Probing the Spin Structure of the Nucleon:

Recent Results and Upcoming Measurements of SSFs and their Moments at JLab

SPIN 2018

Ferarra, Italy

SSF Measurements at JLab (6 GeV)

- g_1 measured in all Halls $\rightarrow NH_3$, ND_3 in all Halls $\rightarrow {}^{3}$ He in Hall A
- g_2 in A and C
- Duality in *g1*
- A1 on both neutron and proton
- Transverse structures A_2 and g_{τ}
- Moments and twist 3

 $\rightarrow d_2$

- Sum rules GDH, B-C, Bjorken
- *n* SSFs from ³He and *d-p*

Inclusive Program at 6 GeV						
Experiment	Hall	Target	Measured quantity	Kinematics $Q^2 \text{ GeV}^2$		
94-010	Α	³He	A∥, A⊥	Resonances 0.1 - 0.9		
CLAS eg1a-b	В	p, d	All	DIS , Resonances 0.2 - 3.5		
97–103	Α	³He	A⊥	DIS 0.6 - 1.4		
97–110	Α	³He	A∥, A⊥	Elastic, Resonances 0.02 - 0.5		
99–117	Α	³He	A∥, A⊥	DIS 2.7, 3.5, 4.8		
01-006 (RSS)	С	p, d	A∥, A⊥	Resonances 1.3		
01-012	Α	³He	A∥, A⊥	Resonances 1 - 4		
CLAS eg4	В	p	All	Elastic, Resonances 0.01 - 0.5		
07-003 (SANE)	С	р	A∥, A⊥	DIS , Resonances 1.6 - 6		
06-014	Α	³Не	A∥, A⊥	DIS <3>		
08-027 (g2p)	A	р	A∥, A⊥	Resonances 0.03 - 0.3		

SSF Measurements at JLab (6 GeV)

- g_1 measured in all Halls $\rightarrow NH_3$, ND_3 in all Halls $\rightarrow {}^{3}$ He in Hall A
- g_2 in A and C
- Duality in *g1*
- A1 on both neutron and proton
- Transverse structures A_2 and g_{τ}
- Moments and twist 3

 $\rightarrow d_2$

- Sum rules GDH, B-C, Bjorken
- *n* SSFs from ³He and *d-p*

Inclusive Program at 6 GeV						
Experiment	Hall	Target	Measured quantity	Kinematics Q ² GeV ²		
94-010	Α	³He	A∥, A⊥	Resonances 0.1 - 0.9		
CLAS eg1a-b	В	p, d	All	DIS, Resonances 0.2 - 3.5		
97–103	Α	³He	A⊥	DIS 0.6 - 1.4		
97–110	Α	³He	A∥, A⊥	Elastic, Resonances 0.02 - 0.5		
99–117	Α	³He	A∥, A⊥	DIS 2.7, 3.5, 4.8		
01-006 (RSS)	С	p, d	A∥, A⊥	Resonances 1.3		
01-012	Α	³He	A∥, A⊥	Resonances 1 - 4		
CLAS eg4	В	р	All	Elastic, Resonances 0.01 - 0.5		
07-003 (SANE)	С	р	A∥, A⊥	DIS, Resonances 1.6 - 6		
06-014	A	³He	A∥, A⊥	DIS <3>		
08-027 (g2p)	А	р	A∥, A⊥	Resonances 0.03 - 0.3		

Polarized DIS cross sections

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \uparrow -\uparrow \uparrow) = \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[(E+E'\cos\theta)g_{1}(x,Q^{2}) - \frac{Q^{2}}{\nu}g_{2}(x,Q^{2})\right] = \Delta\sigma_{\parallel}$$

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{E'^{2}}{\nu^{2}E}\left[\nu g_{1}(x,Q^{2}) + 2Eg_{2}(x,Q^{2})\right] = \Delta\sigma_{\perp}$$

$$Q^{2} = 4 \text{-momentum transfer squared of the virtual photon.}$$

$$\nu = \text{energy transfer.}$$

$$\theta = \text{scattering angle.}$$

$$x = \frac{Q^{2}}{2M\nu} \text{ fraction of nucleon momentum carried by the struck quark.}$$

What are g_1 and g_2 ?

