analysis, and checked that our results are robust
against several of its ingredients. We find that Ret II
presents one of the largest annihilation J-factors among
the Milky Way’s dSphs, possibly making it one of the
best targets to constrain DM particle properties. How-
ever, it is important to obtain follow-up photometric and
spectroscopic data in order to test the assumptions of dy-
namical equilibrium as well as to constrain the fraction of
binary stars in the kinematic sample. Nevertheless, the
proximity of Ret II and its apparently large dark matter
content place it among the most attractive targets for
dark matter particle searches.

This work has been supported by the “Investissements
d’avenir, Labex ENIGMASS”, and by the French ANR,
Project DMAstro-LHC, ANR-12-BS05-0006. MGW
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0.1 < Pi < 0.95, we obtain very similar results. These
two tests confirm that the reconstruction of the astro-
physical factors of Ret II is not significantly a↵ected by
outliers. This is not always the case, notably for Segue I
(Bonnivard, Maurin & Walker, in prep.).
We note that Simon et al. (2015) independently per-

formed an analysis of the M2FS Ret II spectroscopic data
and found a slightly smaller J-factor. This can be traced
to their choice of priors and light profile (L. Strigari,
private communication). A detailed comparison will be
presented in Geringer-Sameth at al. (in prep.).

4. COMPARISON TO OTHER DSPHS

The same Jeans analysis has been applied to twenty-
one other dSphs in Bonnivard et al. (2015b). In Figure 4,
we compare the J-factors (for ↵

int

= 0.5�) of Ret II to the
brightest objects identified in Bonnivard et al. (2015b)11.
Ret II is comparable to Wilman I in terms of its median
J-factor, but slightly below Coma Berenices and Ursa
Major II. Its CIs are typical of an ‘ultrafaint’ dSph, and
significantly larger than the uncertainties of ‘classical’
dSphs.
Interpreting the possible �-ray signal in Ret II in

terms of DM annihilation (Geringer-Sameth et al. 2015b;
Hooper & Linden 2015), one would expect similar emis-
sions from the dSphs with comparable J-factors, such as
UMa II, Coma, and Wil I. However, no excess was re-
ported from these latter objects (Geringer-Sameth et al.
2014; Fermi-LAT Collaboration 2015). This could be
explained by the large statistical and systematic12 un-

11 Segue I may have a highly uncertain J-factor (Bonnivard,
Maurin & Walker, in prep.). We show it only for illustration pur-
poses.

12 The latter comes from a possible triaxiality of the dSph (0.4
and 0.3 dex for annihilation and decay respectively, see Bonnivard
et al. 2015a), and depends on the l.o.s. orientation with respect to
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account for possible triaxiality of the DM halo (Bonnivard et al.
2015a). Also shown are the J-factors obtained for Ret II by varying
di↵erent ingredients of the analysis - see Section 3.

certainties in the J-factors. Moreover, the Jeans analysis
assumes all of these objects to be in dynamical equilib-
rium, but tidal interactions with the Milky Way could
artificially inflate the velocity dispersion and therefore
the astrophysical factors. UMa II, and to a lesser extent
Coma, appear to be experiencing tidal disturbance (Si-
mon & Geha 2007; Fellhauer et al. 2007; Muñoz et al.
2010; Smith et al. 2013), while Wil I may show non-
equilibrium kinematics (Willman et al. 2011). Caution
is therefore always advised when interpreting the astro-
physical factors of these objects. The dynamical status
of Ret II is not yet clear. Its flattened morphology may
signal ongoing tidal disruption. However, the available
kinematic data do not exhibit a significant velocity gra-
dient that might be associated with tidal streaming mo-
tions (Walker et al. 2015).

5. CONCLUSION

We have applied a spherical Jeans analysis to the newly
discovered dSph Ret II, using sixteen likely members
from the kinematic data set of Walker et al. (2015).
We employed the optimized setup of Bonnivard et al.
(2015a,b), which was found to mitigate several biases
of the analysis, and checked that our results are robust
against several of its ingredients. We find that Ret II
presents one of the largest annihilation J-factors among
the Milky Way’s dSphs, possibly making it one of the
best targets to constrain DM particle properties. How-
ever, it is important to obtain follow-up photometric and
spectroscopic data in order to test the assumptions of dy-
namical equilibrium as well as to constrain the fraction of
binary stars in the kinematic sample. Nevertheless, the
proximity of Ret II and its apparently large dark matter
content place it among the most attractive targets for
dark matter particle searches.

This work has been supported by the “Investissements
d’avenir, Labex ENIGMASS”, and by the French ANR,
Project DMAstro-LHC, ANR-12-BS05-0006. MGW
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Figure 8. Comparison of the J-factors of Seg I, obtained with the several
tests of this paper, to the values for the closest dSphs galaxies from Bon-
nivard et al. (2015a,b). The J-factor can vary from ⇠ 10

16 to ⇠ 10

21

GeV2 cm�5 from one analysis to another. On the other hand, Ret II’s J-
factor was found to be robust against the different tests.

for other dSph galaxies10. Depending on choice of procedure, for
Seg I we can recover estimates of J-factors spanning ⇠ 3 orders of
magnitude, covering the range of previously published values. We
conclude that estimates of J-factors for Seg I should be regarded
with extreme caution when planning and interpreting indirect de-
tection experiments.
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Other large J contenders

Tucana III

Triangulum II

30 kpcReticulum II

Segue 1 23 kpc

30 kpc

Ursa Major II 32 kpc

Willman 1 38 kpc

25 kpc

Cetus II 30 kpc

Simon et. al. 1610.05301 (ApJ)� < 1.5 km/s

Kirby et. al. 1510.03856 (ApJ)� = 5.1 km/s
� < 3.4 km/s Kirby et. al. 1703.02978 (ApJ)

star cluster or tidally stripped dwarf

no follow-up yet (too small, extremely low luminosity)

� = 3.6 km/s Walker et. al. 1504.03060 (ApJ)

MW contamination -> giant error bar on J

irregular kinematics

tidal disturbance? e.g. Munoz et. al. 0910.3946 (AJ)

Coma Berenices 44 kpc

revised to

Draco and Ursa Minor classical dwarfs — good handle on J76 kpc
Effect of contamination on J not studied except for Ret2 and Seg1

Koposov et. al. 1504.07916 (ApJ)� = 3.2 km/s



Dark matter?

1. Gamma-ray data is inconsistent with background 

2. Consistent with dark matter annihilation 

3. Inconsistent with any other possible source

see also Drlica-Wagner+ (Fermi,DES) 1503.02632 (ApJL) — (Pass 8 analysis) 
Hooper & Linden 1503.06209 (Pass 7)

J values must work out

(next talks by Sergio Colafreancesco and Marco Regis)



Diffuse background model

p = 0.01%

Empirical background

p = 1%

Why?



- Fit spectrum with a flexible function 
- Compare with known gamma-ray emitters
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Sources within RetII?

Pulsars have curved spectra

(talk yesterday by Eline Tolstoy)

Globular clusters 
as analogs

  AGS et. al. in prep
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FIG. 7. Each GC is scaled by distance�2 and luminosity. The top fig is the integrated flux within 0.5� and the bottom panel
is the peak intensity (i.e. at the center of the PSF).I don’t think this figure is needed



Dark matter?

1. Gamma-ray data is inconsistent with background 

2. Consistent with dark matter annihilation 

3. Inconsistent with any other possible source

see also Drlica-Wagner+ (Fermi,DES) 1503.02632 (ApJL) — (Pass 8 analysis) 
Hooper & Linden 1503.06209 (Pass 7)

J values must work out

Understand all objects along line of sight


