Gamma-ray signals from WIMP dark matter in Milky Way dwarf galaxies

Alex Geringer-Sameth Imperial College London

Barolo Astroparticle Meeting Sept 4, 2017

Dark matter

Particle interactions with Standard Model

GeV scale

Gamma-rays — Fermi satellite

Milky Way dwarf galaxies

Nearby

Lots of dark matter

Not much else: no astrophysical background* (compare with galactic center)

Ullio & Valli 1603.07721 (JCAP), and others

(BAM2017: Celine Combet and Mauro Valli)

Joint analysis of multiple dwarfs ("stacking") ${\rm flux} \propto \langle \sigma v \rangle J$

Cross section upper limits

6 years of Fermi data

Geringer-Sameth, Koushiappas, Walker 1410.2242 (PRD) J's from Geringer-Sameth+1408.0002 (ApJ) Fermi collab 1503.02641 (PRL)

J's from Martinez 1309.2641 (MNRAS)

Joint analysis of multiple dwarfs ("stacking") ${\rm flux} \propto \langle \sigma v \rangle J$

Cross section upper limits

6 years of Fermi data

Fermi collab 1503.02641 (PRL)

Geringer-Sameth, Koushiappas, Walker 1410.2242 (PRD)

Fermi+DES 1611.03184 (ApJ)

At higher DM masses use atmospheric Cherenkov telescopes

(talk tomorrow by Michele Doro)

VERITAS collaboration 1703.04937 (PRD)

see also H.E.S.S. collab 1410.2589 (PRD), MAGIC collab 1312.1535 (JCAP), Ahnen+ 1601.06590 (JCAP)

Reticulum II

very close (30 kpc)

(Koposov+ 1503.02079 (ApJ), Bechtol+ 1503.02584 (ApJ))

Gamma-rays 1-300 GeV

Gamma-ray background model at 8 GeV

Far away from known sources

Uniform background

AGS et. al. arXiv:1503.02320 (PRL)

AGS et. al. arXiv:1503.02320 (PRL)

Results

Local *p*-value < 3×10^{-5} (4 σ) in every channel

Robust to different background spectra

Searching over dark matter masses = multiple hypothesis tests $p_{global} < 9.8 \times 10^{-5}$

Empirical background sampling Results

Local *p*-value of 8/3306 = 0.0024 (2.8 σ) Global *p*-value of 32/3306 = 0.0097 (2.3 σ)

Fundamental limitation: strong signal = very few samples in tail

Dark matter?

1. Gamma-ray data is inconsistent with background

see also Drlica-Wagner+ (Fermi,DES) 1503.02632 (ApJL) — (Pass 8 analysis) Hooper & Linden 1503.06209 (Pass 7)

2. Consistent with dark matter annihilation

3. Inconsistent with any other possible source

Measured J values

Use line of sight velocities + Jeans equation to infer dark matter density profile Bonnivard et. al. arXiv:1504.03309 (ApJL)

see also Simon et. al. arXiv:1504.02889 (ApJ)

Measured J values

see also Simon et. al. arXiv:1504.02889 (ApJ)

Other large *J* contenders

Reticulum II	30 kpc	$\sigma=3.6{ m km/s}$ Walker et. al. 1504.03060 (ApJ) $\sigma=3.2{ m km/s}$ Koposov et. al. 1504.07916 (ApJ)
Tucana III	25 kpc	$\sigma < 1.5{ m km/s}$ Simon et. al. 1610.05301 (ApJ)
Triangulum II	30 kpc	$\sigma = 5.1{ m km/s}~$ Kirby et. al. 1510.03856 (ApJ) revised to $\sigma < 3.4{ m km/s}~$ Kirby et. al. 1703.02978 (ApJ) star cluster or tidally stripped dwarf
Cetus II	30 kpc	no follow-up yet (too small, extremely low luminosity)
Segue 1	23 kpc	MW contamination -> giant error bar on J
Ursa Major II	32 kpc	tidal disturbance? e.g. Munoz et. al. 0910.3946 (AJ)
Coma Berenices	44 kpc	
Willman 1	38 kpc	irregular kinematics
Draco and Ursa Mi	nor 76 kp	C classical dwarfs — good handle on J
Effect of contamination on J not studied except for Ret2 and Seg1		

Dark matter?

1. Gamma-ray data is inconsistent with background

see also Drlica-Wagner+ (Fermi,DES) 1503.02632 (ApJL) — (Pass 8 analysis) Hooper & Linden 1503.06209 (Pass 7)

2. Consistent with dark matter annihilation

J values *must* work out

3. Inconsistent with any other possible source

(next talks by Sergio Colafreancesco and Marco Regis)

Diffuse background model

p = 0.01%

Empirical background

p = 1%

Why?

- Fit spectrum with a flexible function
- Compare with known gamma-ray emitters (2523 Fermi catalog sources)

 $\frac{dF(E)}{dE} = F_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \log(E/E_0)} \quad \alpha = \text{slope at } E_0$ $\beta = \text{curvature}$

Pulsars have curved spectra

Globular clusters as analogs

AGS et. al. in prep

Dark matter?

1. Gamma-ray data is inconsistent with background

see also Drlica-Wagner+ (Fermi,DES) 1503.02632 (ApJL) — (Pass 8 analysis) Hooper & Linden 1503.06209 (Pass 7)

2. Consistent with dark matter annihilation

J values *must* work out

3. Inconsistent with any other possible source

Understand all objects along line of sight