• The "g's" play a role analogous to the "F's" in the unpolarized cross section

$$rac{d^2\sigma}{d\Omega dE'} = rac{lpha^2}{4E^2 \sin^4 rac{ heta}{2}} \left(rac{2}{M} F_1(x, Q^2) \sin^2 rac{ heta}{2} + rac{1}{
u} F_2(x, Q^2) \cos^2 rac{ heta}{2}
ight)$$

- F encodes information about the momentum structure of the nucleon
- g₁ and g₂ encode information about the spin structure of the target nucleon

- The Parton Model
 - → g_1 is a measure of the spin distribution among the individual constituent quarks (ie. aligned parallel and anti-parallel to the nucleon spin) → g_2 ???

g₂ and Quark-Gluon Correlations

QCD allows the helicity exchange to occur in two principle ways

Couple to a gluon

0

-1/2

twist-3

000000000

+1

1/2

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$

a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):

$$\overline{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left(\frac{m_{q}}{M} h_{T}(y,Q^{2}) + \xi(y,Q^{2}) \right) \frac{dy}{y}$$

transversity quark-gluon correlation

d₂: A clean probe of quark-gluon correlations

$$d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx = 3 \int_0^1 x^2 \overline{g_2}(x, Q^2) dx$$

- *d*₂ is a clean probe of quark-gluon correlations / higher twist effects
 - \rightarrow d₂ is the 3rd moment of a sum of the spin structure functions
 - \rightarrow matrix element in the Operator Product Expansion $\overline{\mathbf{O}}^{\mathbb{N}}$
 - » it is cleanly computable using Lattice QCD
- Connected to the *color Lorentz force* acting on the struck quark (Burkardt)
 - \rightarrow same underlying physics as in SIDIS k_{\perp} studies

Virtual Photon Asymmetries

$$A_{1} = \frac{1}{(E + E')D'} \left((E - E'\cos\theta)A_{\parallel} - \frac{E'\sin\theta}{\cos\phi}A_{\perp} \right)$$

$$A_{2} = \frac{\sqrt{Q^{2}}}{2ED'} \left(A_{\parallel} + \frac{E - E'\cos\theta}{E'\sin\theta\cos\phi}A_{\perp} \right)$$

$$A_{1} = \frac{1}{F_{1}} \left(g_{1} - \frac{(2Mx)^{2}}{Q^{2}}g_{2} \right)$$

$$= \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \xrightarrow{\text{Poton spin Nucleon spin}}_{Q \text{ NAA} \leftrightarrow -p} \xrightarrow{\text{Poton spin Nucleon spin}}_{Q \text{ NAA} \leftrightarrow -p}$$

$$A_{2} = \frac{\sqrt{Q^{2}}}{\nu} \frac{g_{T}}{F_{1}} \xrightarrow{g_{T}} = g_{1} + g_{2}$$

$$\bullet g_{\tau} \text{ measures spin distribution normal to the virtual photon}$$

The Experiments E07-003 and E06-014 ("SANE" and "d2n")

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

E07-003: SANE (Hall C)

- Spin Asymmetries of the Nucleon Experiment
 - \rightarrow Polarized NH₃ target
 - \rightarrow Large acceptance detector to measure asymmetries
 - \rightarrow Focus: A_1, g_2, d_2 for the proton

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

SANE: Experimental Layout

Polarized NH₃ Target

E07-003 : Polarized Ammonia Target

World data on A_{\parallel} , A_{\perp} and SANE kinematics

E06-014: The Neutron d_2 (Hall A)

- A measurement of the neutron d₂
 - \rightarrow Polarized ³He target
 - \rightarrow Large acceptance detector to measure asyms (BigBite)
 - \rightarrow High-precision device to measure unpol. x-sec (HRS)
 - \rightarrow Focus: d_2 , g_2 on the neutron
 - » extracted A_1, g_1 as well

Floor configuration for d_2^n

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

Polarized ³He Target

- ³He is (almost) a polarized neutron target
 - → Dominant S state has neutron carrying the spin (proton spins cancel)

- ~10 atm ₃He cell with trace amounts of K, Rb
- Polarization achieved through optical pumping and 2-step spin exchange
 - $\mathsf{*} \mathsf{K} \to \mathsf{Rb}$
 - » $Rb \rightarrow {}^{3}He$

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

Kinematics of the measurement

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

Recent (and revisited) Results From E07-003 and E06-014 ("SANE" and "d2n")

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

A_1, A_2 for the proton (SANE)

Recent → arXiv:1805.08835 [nucl-ex]

- A1 is roughly linear vs. ln(W)
 → minimal Q² dependence
- A2 is consistent with E143 even though E143 has much greater Q²

 \rightarrow minimal/weak Q² dependence for A2?

d_2 for the neutron (E06-014)

SPIN 2018 • September 12, 2018

g₁ & **g**₂ for the proton (SANE)

- Significant improvement to the world data for both g_1 and g_2 in the high-x region
 - \rightarrow Caveat: highest-x data are in the resonance

d₂ for the proton (SANE)

- Good agreement with prior proton d₂ data at higher Q²
- Hint of a negative d^p₂, negative twist-3 at moderate Q² ~ 3 GeV²?

