

Israel Mardor, for the A1 Collaboration

School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Soreq NRC, Yavne, Israel

Outline

- Physics motivation
- Electromagnetic form factors
- Polarization transfer measurements
- Survey of polarization transfer data (ratios)
- Focus on the deuteron
- Measuring separate components
- Results
- Summary and Conclusions
- Outlook

Physics Motivation

- Are nucleon global properties (mass, radius) modified inside nuclei?
 - Do their EM form factors $G_E(Q^2)$, $G_M(Q^2)$ change?
- If so, how do these changes depend on:
 - The nucleus size
 - Nuclear density
 - Q²
- Can one disentangle inter-nucleon effects (FSI, nucleon-nucleon interactions) from intra-nucleon medium modifications?

Free neutron

$$\tau_n = 15 \, \mathrm{min}$$

Bound neutron

$$\tau_{n^*} = \infty$$

The observables of choice (1)

- Use **nucleon spin** as a **tool** to study the nuclear effect on nucleons
- Polarization transfer to a knocked-out proton in QE $A(\vec{e}, e'\vec{p})$
- Search for **deviations** w.r.t. ${}^{1}H(\vec{e}, e'\vec{p})$
- ${}^{1}H(\vec{e},e'\vec{p})$, 1- γ exchange approximation:

$$\begin{split} hP_eP_x' &= -2\sqrt{\tau(1+\tau)}G_EG_M\tan\left(\frac{\theta_e}{2}\right)/I_0\,,\\ hP_eP_z' &= \frac{E_e+E_e'}{M}\sqrt{\tau(1+\tau)}G_M^2\tan^2\left(\frac{\theta_e}{2}\right)/I_0\,. \end{split}$$

$$\frac{P_x'}{P_z'} = -\frac{2m_p}{(E_e + E_e')\tan\left(\frac{\theta_e}{2}\right)} \frac{G_E}{G_M}$$

The observables of choice (2)

$$\frac{P_x}{P_z} = -\frac{G_E}{G_M} \frac{2M}{E + E'} \cot \frac{\theta_e}{2}$$

G_E, G_M: Proton Form Factors (FFs)

• Since
$$\left(\frac{P_{\it X}}{P_{\it Z}}\right)_{\it p} \propto \frac{G_E}{G_M}$$
 , then perhaps $\left(\frac{P_{\it X}}{P_{\it Z}}\right)_{\it A} \propto \frac{G_E^*}{G_M^*}$

- G_E^* , G_M^* : nuclear-medium modified electromagnetic proton FFs
- The measurement of $\left(\frac{P_x}{P_z}\right)_A$ is:
 - obtained from a single measurement with a few % syst. and stat. uncertainties
 - minimally affected by radiative corrections

The observables of choice (3)

- $\left(\frac{P_x}{P_z}\right)_A$: Reaction Plane is rotated w.r.t. Scattering Plane
- Measure $\left(\frac{P_x}{P_z}\right)_A (\vec{p}_i)$

- ullet $ec{p}_i$ is unmeasurable, but $ec{p}_{miss} = ec{q} ec{p}_p$ is measurable
- Within **PWIA**, and assuming **no FSI** \rightarrow $\vec{p}_i = -\vec{p}_{miss}$

The observables of choice (4)

- Goal: measure gradual increase of nuclear effects on $\left(\frac{P_x}{P_z}\right)_A$
- ullet Possible by reaching for higher $\overrightarrow{p}_{miss}$
- More straight-forward: measure $\left(\frac{P_x}{P_z}\right)_A$ versus nuclear effect on the proton:
 - \rightarrow how deeply it is bound \rightarrow how 'off-shell' it is \rightarrow how **virtual** it is:

•
$$\nu = P_{miss}^2 - M_p^2 = \left(M_A - \sqrt{M_{A-1}^2 + |\vec{p}|_{miss}^2}\right)^2 - |\vec{p}|_{miss}^2 - M_p^2$$

Note: assume that only struck proton is off-shell

Polarization transfer measurements

- $\left(\frac{P_x}{P_z}\right)_A$ were measured at
 - JLAB $(Q^2 = 0.4 2.6 (GeV/c)^2)$
 - MAMI ($Q^2 = 0.18 0.4 (GeV/c)^2$)
- Measurements performed on:
 ²H, ⁴He and ¹²C
- At MAMI (MAinz MIcrotron):
 - Used 2 spectrometers in coincidence (A, C)
 - $E_e = 600, 630 \text{ MeV} (Q^2 = 0.18, 0.4 (GeV/c)^2)$
 - $I_{e} = 10 \, \mu A \, CW$
 - Beam polarization ~ 80%
 - Used Focal Plane Polarimeter (FPP) in spectrometer A for polarization measurements

