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Introduction: Spin of the Proton
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A Simple picture of proton composed of three valence
quarks superseded by complex interaction of quarks,
antiquarks, and gluons
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and orbital angular momenta of these components
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Motivation: ConstrainingG

Deep inelastic scattering measurements have found that the spin «

S =1:1A2+AG+L
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RHIC data have been added to the DSSV and
NNPDF global analyses. Including the STAR 2009 2p | [ =*= NEW FIT
inclusive jet results (PRL 115.092002), these gloga% _
analyses show, for the first time, a naero gluon =—§

polarization in our region of sensitivity
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The low x behavior and shapejofi) are still poorly
constrained. Recent data will extend our reach in x using
forward pion and jet results, and also using higher collisic
energies. 3



Exploring Gluon Polarization at RHIC
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. At the parton level, helicity correlations are ME_
very large in leadingrder QCD F
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For most RHIC kinematics, gg and qg ol . n TN L .

dominate, making Afor jets sensitive to p, [GeVic]
gluon polarization. 4



Relativistic Heavy lon Collider and
TAR Detector
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A The Relativistic Heavy lon Collider(RHIC) is
located at Brookhaven National Laboratory on
Long Island

A Has the capability to accelerate many particle

, species to a wide range of energies

LINAC __ e b o A World's first and only accelerator capable of

| ‘ colliding polarized protons
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A The Solenoidal Tracker at RHIC (STAR) is a la
solid angle detector with charged particle B
tracking and electromagnetic calorimetry

A Tracking is accomplished with a Time Projectio
/| KF YOSNI 60¢t/ 0 20SNI p'

A Electromagnetic calorimetry provided by Barre
EMC & Endcap EMC and extends fream ¢ '
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Exploring Gluon Polarization at RHIC
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Pushing to Lowexn Dijetsat Forward
Rapidity

. Correlation measurements such as dijets capture

1 ( e”3 e’”) more information from the hard scatterirand
X = T Prs * Pry provide a more direct link to the initiglarton-
level kinematics than inclusive measurements
X, = i (pT3e' s pT4e' N ) . Leading order expressions show how different jet
\/_ configurations are sensitive to different kinematic
values
% %3S

. Dijets may place better constraints on the
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Mid-Rapiditydijet A, ,

STAR Barrel Endcap Phys. Rev. D 95, 071103 (2017
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Pushing to Lowexn Dijetsat Forward

Rapidity

X = %(mge”?' + pre)

M = /XX,S

cosg*| = tanil’.h3 7

=T(DT+ p 7))

. Correlation measurements such as dijets capture

more information from the hard scatteringnd
provide a more direct link to the initial kinematics
than inclusive probes

. Leading order expressions show how different jet

configurations are sensitive to different kinematic
values

. Dijets may place better constraints on the
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. More forward jets are indicative of more

asymmetric collisions which will contain lower
partons



Forward Rapiditdijet Topology

STAR Barrel Endcap PhysRevD.98.032011

R sz | A Adding the Endcap opens up
" several newdijet topologies

@

A Forward jets probe lower

- e : values of gluon momentum
ost- oo -esoscncis| fraction while selecting more
- asymmetric collisions
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Normalized Yield

A The large imbalance in
momentum fractions,
coupled with the unpolarized
PDF's, suggests that is
dominated by gluons, while
w are most often valence
guarks

__________________________________________
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DataSimulation Comparison

PhysRevD.98.032011
A Simulation events created using PYTHI/
run through a STAR detector response
model based on GEANT 3, and then
embedded into Zerd3ias data

A In general, we see good agreement between
2009 data and simulation for single jet
kKinematic quantities
Neutral energy fractions