FIG. 2. The SANE results (filled circles) for $2M_2^3 \simeq \tilde{d}_2^p$. The lattice result (open circle) [14] and previous measurements from SLAC [23] and RSS [25, 32] are shown with the dotted line corresponding to the elastic contribution. Model calculations from sum rules [33, 34], the CM bag model [34, 35], and the chiral soliton model [36] are also shown.

arXiv:1805.08835 [nucl-ex]

Thomas Jefferson National Accelerator Facility

SPIN 2018 • September 12, 2018

d₂ for the proton and neutron

Hint of a negative d^p₂, negative twist-3 at moderate Q² ~ 3 GeV²
 → Similar hint of negative twist-3 (dips below CN elastic) in dⁿ₂
 data noted in SANE preprint – curious

Near-term SFF measurements in Hall C!

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

Upcoming Pol ³He Experiments in Hall C

- Hall C → A1n (E12-06-110) → d2n, g2n (E12-06-121)
- JLab Experimental Readiness Review (ERR) held March '18
 - →Major item: 3He target
 - » No 'show-stoppers'

- Both make use of
 - \rightarrow 11 GeV beam
 - → SHMS (+ HMS) spectrometers
 - → Upgraded 3He target
- On the schedule to start running in Fall 2019!
 →Preliminary results 2020–21?

More details at ERR page

Both A_1^n and d_2^n Experiments Share the Same Layout in Hall C

Super-High-Momentum Spectrometer (SHMS)

Retain Key Features of HMS:

• Pivot • Rail System				HMS
Point-Point Optics Design				
• "Flat" Acceptances	SHMS			
• Shield House				
• Redundancy in Detectors				
Incorporate them in the				
SHMS to Provide:		٨	Pivot/	
 Pair of magnetic spectrometers 			Target	
•Full momentum capability		F		
•Large acceptance		Deal		
 Angle accuracy and reproducibility 		e,		
•Small angle capability				
 Very good particle identification 				
 Compatibility with all target configurations 				

Slide from H. Fenker

Polarized 3He Run Group in Hall C

Polarized ³He Target

³He Target Upgrade

- Polarized ³He target group has developed a new ³He target design
 - → Upgrade from 2008 cell that induces a thermally-driven convection flow between the polarization cell and the target volume
 - \rightarrow 40cm long target cells of this type to be used in 2019 Hall C $d_2^n + A_1^n$ run group
 - \rightarrow *Goal* for this intermediate design is to reach 60% polarization @ 30 µA beam
- Longer term goal is to extend this design to support currents as high as $60 \ \mu A$

E12-06-121: *d*^{*n*}₂, *g*^{*n*}₂

- Directly measure the Q² dependence of the neutron $d_2^{n}(Q^2)$ at Q² \approx 3, 4, 5, 6 GeV² with the new polarized ³He target.
 - The new Hall C SHMS is ideally suited to this task!
- Doubles number of precision data points for $g_2^n(x, Q^2)$ in DIS region.
 - Q^2 evolution of g_2^n over (0.23 < x < 0.85)

Projected results for E12-06-121

Jefferson Lab

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

E12-06-110 A1n in Hall C

Spokespeople: X. Zheng, G. Cates, JP Chen, Z-E Meziani

Slide from X. Zhang March 2018 readiness review

Summary

SANE (E07-003) Proton

- $\rightarrow A_1^{p}$, A_2^{p} in good agreement with world data
 - » First hint of roll-over in A_1^p vs x?
 - » A_2 from SANE consistent with E143 hinting at weak Q² dependence?
- \rightarrow g₁ and g₂ in good agreement with parameterizations based on world data
- → Significant increase in precision data in high-x and DIS regions!
- \rightarrow data hint at a negative d_{2}^{p} around 3 GeV²?

- "d2n" (E06-014) Neutron
 - $\rightarrow A_1^n$ in good agreement with world data
 - \rightarrow g₁ and g₂ in agreement with world data for both He3 and neutron extraction
 - \rightarrow Significant increase in precision data in high-x and DIS regions!
 - \rightarrow *d*₂-neutron data
 - » now consistent with Lattice result
 - but in tension with older E155x
 - hint at negative d_2^n at same Q^2 as d_2^p ? »

12 GeV Hall C A_1^n and d_2^n , g_2^n measurements scheduled to run ~2019

- \rightarrow Focus on high-x and Q² evolution of these quantities
 - Coming Soon! » Large new precision data set in previously unmeasured domain
- \rightarrow Finally rule out DSE or pQCD A_1^n models?
- \rightarrow First evaluations of d_2^n at truly fixed Q^2 values
 - » Updates LQCD results long overdue! Now is the time!
- Large A_{1}^{p} , g_{1}^{p} data set from upcoming CLAS12 E12-06-109 as well!
 - \rightarrow Compliments Hall C neutron measurements for $\Delta q/q$ extractions