Polarization transfer data (1)

- Consistent with:
 full RC + medium modification of
 the proton FF (QMC model)
- In clear disagreement with:
 PWIA and NR calculations
- The statistical significance is not sufficient to exclude calculations without form factor modification

Polarization transfer data (2)

- Practically Q² independent
- Differs from a full RC
- Favors a medium modification of the proton form factors predicted by a QMC model

S. Strauch et al., PRL 91 (2003) 052301

Polarization transfer data (3)

M. Paolone et al., PRL 105 (2010) 072001

- Q² independence stays intact
- Enter presentation of data versus virtuality
- Results contradict a relativistic DWIA
- Results favor either: medium-modified proton FFs by QMC (Madrid) or spin-dependent CX FSI (Schiavilla)

Polarization transfer data (4)

- High p_{miss}:
 P_x is inconsistent with deuteron reaction model
- Low p_{miss}: Q² dependence of P_z is
 inconsistent with deuteron reaction model

B. Hu, et al. PRC 73, 064004 (2006) Deuteron reaction model: Arenhovel et al.

Polarization transfer data (5)

I. Yaron et al., PLB 769 (2017) 21–24

- $\left(\frac{P_x}{P_z}\right)_{2H}/\left(\frac{P_x}{P_z}\right)_{1H}$ and $\left(\frac{P_x}{P_z}\right)_{4He}/\left(\frac{P_x}{P_z}\right)_{1H}$ behave similarly
- Nuclear effect: function of virtuality of the knock-out proton and the \mathbf{p}_{miss} direction
- Seems independent of the average nuclear density and Q²
- **General agreement** between data and full calculations, which assume **free proton form factors**

 4 He(e,e'p) 3 H

v [GeV 2

Polarization transfer data (6)

- Enter ¹²C. Data from different density regions by separating knockout protons from S- and P-shells
- R_A/R_{1H} for ²H, ⁴He, ¹²C(S), ¹²C(P) are consistent, even when obtained in different kinematics.
- Data suggest universal behavior, independent of average local density and Q².

D. Izraeli et al., PLB 781 (2018) 95-98

Deeper investigation of the deuteron

- The most loose nuclear system
 - Often used as a 'free neutron' target
- Nevertheless, bound nucleons can still be 'off-shell'
- No local nuclear density changes
- Perform experiments as low Q² nucleon radius
- Good calculations (H. Arenhövel et al.*)
 - Meson Exchange Currents (MEC)
 - Isobar Configuration (IC)
 - Relativistic Correction (RC)
 - Final State Interactions (FSI)
 - Free proton EM Form Factors

Extraction of ²H polarization transfer components (1)

- Precise determination of e⁻ beam polarization
 - > reduced systematic uncertainties on the components
- Enabled detailed comparison to Arenhövel's calculation using free-proton EM FFs
- Used fitted beam-polarization instead of fluctuating periodic measurements
- Overall normalization determined by ${}^{1}H(\vec{e},e'\vec{p})$ measurements
- Beam-polarization uncertainty significantly reduced

Extraction of ²H polarization transfer components (2)

- Beam polarization was precise enough for extracting polarization transfer components with the required uncertainty (not only P_x/P_z)
- P_v component determined as well
- For ${}^{1}H$, $P_{v}=0 \rightarrow P_{v}$ can be compared only to calculations
- While P_x/P_z is sensitive (almost linearly) to G_E/G_M , some nuclear effects may cancel out in the ratio.
- The measured individual polarization transfer components may provide a more stringent test of the calculation

²H polarization transfer components results (1)

Kinematic	Setting		
	A	В	D
$Q^2[\mathrm{GeV^2/c^2}]$	0.40	0.4	0.18
$E_{\mathrm{beam}}[\mathrm{MeV}]$	600	600	630
$p_{ m miss} [{ m MeV/c}]$	-80 to 75	75 to 175	-220 to -130

- Exp/Calc ratios were extracted event-by-event over the entire data set
- P_x/P_z agrees highly significantly with the calculation (p = 0.91)
- This indicates no need for modifications in G_E/G_M
- Experimental P_x and P_z values differ from calc, especially at high p_{miss}
- Py differs highly, maybe due to division of very small numbers
- Modifications in G_E and G_M are thus possible, but only if they keep the ratio G_E/G_M intact
- Excluding **FF** modifications, deviations of P_x and P_z suggest that nuclear effects and/or RC included in the calculation should be improved