BACKUP

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

JSA

Big Electron Telescope Array • BETA

- **BigCal** lead glass calorimeter: main detector used in *GEp-III*.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
 - Effective solid angle = 0.194 sr
 - Energy resolution $9\%/\sqrt{E(\text{GeV})}$
 - 1000:1 pion rejection
 - angular resolution ~ 1 mr
- Target field sweeps low *E* background
 - 180 MeV/c cutoff

Tracker

E06-014 – d2n

- A 4.75 and 5.9 GeV polarized electron beam scattering off a polarized ³He target
- Measure unpolarized cross section for ${}^{3}\vec{\mathrm{He}}(\vec{e},e')$ reaction $\sigma_{0}^{^{3}\mathrm{He}}$ in conjunction with the parallel asymmetry $A_{\perp}^{^{3}\mathrm{He}}$ and the transverse asymmetry $A_{\parallel}^{^{3}\mathrm{He}}$ for 0.23 < x < 0.65 with 2 < Q² < 5 GeV².
 - \rightarrow Asymmetries measured by BigBite
 - \rightarrow Absolute cross sections measured by L-HRS
- Determine d_2^n using the relation

$$\tilde{d}_{2}(x,Q^{2}) = x^{2}[2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})]$$

$$= \frac{MQ^{2}}{4\alpha^{2}} \frac{x^{2}y^{2}}{(1-y)(2-y)} \sigma_{0} \bigg[\bigg(3\frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} + \frac{4}{y}\tan\frac{\theta}{2} \bigg) A_{\perp} + \bigg(\frac{4}{y} - 3\bigg) A_{\parallel} \bigg]$$

where,

$$A_{\perp} = \frac{\sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}}{2\sigma_{0}} \qquad A_{\parallel} = \frac{\sigma^{\downarrow \uparrow} - \sigma^{\uparrow \uparrow}}{2\sigma_{0}}$$
$$A_{\perp}^{^{3}He} = \frac{\Delta_{\perp}}{P_{b}P_{t}\cos\phi} \qquad A_{\parallel}^{^{3}He} = \frac{\Delta_{\parallel}}{P_{b}P_{t}}$$
$$\Delta_{\perp} = \frac{(N^{\uparrow \Rightarrow} - N^{\uparrow \Rightarrow})}{(N^{\uparrow \Rightarrow} + N^{\uparrow \Rightarrow})} \qquad \Delta_{\parallel} = \frac{(N^{\downarrow \uparrow} - N^{\uparrow \uparrow})}{(N^{\downarrow \uparrow} + N^{\uparrow \uparrow})}$$

Thomas Jefferson National Accelerator Facility

SPIN 2018 • September 12, 2018

A₁ for Neutron

Thomas Jefferson National Accelerator Facility SPIN 2018 • September 12, 2018

$(\Delta u + \Delta \bar{u})/(u + \bar{u})$ and $(\Delta d + \Delta d)/(d + d)$

x^2g_1 for ³He

Thomas Jefferson National Accelerator Facility

SPIN 2018 • September 12, 2018

41

JSA

Upgraded Hall C: SHMS + HMS

SHMS:

• 11-GeV Spectrometer • Partner of existing 6– GeV **HMS**

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- •Hodoscopes
- •Cerenkovs
- Calorimeter
- All derived from existing HMS/SOS detector designs

Well-Shielded Detector Enclosure

Rigid Support Structure

- Rapid & Remote Rotation
- Provides Pointing
- Accuracy &
- Reproducibility
- demonstrated in HMS

E12-06-121: *d*^{*n*}₂, *g*^{*n*}₂

- Hall C: SHMS + HMS
- Two beam energies:
 - \rightarrow 11 GeV/c (production)
 - \rightarrow 2.2 GeV/c (calib.)
- Beam Current
 - \rightarrow 30 uA (production)
 - \rightarrow 60 uA (max, calib.)
- Target: 40 cm Polarized ³He
- Each arm measures an <u>absolute polarized cross</u> <u>section</u> independent of the other arm (g_1, g_2)

$$\rightarrow d_2(Q^2) = \int_0 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

- SHMS collects data at
 - $\rightarrow \Theta = 11^{\circ}, 13.3^{\circ}, 15.5^{\circ} \text{ and } 18.0^{\circ} \text{ for } 125 \text{ hrs each}$
 - \rightarrow data from each setting divided into 4 bins
- HMS collects data at

 $\rightarrow \Theta = 13.5^{\circ}$, 16.4°, 20.0° and 25.0° for 125 hrs each

SHMS Production			HMS Production			
Setting	P ₀	Angle	Setting	P ₀	Angle	
А	7.5	11.0°	A'	4.3	13.5°	
В	7.0	13.3°	В'	5.1	16.4°	
С	6.3	15.5°	C'	4.0	20.0°	
D	5.6	18.0°	D'	2.5	25.0°	