²H polarization transfer components results (2)

- A continuous parametrization of the data
 (avoids losing information due to averaging within bins)
 was derived for ²H polarization transfer ratios to ¹H
- Done by a **novel method***, relating the data to a realistic model of the deuteron
- This process requires extraction of experimental polarization transfer components
- Number of parameters was optimized to avoid over-fitting
- Main deviation from the free proton is due to FSI (compare PWBA and DWIA)
- Observed deviation of P_x/P_z is mainly due to P_z , which seems to be more sensitive to FSI and RC than P_x

Physics Motivation – stock taking so far

- Are nucleon global properties (mass, radius) modified inside nuclei?
 - Do their EM form factors $G_F(Q^2)$, $G_M(Q^2)$ change?
- If so, how do these changes depend on:
 - The nucleus size
 - Nuclear density
 - Q²
- Can one disentangle inter-nucleon effects (FSI, nucleon-nucleon interactions) from intra-nucleon medium modifications?

- Some ⁴He data may suggest it, but no smoking gun yet
- Apparently, relevant measured variables are independent of all 3

 Models are seemingly able to separate 'regular' nuclear effects from medium modifications

Summary and conclusions (1)

- Polarization transfer for ²H, ⁴He and ¹²C was collected at relatively wide kinematic conditions (Q² = 0.18 2.6 (GeV/c)²)
 - 2.6 (GeV/c)² point is with a large error
- Still no polarization transfer measurement that requires medium-modified EM FFs for its theoretical interpretation
- Nuclear models give good handles in disentangling inter-nuclear effects from intra-nucleon effects.
 RC and FSI are required for good interpretation
- Polarization transfer ratios seem to be independent of the nuclear size, nuclear density and Q², in the measured ranges

Summary and conclusions (2)

- Polarization transfer has a universal **smooth behavior** in **virtuality**. This behavior is reconstructed by calculations
- It is possible to select events from **specific** local density regions within certain nuclei, by controlling the nuclear shell of the knocked-out proton, via cuts on the missing energy
- Polarization components may provide more stringent tests on calculations, since in ratios some of the nuclear effects might cancel out

Outlook (1)

- To verify whether medium modifications of nucleons occur or not, more polarization transfer measurements are required
- Measurements on ²H, ⁴He and ¹²C should be extended to higher virtuality (p_{miss})
 - Approved at JLAB: ${}^4He(\vec{e},e'\vec{p})$ @ $Q^2 = 1.0, 1.8 (GeV/c)^2, -200 < p_{miss} < +300 MeV/c$
 - Nuclear medium effects are expected to increase with virtuality

S. Strauch et al., JLAB E12-11-002

Outlook (2)

- Elaborate measurements on specific nuclear shells (s, p in ¹²C). Especially compare s and p results at same virtuality and kinematics
- Continue measuring polarization components, and not only ratios. Specifically, compare components at different shells
- Measure specific nuclear shells at high Q² in this regime, the contribution of multi-nucleon reactions to deep-shell single proton knockout may be reduced

 The effect of FSI on polarization transfer may be investigated by measuring heavier nuclei

D. Izraeli et al., PLB 781 (2018) 95–98

Acknowledgements

• The A1 Collaboration:

D. Izraeli, T. Brecelj, I. Yaron, P. Achenbach, A. Ashkenazi, R. Böhm,
E. O. Cohen, M. O. Distler, A. Esser, R. Gilman, T. Kolar, I. Korover,
J. Lichtenstadt, I. Mardor, H. Merkel, M. Mihovilovic, U. Müller,
M. Olivenboim, E. Piasetzky, G. Ron, B. S. Schlimme, M. Schoth,
C. Sfienti, S. Sirca, S. Stajner, S. Strauch, M. Thiel, A. Weber

- Tel Aviv University, Israel
- Jozef Stefan Institute, Slovenia
- Johannes Gutenberg-Universität, Germany
- Rutgers, The State University of New Jersey, USA
- NRCN, Israel
- Soreq NRC, Israel
- Hebrew University of Jerusalem, Israel
- University of Ljubljana, Slovenia
- University of South Carolina, USA

We would like to thank the Mainz Microtron (MAMI) operators and technical staff for the excellent operation of the accelerator

Thanks to the Spin-2018 organizing committee for this talk invitation

